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Electron tunneling through indirect single barriers
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Electron tunneling through single barriers, taking into account the coupling between two di8'erent

band-edge profiles, is studied by means of a heuristic two-band tight-binding model. The tunneling prob-
abilities, as well as the spectral weights of the tunneling states, are analyzed. This indirect-barrier sys-

tem directly addresses the issue of I -X coupling in GaAs-(A1, Ga)As heterostructures. A relation be-

tween this physical system and the resonant tunneling through double-barrier quantum wells and also

the atomic-potential scattering is established. The nature of the resonances in the transmission probabil-
ities is discussed and it is shown under which conditions the shape of these resonances can change.

Tunneling through epitaxially grown semiconductor
barrier systems has already been extensively studied. Re-
markable are the resonance effects that can be detected in
current-voltage characteristics of double-barrier quantum
well (DBQW) structures. Experimental data are usually
analyzed in the effective-mass-approximation (EMA)
framework. ' However, the EMA does not treat the irn-
portant effect of the coupling between different
conduction-band minima. This effect should be of impor-
tance in (Al, Ga)As-based systems with barriers having
high Al concentrations, where the fundamental gap be-
comes indirect. An analysis of this effect brings the at-
tention back to single-barrier structures, where the direct
(1) band-edge profile shows a real barrier, while the in-
direct (longitudinal X) one is a quantum well. Realistic
microscopic calculations, showing the complex coupling
effects between the quasibound states in indirect quantum
well profiles and the ones in the barrier contacts, leave
several open questions. Extensions of the EMA to deal
with these systems in a realistic way show a striking
problem of nonconservation of tunneling unitarity,
while more simplified approaches neglect important in-
terference effects. The aim of this paper is to refer to the
tunneling through indirect barriers by means of a simple
heuristic model, that can be solved exactly. The tunnel-
ing unitarity is conserved and interferences between the
I" and X tunneling "channels" are taken into account. A
picture for the qualitative features of the problem is es-
tablished, relating it to the well-known problem of reso-
nant tunneling in DBQW's and with some aspects of
three-dimensional atomic scattering. The unique nature
of the tunneling asymmetric resonances is discussed, and
we point out the fact that they show up in a large class of
semiconductor systems due to very different mechanisms.

The model Hamiltonian consists of an atomic chain
with two s-like orbitals (s and s') per site, treated in the
tight-binding approximation, with nearest-neighbor in-
teractions only. Intrasite hopping is not considered. In
order to simulate a barrier (enclosed by semi-infinite con-
tacts) structure, we consider two different sets of parame-
ters, J=B, C, where B (C) stands for barrier (contact).
Each set of parameters determines the following two-
band dispersion relation for an infinite chain [dotted line

in Fig. 1(a)]:

2'(k)= EJ+EJ +(Vs'+ VJ ' )cos(ka)

+[ [EJ EJ +—2(Vs' —VJ ' )cos(ka)]

+[4'' cos(ka)] ]'~

where k is the one-dimensional wave number and a the
chain lattice parameter. EJ and E& are the orbital ener-

gies and VJ'J are the hopping elements; where i,j =s,s*.
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FIG. 1. (a) A schematic bulk dispersion relation for the two
s-like orbital tight-binding chain (dotted lines). The model
dispersion relation considered throughout the paper is given by
the two cosine-like bands, continuous and dashed lines, whose
corresponding band-edge (minima) profiles constitute the bar-
rier potential profile shown in (b).

8323 1991 The American Physical Society



8324 BRIEF REPORTS

By setting E'=E' the band structure reduces to two
crossed cosinelike bands, the direct one, "I -like" [con-
tinuous line in Fig. 1(a)] and the indirect one, "X-like"
[dashed line, Fig. 1(a)]. This is the simplest way to simu-
late a semiconductor conduction-band dispersion with
two different minima. Now the hopping elements can be
varied along the chain (the orbital energies are kept con-
stant) in order to simulate the band-edge profiles shown
in Fig. 1(b). The interface hopping elements are taken as
the geometric average of those for the barrier (B) and the
contact (C). This is an usual choice that conserves the
unitarity of the tunneling probability. Since E'=E',
the Bloch functions for the states in each band are
energy-independent linear combination of the atomic or-
bitals:
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where + ( —) stands for the direct (indirect) band and n is
the chain site index. The hopping elements can be
changed in a way that lets the band-edge profile remain
constant, while the linear combination of atomic orbitals
(P s) of the direct (indirect) -like states in the contact re-
gion are changed from orthogonal (y= (Pc ~Pz ) =0) to
slightly nonorthogonal (y&0) with respect to the indirect
(direct) -like states in the barrier. For the parameters
used here the effective masses for both minima in both
materials are approximately the same (m*=0. 1mo, for

0
a =5.65 A). This choice eliminates effects from our re-
sults which depend on the differences of the effective
masses. The zero of energy is the bottom of the direct
conduction band in the contact. Referring to Fig. 1(b),
the indirect and the direct barriers are, respectively, 0.1

and 0.3 eV high. The indirect minimum in the contacts is
0.4 eV above the zero of energy. The transmission proba-
bilities, for zero applied bias, are calculated by means of a
procedure based on the transfer-matrix technique de-
scribed elsewhere.

