
PHYSICAL REVIEW B VOLUME 44, NUMBER 15 15 OCTOBER 1991-I

Surface ordering and finite-size effects in liquid-crystal films

Hao Li, Maya Paczuski, Mehran Kardar, and Kerson Huang
Department ofPhysics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 25 April 1991)

Motivated by recent experiments on liquid-crystal films, we study the development of heat-capacity
singularities with the number of layers, n. With enhanced surface couplings, there are distinct peaks due
to surface ordering and bulk ordering, at temperatures Ts(n ) and Ts(n ), respectively. Comparing exact
results from the two-dimensional Ising model with a mean-field theory, we find in both cases that the
evolution of the peaks is controlled by a length scale gs for decay of surface order into the bulk. The
bulk transition temperature is governed by a scaling function Fs(nips), which decreases with n for
n (gs, but increases with n for n )gs. Qualitative trends for thin films agree well with experimental ob-
servations.

I. INTRODUCTION

Layered materials of finite thicknesses are important to
many physical applications; high Tz superconducting
films, liquid-crystal films, and helium films provide a few
examples. Apart from practical applications, these sys-
tems are important experimental testing grounds for
theories of two-dimensional (2D) physics. For example,
the universal jump of superAuid density' in helium films
is a consequence of the Kosterlitz-Thouless theory of un-
binding of vortices, ' while diffraction patterns from
liquid-crystal films have supported the prediction of an
intermediate hexatic phase. Recently, improvements in
experimental technique have made it possible to study
free-standing liquid-crystal films with thicknesses varying
from several to thousands of layers. Such substrate-
free films are ideal for studying both two-dimensional be-
havior and crossover effects to three dimensions. A num-
ber of experiments have been carried out, among them
precise measurements of heat capacity and diffraction
patterns. The diffraction experiments reveal suppressed
Auctuations in the displacement of surface particles.
The observation of two peaks in heat-capacity measure-
ments indicates that the surface of the film develops bond
orientational order prior to the bulk. Together, these
experiments suggest that couplings on and near the sur-
face are stronger than those in the interior. Such an
effect is common in thin films due to the surface tension
between boundary layers and the surrounding gas.

There is considerable literature dealing with both
finite-size effects in films' and surface phase transi-
tions. "' While these studies focus mainly on the gen-
eral aspects of finite-size scaling and critical behavior at
surfaces, a precise knowledge of how the stronger surface
couplings alter the usual finite-size effect (e.g., the shifting
of the pseudocritical temperature) is still lacking. The ex-
perimentally observed appearance and systematic
shifting of the two peaks in the heat capacity, as the sys-
tem crosses over from 2D to 3D behavior, certainly needs
better understanding. To gain some information, we ex-
amine the heat capacity of several layered anisotropic
models in this paper. Consider the general Hamiltonian

where S, is a spin representing an order parameter at site
i in the ath layer. Since we are interested in the general
trends for Tc and Cz, rather than the precise critical ex-
ponents, we shall examine different order parameters.
For the hexatic transition of liquid-crystal films a two-
component XY spin is appropriate, but in order to ob-
tain exact results we shall consider an Ising model.

There are many coupling constants in the above Ham-
iltonian. For simplicity, we restrict ourselves to four
different coupling constants: Jz, the in-layer coupling on
the surface; Jsv, the interlayer coupling from a surface to
its neighbor; and J~ and Jz, the in-layer and interlayer
couplings in the bulk. A schematic diagram of such a
layered system is shown in Fig. l. (For a finite-size scal-
ing study of thick films, we set Jz~=Jz, and restrict our-
selves to three different couplings. ) We find that due to
stronger surface couplings, there is a length scale gs for
decay of the surface order into the bulk, The usual
finite-size scaling behavior for large n is altered for
n -gs, and there is a new scaling function governing the
pseudo critical temperature, with scaling variable
x =nips. In the limit x ~ac, this surface length scale
decouples from the bulk, and the usual finite-size scaling
behavior is recovered. For films of only a few layers, we
use the model with four couplings, to get qualitative
agreement with experiments.

