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Some remarks are made on the use of Kramers-Kronig relations in optical data inversion. It is shown
that symmetry relations imposed on the optical constant should be taken into account when modeling
the tails of the absorption and extinction curves.

I. INTRODUCTION II. DISPERSION REI.ATIONS

Dispersion relations are widely used in physics to ob-
tain indirectly, via calculations, some of the properties of
a system with the aid of measured data. In optical phys-
ics, data inversion is usually based on the use of Hilbert
transforms, ' which can be derived by means of the
theory of complex-variable contour integration. Disper-
sion relations have found applications in quantum optics
to describe analytic signals, linear optical constants ' in
the case of linearly-polarized-light interactions, and also
circularly-polarized-light interactions. Recently, a
method was presented describing nonlinear susceptibili-
ties with several complex-angular-frequency variables,
basically using Hilbert-transform-type integrals.

An alternative method for inverting the data of linear
optical constants has been introduced by King. ' His
method is based on the use of conjugate Fourier series
and the symmetry properties of linear optical constants.
This method has been found effective in the analysis of
the frequency-dependent refractive-index change of F
color centers in mixed alkali-halide crystals. '

A basically similar method to that of King has been
applied in the study of the real and imaginary parts of
nonlinear susceptibilities with the aid of the squared
modulus of the susceptibility. " This kind of formalism
has been applicable in the interpretation of nonlinear Ra-
man susceptibilities. ' ' In addition to the normal data
inversion, the dispersion relations have been exploited to
derive sum rules for the linear optical constants' and
nonlinear susceptibilities. "' '

In this paper we consider some basic mathematical and
physical requirements that are important in connection
with Kramers-Kronig relations, which are well estab-
lished relations in optical data inversion. %'e show that
some theoretical line-shape models, appropriate in the
description of some properties of a system, may give er-
roneous results in connection with Kramers-Kronig rela-
tions.

The Hilbert transforms for a function f,
f(z)=u(z)+iu(z), which is assumed to be an analytic
function of a complex variable z =x +iy, are as follows

u(x')= —Pf,dx,1 ~ u(x)
7T —oo X X

1 ~ u(x)
u (x') = ——P, dx,

'll —oo X X

where x' is a pole on the real axis, x is a real variable, and
P denotes the Cauchy principal value. If we consider
only the mathematical properties of the function f, the
class of functions that fulfill the Hilbert transforms is
rather wide. There is a relatively weak assumption about
the asymptotical behavior of f: f(z) —~z~, 5)0, as
~z~~ ao. Note that there are no symmetry properties im-
posed on f.

In linear optics the dispersion relations of Eq. (1) are
given using the energy, angular frequency, or wavelength
of the incident light as a variable. There is one physical
restriction on the variable: it must be positive. Because
of this restriction on measurement, the dispersion rela-
tions of Eq. (1) are usually given in a diFerent form,
known as Kramers-Kronig relations. The basic idea of
providing more applicable relations is based on the sym-
metry properties, known as crossing relations, of the
linear optical constants. The symmetry properties follow
from the fact that a real-valued electric field must pro-
duce a real-valued polarization of the charges.

If we give the symmetry relations for the complex-
angular-frequency-dependent refractive index, lt (co)
=n(co)+ik(co), we can write

n( co) =n(co), —

k ( —co ) = —k (co ),
i.e., the real refractive index n is even and the extinction
coeKcient k is an odd function of angular frequency co,
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FIG. 1. Gaussian extinction curve (A =1, coo=10, W=2)
and corresponding true (solid line) and erroneous (dashed line)
dispersion curves.

respectively. If we write the Kramers-Kronig relation for
the change of the real refractive index, hn, in its usual
form, we have

An(co') = PJ — dco .2 cok (co)

CO 6)
(3)

kG(co) = A exp

where A is the amplitude, coo is the central frequency,
and 2(ln2)' W is the full width at half maximum. We
observe that k ( —co)A —kG(co). We calculated the re-
fractive index change using the conventional form of Eq.
(3) and the exact form in this case as follows:

kG(co)
b,n (co') =—PI,dco .—oo CO CO

(4)

It was observed that when we used Eq. (3) the ratio

However, this relation is valid only if k is an odd function
of co,' otherwise, one has to use a relation similar to the
first relation of Eq. (1). If we know nothing about the
symmetry of the data to be inverted, we may try to
decompose the data, using some model, to be given as a
sum of even and odd parts. Such a decomposition is valid
for any arbitrary function. In such a case we may write
the dispersion relation using a physically observable in-
tegration interval from zero to inanity. There exists,
however, a problem, since we know by measurement the
sum function but not the functional behavior of its possi-
ble even and odd parts.

As an example, in Fig. 1 we demonstrate how the phys-
ical demand of k(co) being an odd function may affect the
result of a Kramers-Kronig calculation. The extinction
coefficient is chosen to be a Gaussian line, which falls o6'

rapidly at its tails. It can be given in the form

coo/W was crucial to obtain correct values of An .If
coo/W' is large, then the integral of Eq. (3) gives a good
approximation. On the other hand, if the ratio has a rela-
tively low value, then Eq. (3) gives an erroneous result, as
demonstrated in Fig. 1. It is worth noting that the zero
dispersion is shifted from the peak position when using
Eq. (3) in the present example. The shift increases as
coo/ W decreases.

One also has to take care when using the absorption
coefficient in data inversion. According to the well-
known relation, the absorption coefficient is given by
a(co)=2cok(co)/c. From this it follows that the absorp-
tion coefficient must be an even function of co, i.e.,
a( —co) =a(co), in order to make use of Eq. (3). As an ex-
ample we mention that a widely accepted absorption
band shape in color-center physics, the Gaussian line
shape, is not consistent with the above symmetry require-
ment.

In many practical cases the tails of the extinction
coefficient or absorption coefficient usually have to be ap-
proximated somehow beyond the measured data in order
to perform the Kramers-Kronig calculations. We recom-
mend that the symmetry relations imposed on the optical
constant are taken into account when approximating the
tails in order to get reliable approximations for the calcu-
lated optical constant.

III. DISCUSSION

In this paper we have drawn attention to the fact that
one should be careful when choosing a particular model
to describe optical properties in connection with
Kramers-Kronig relations. There is a possibility of ob-
taining erroneous results, which was demonstrated by us-

ing a Gaussian line shape for the extinction coefficient.
One has to make sure that the measured data are approx-
imated in the low- and high-frequency limits so that they
are consistent with symmetry relations imposed on opti-
cal constants. Only in such a case may one expect a good
approximation of the refractive index change or other op-
tical constant calculated using Kramers-Kronig relations.
If the application of sum rules gives strange results, the
broken symmetry of the line model should be taken into
account.

We calculated the dispersion using also King's model
in cases where the extinction has a Gaussian line shape.
In this case the dispersion curve is rather well approxi-
mated and the location of zero dispersion was always
correct. King's model, however, has not attracted as
much attention as it may deserve. It is computationally a
fast and reliable method for calculating dispersion in the
case of a single band. Finally, we wish to emphasize that
similar arguments to those above hold also for the inter-
pretation of nonlinear susceptibilities obtained with the
aid of Hilbert transforms of several angular-frequency
variables.
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