%'e are going to consider the energy range up to 0.4
eV, so there are only "I -like" propagating states in the
contacts. The calculated transmission probabilities, as a
function of incident electron energies, for barriers with
increasing thicknesses are shown in Fig. 2. The reso-
nances where the transmission probability reaches unity
are associated with the quantized states in the quantum
well defined by the indirect band-edge profile. The reso-
nances can be either Lorentzian-like or asymmetric,
showing even dips in the transmission. The dashed curves
show the transmission probabilities when the quantized
states are not allowed to couple with the propagating
states in the contacts (y=0, pure direct barrier). The
coupling between the incident electron wave function to
the otherwise bound states in the barrier region is
achieved when the indirect (direct) Bloch orbital of the
barrier material is "tuned" to be slightly nonorthogonal.
to the direct (indirect) one in the contacts. All the results

FIG. 2. Transmission probabilities as function of energy for
single barriers, like the one shown in Fig. 1, for increasing bar-
rier thickness (L, given in number of lattice parameters), with
coupling between different Bloch functions (y=0.02, continu-
ous lines) and for the corresponding direct barriers (y=0,
dashed lines): (a) L =7a, (b) L =15a, (c) L =25a.

shown here are for y =0.02. The evolution of the
transmission probability can easily be followed when the
barrier thickness is increased and new states are bound in
the indirect well. Lower resonances change from an
asymmetric to a Lorentzian shape when the transmission
probability of the direct barrier is sufficiently reduced,
with increasing barrier thickness. Quasibound states
sufficiently near the direct barrier edge can still give rise
to asymmetric resonances, as well as for those above this
edge. It is also seen in Fig. 2 that the transmission proba-
bility for thin barriers is mainly determined by the direct
barrier for the full range of energy, except near reso-
nances. The apparent deviation from this behavior for
thicker barriers, at off-resonances energies, is only due to
the finite width of the resonances, that start to overlap,
when bound states are sufficiently near to each other.
Indeed, only near resonances the tunneling state has a
large spectral weight for states near the indirect
minimum of the Brillouin zone. Off resonance the tun-
neling states show essentially the same spectral weight
distribution as a tunneling state at the same energy for
y=0. In Fig. 3 we show the spectral weights of the
Fourier transform of the wave function inside the barrier
region, where the barrier is the same as in Fig. 2(c), at
different energies: at the first resonance (continuous line)
and in the middle between the first and second resonances
(dashed line). The equivalence to the second case for
y =0 is shown by the dotted line.

The problem addresses the resonant tunneling in
DBQW's in the EMA. There the presence of the well has
also scarcely any effect off resonance, but can dramatical-
ly change the tunneling probability throughout the global
barrier at the energies of the quasibound states. In



BRIEF REPORTS 8325

1P2
T

10

0
I I I

1

K vgctor (units of It:/a)

FIG. 3. Spectral weights of the Fourier transforms of tunnel-
ing states shown in Fig. 2(c) at different energies: at the first res-
onance (continuous line) and at the middle between the first and
second resonance (dashed line). The dotted line shows the
equivalent to the dashed one for the case of a pure direct bar-
rier.

DBQW's the widths of the resonances are determined by
the barrier thicknesses: the thinner the barriers the
broader the resonances. For the indirect single barrier,
the symmetric resonance widths, although influenced by
the direct barrier in the same way as in DBQW's, are
principally determined by the Bloch-function coupling:
the stronger the coupling, the wider the resonances. So it
is possible, unlike in DBQW S, to make the direct barrier
more transparent keeping the resonance width approxi-
mately constant.