The paper is organized as follows. In Sec. II we briefly
summarize recent heat-capacity measurements on liquid-
crystal films, and discuss the behavior of observed peaks.
In Sec. III we investigate the Ising model on a two-
dimensional strip. Using an exact expression for the par-
tition function, the heat capacity is evaluated numerical-
ly, and the surface length scale and associated scaling
function is obtained. In Sec. IV we examine the mean-
field equations for layered systems both analytically and
numerically, and find results similar to the Ising case.
From the similarity of the two extreme treatments (in-
cluding or neglecting fluctuations), we speculate that the
basic trends are common to all layered systems with
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FIG. 1. Schematic representation of the layered system with
four couplings.

strong surface couplings. We conclude and suggest some
possible directions for future work in Sec. V. The full ex-
pression for the partition function of the Ising model
with four couplings on a strip, and a proof of a duality re-
lation for the heat capacity, are presented in Appendixes
A and 8, respectively.

As n increases the two peaks asymptotically approach
a constant separation, and their behavior should be
describable by finite-size scaling. In these experiments
both Ts(n) and Tii(n) approach their n ~oo limit from
above. However, according to the general results of
finite-size scaling, for a system with open boundary con-
ditions, Tz(n) should approach its asymptotic limit as
1/n ' from below (due to the geometrical effect of miss-
ing neighbors at the surface). Even neglecting this sign
difference, the fitting of the experimental data to the
finite-size prediction, AT-1/n', leads to a value of
v=0. 20. This is both inconsistent with the XY behavior
(v= —', ), and with the prediction based on the measured
heat-capacity exponent [a=0.59 (Ref. 7)] and hyperscal-
ing [v=(2—a)/3=0. 47]. These facts suggest that al-
though n is quite large, it is not yet large enough to ex-
hibit the usual finite-size scaling, and that there are im-
portant preasymptotic behaviors. In fact, we shall show
that the true asymptotic limit is only reached for n »gs,
where gs is a new length scale associated with surface or-
dering. There are indications that in these liquid-crystal
films gs —100.

III. TWO-DIMENSIONAL ISING MODEL
ON FINITE STRIPS

II. DISCUSSION OF EXPERIMENTS

Several recent experiments have yielded precise mea-
surements of the heat capacity of liquid-crystal films, in
the temperature range where the system undergoes a hex-
atic to liquid phase transition. These experiments re-
veal two peaks in the heat capacity; the higher tempera-
ture peak is associated with surface ordering and the
lower one with bulk ordering. Here we summarize the
evolution of peak positions with film thickness in the two
extreme limits.

A. Thin films (n —3—10)

The two peaks approach each other as n —+4, and
change their relative weights, the surface peak getting
more pronounced. The separation of their positions has
been fitted to a simple formula Ts(n) —T~(n) (n —4)-
with +=0.43. The single peak for three layers shifts to
significantly higher temperatures, and the heat-capacity
anomaly is reduced appreciably from that of four layers.
We believe that these features are due to a stronger inter-
layer coupling right next to the surface ( Jsv » Jv). This
tends to lock the surface layer to its neighbor. Thus for
n =4, provided that Jzz is strong enough, all four layers
get ordered together, resulting in only one peak in the
heat capacity. This accounts for the merging of the
peaks for n =4. For n =3, all three layers get locked to-
gether, and since there are no weak interlayer bonds, the
ordering temperature is suddenly much higher. Such a
strong surface coupling Jzv is expected because the sur-
face atoms fluctuate much less than their bulk counter-
parts.

We start by examining the 2D Ising model, ' which is
exactly solvable, and has provided much insight in the
context of phase transitions. It has been used for studies
of two-dimensional wetting, ' bond randomness, ' and
frustration. ' It has also served as a testing ground for
scaling theories of critical phenomena. Finite-size effects
on two-dimensional Ising models with different boundary
conditions have been studied by various authors. ' ' '
For a strip of finite size, there is no true singularity in the
heat capacity, but there is a sharp peak for large n. As
n —+ ~, this peak develops into a logarithmic singularity,
i.e., Cv~C inn, with C a positive constant, while the
peak position Tii(n ) shifts to the bulk transition tempera-
ture Tc', b, T(n) —= T~(n) —TC~O. By general finite-size
scaling arguments, we expect b T-b/n, where b is a con-
stant. The actual value of b depends on several factors:
the boundary condition, anisotropy, the shape of the
finite geometry, etc. Here we briefly summarize previous
results concerning behavior of T~(n) in strip geometries:
Strips with periodic boundary condition, as originally
studied by Onsager, ' indicate b, T-a 1n(n)/n, where a
is a positive constant. In this case the leading term b/n
vanishes. For a strip with open boundary conditions and
Jz = 1, i.e., no enhancement of surface couplings,
AT-b/n, with b = —2.025818. ' ' With open bound-
ary conditions and with a small magnetic field H applied
to one boundajy, Au-Yang and Fisher' obtained b =0,
provided that asymptotically h V'n ~ ao, with
h =H/kz T the scaling field This result implies a length
scale gI, associated with h, gI,

—1/h, such that as n

exceeds g'I„ the asymptotic shifting of the peak is of
higher order.
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Here we consider two-dimensional n X ~ strips with
free boundary conditions and strengthened surface cou-
plings. This model is related to that studied by Au-Yang
and Fisher' via duality. The Hamiltonian is that of (1.1),
with S; replaced by Ising spins o.;, and with four
different coupling parameters, as indicated in Fig. 1:

%=/ Js(cr;cr;+]+cr;cr;+])+y Jsy(cr;cr;+cr; cr; )

configurations, and the partition function is obtained by
summing over all dimer configurations with appropriate
weight. This has an elegant solution in terms of Pfaffians
of antisymmetric matrices, which is easily evaluated by
computing a determinant. The full expression with four
coupling constants is given in Appendix A. The large n
asymptotic behavior is captured by the simpler case with
J&~=J~, where the expression for the singular part of the
free energy per spin reduces to

n —1 Pl 2

(x=2 ECK
—2 l

+ g g JHcr, cr;+, + g g J~cr, o;+' . (3.1) Pf„—„s=—. f — ln(f+A "+ +f A,
" ),

1 —co

The partition function is calculated using a mapping
from the Ising model to the dimer problem. ' ' Dia-
grams in the high-temperature expansion for the Ising
model are in one-to-one correspondence with dimer

(3.2)

where in terms of Z& =tanh(pJH ), Z2=tanh(pJ&), and
Zs =tanh(PJs), we have

f+=[(1—Zs) +4Zsco ] V~+16zszzco (1—co )V++8V+ V Zszzco+1 —co [(1—Zs) +4Zsco ],
1/2

(3.3)

V~ = —1+1

2
+co g+1

n n

Z2(1+Z, )
g +—— +" Qz, (1—z', )

1/2

1+Z2
1 —Z~

CO

i 1/2

+CO

(3.4)

and

k+ = 1+2g 2
+Ct)

n

+m g+1
n

2
2

+Ci? g

' 1/2

(3.5)

I

the peak position before the asymptotic behavior sets in.
To understand the scaling behavior, for each Jz we first
locate X„ the number of layers corresponding to the
minimum in T~(n) from Fig. 3. We shall identify N,
with a length scale gs associated with surface ordering.
Figure 4 indicates the dependence of X, upon J&, and we
find that the results are well fitted to

1 —Z, —Zq(1+Z, )
~=n

2+Z)(1 —Z2 )

and g measures bulk anisotropy,

(3.6)

Here ~ is the scaling variable associated with the reduced
temperature,

gs =Nt —exp I 6Js— (3.8)

with 5= jL. 87. We also note from Fig. 3 that strengthen-

sinh(2PJH )

sinh(2PJ&)
(3.7)