The width of the asymmetric resonances is also directly
proportional to the Bloch-function coupling, but its
dependence on the direct barrier is the opposite one as
for Lorentzian resonances: the more transparent the
direct barrier, the thinner the asymmetric resonances.
This behavior can be observed in Figs. 2 and 4. In Fig.
4(a) we see that for a given indirect barrier, the shape of
the resonance can be changed by modifying the Bloch-
function coupling: y=0. 02 (continuous line) and 0.005
(dashed line). Experimentally this efFect could be en-
visaged by applying hydrostatic pressure in order to
lower the indirect tX in (Ga,Al)As systems] band profile,
relative to the direct one, and bring the bound states to
energies where the direct barrier transparency is low
enough to permit Lorentzian resonances instead of asym-
metric ones for the same coupling, y =0.02, Fig. 4(b). It
should be noticed here that new tunneling channels are
opened, since the X-like propagating states in the con-
tacts now become available in this energy range [dot-
dashed line in Fig. 4(b)].

An analogy between the present one-dimensional
scattering problem and the three-dimensional resonance
scattering in atomic physics' is conceivable. Indeed, we
can define a "potential scattering, " the transparency of
the direct barrier; and a "resonance scattering, " the effect
of the quasibound states in the indirect quantum-weH
profile of the barrier. It is well known that the interfer-
ence between both scattering terms in atomic physics
leads to asymmetric resonances in the scattering cross
section, as discussed by Fano in the context of atomic au-
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FIG. 4. (a) Transmission probability as a function of energy
for the barrier of Fig. 2(b) for y=0.02 (continuous line) and
0.005 (dashed line). (b) Transmission probability for a single bar-
rier with L =11a and y=0.02 (dashed lines are for y=0) for
the two different band alignments shown as insets. The dot-
dashed line is for tunneling probabilities associated with X-like
propagating states in the contacts.
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FIG 5 Transmission probabilities for the single barrier of
Fig. 2(b), in the energy range of the two first resonances, with
increasing y, from 1 to 5: y=0.001, 0.005, 0.009 125, 0.00925,
0.2, respectively.

toionization processes" (discrete states coupled to a con-
tinuum of states). Keeping this picture in mind, we argue
that the resonances in the transmission probabilities of
the indirect barrier are Fano-like resonances, irrespective
of the barrier thickness. Whenever y%0, the X-like quan-
tized states are a1ways coupled to the continuum of I-
like states in the contacts. In Fig. 5 we show transmis-
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sion probabilities for the same structure of Fig. 2(b), in
the energy range of the two first resonances, for different
values of y. For very weak coupling, the resonances are
asymmetric and very sharp. By increasing the coupling,
the resonances become wider, with the dips moving to-
ward each other, up to a point where they overlap, giving
rise to symmetric resonances. This resonance shape fIip
occurs only for pairs of resonances, where the transmis-
sion dips approach each other by rising y. Unpaired res-
onances, below the direct band edge in the barrier,
remain asymmetric, independent of the barrier thickness
or coupling strength. This pairing depends on the symme-
try of the quasibound states and of the chain: for barriers
with even number of sites, it is the first resonance that
remains unpaired. With increasing barrier thickness, the
coupling strength necessary to have pairs of Lorentzian
resonances, instead of asymmetric ones, diminishes. So,
for a given coupling between Bloch functions, the number
of symmetric resonances rises (in pairs) with increasing
barrier thickness.

In summary, for tunneling through an indirect (sym-
metric) barrier profile, the transmission probability al-
ways reaches unity at resonance and the important quan-
tity to be considered is the resonance width. Off reso-
nance, it is the direct barrier that determines the tunnel-
ing probability for all energy ranges, irrespectiue of the
eQectiue masses associated with each minimum The.
problem immediately addresses resonant tunneling in the
usual DBQW s, keeping in mind the striking feature that
the resonance widths are now determined by microscopic
(Bloch-function coupling) and mesoscopic (band-edge
profile) physical properties. We have seen that the rela-

tionship between these properties determines the shape of
the resonance and we suggest that this relationship could
be tuned experimentally. An important insight given here
is on the origin of the change from asymmetric to
Lorentzian-like resonances when the barrier thickness is
increased, while the microscopic description of the band
structure is kept constant.

%'e would like to mention that asymmetric resonances
in transmission probabilities in the context of vertical
transport in semiconductor heterostructures seem to be a
general effect. It happens always that one has a high off-
resonance transmission probability together with a "reso-
nance coupling" mechanism. This mechanism can be ei-
ther elastic, as in the present case; or inelastic, as in
phonon-assisted resonances in transmission probabilities
for energies above a quantum-well profile. ' The present
system shows these asymmetric resonances due to a cou-
pling between single bands related to diferent layers in the
heterostructure. Another "elastic case" is the resonant
tunneling of holes in DBQW's, where asymmetric reso-
nances are introduced in the transmission probability,
when different hole bands in the same heterostructure
layer are coupled. '
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