We first examine the dependence of heat capacity on n
numerically. Throughout this paper we use J~ to set the
temperature scale, i.e., T is measured in units of JH lk~,
while all other couplings are measured in terms of J&.
The numerical results are depicted in Figs. 2—7. Figure 2
shows the evolution of heat capacity with increasing n for
a stronger surface coupling, Jz=2. 5. We observed that
initially the position of the maximum, i.e., the peak tem-
perature T~(n), moves to lower temperature from above
T~. It continues to move below T& and eventually turns
around to approach its asymptotic limit from below. The
peak position, calculated from a series of different surface
couplings J&, is plotted in Fig. 3. For sufficiently strong
surface couplings we always observe an initial decrease in

I ! I t I I I I I I I I I I I I

—0.1 0 0.1
T Tc

FIG. 2. Heat-capacity curves for Ising models with J&=2.5
and Jz = 1. The number of layers in the strip is varied from 8 to
300.
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than Jv, so as to account for the merging of the peaks at
n =4, and also the jump from n =4 to 3 in the peak posi-
tion.

IV. MEAN-FIELD THEORY

Another approach to this problem is to study its
mean-field behavior, which is usually valid in high dimen-
sions where Auctuations are irrelevant. For large n the
problem is similar to semi-infinite systems, which have
been extensively studied. "* ' ' The phase diagram is
shown in Fig. 8, and crucially depends on two parameters
t =(T —Tc)/Tc and g. As usual, t is the reduced tem-
perature, while g is a surface enhancement factor related
to the strengthened surface couplings. We now briefly
summarize the results.

(a) g =0. As g~0, the surface length diverges as
g's -g . There is only one transition at t =0 (the special
transition). In this case the magnetization profile is a
constant.

(b) g &0. This corresponds to weak surface coupling,
and there is only one bulk transition (the ordinary transi-
tion). Typically, the magnetization profile exponentially
increases from a minimum value at the surface towards
its bulk value within a length gs (called the extrapolation
length) The sp. ecific heat has one discontinuous jump at
the bulk Tc.

(c) g )0. The surface coupling is sufficiently strong,
and there are two distinct transitions: a surface ordering
transition at Ts and a bulk ordering transition at Tc (the
extraordinary transition). After the surface orders, we
have a magnetization profile that exponentially decays
from a maximum value at the surface towards zero in the
bulk. The second transition (bulk transition) then
changes the bulk magnetization to a nonzero value. The
heat capacity has two discontinuous jumps, one at the
surface transition Ts (higher temperature) and one at

Phase Diagram for Semi-infinite System

bulk transition Tc (lower temperature). The surface
transition temperature increases with g, while the bulk
transition temperature is unaffected by the surface cou-
pling g.

We would like to understand how these results are
modified by finite-size effects and the strip geometry. To
do mean-field theory for layered systems with open
boundary conditions and different surface couplings, we
determine the magnetization profile M = (S; ), where a
denotes the layer index. The M are then self-
consistently calculated by replacing the couplings to
neighboring spins with effective magnetic fields. Since
the mean-field results are independent of spin and space
dimensionality, we use Ising spins in the layered system
on a cubic lattice. The self-consistent equations are

M, = tanh [P(4JsM i +JsvM2 ) ]

M2=tanh[P(4M&+ JsvMi+ JvM3)]

M3 tanh[P(4M, +JvM~ +JvM4 ) ]
(4.1)

M„,=tanh[P(4M„ i+JvM 2+JsvM—)]

M„=t anh[ P(4 JsM„+JsvM„ i)] .

To study the finite-size effect in the large n limit, we again
consider the simpler case of Jsv= Jv. At high tempera-
tures Eqs. (4.1) have the solution M =0 corresponding
to the disordered phase. As the temperature is reduced
this solution becomes unstable and a nonzero profile de-
scribes the minimum free energy. Since the transition is
continuous, this instability can be obtained by linearizing
the right-hand side. The transition is obtained by requir-
ing that the largest eigenvalue of the matrix of
coefficients is unity. The linearization leads to the matrix

4Js Jv
Jv 4 Jv

Jv 4 Jv
(4.2)

"extraordinary"

transition urface
transiton

Jv 4 Jv
Jv 4Js

Since the eigenvector corresponding to the largest eigen-
value must be symmetric and have positive elements, we
assume a form

ordlllsp(
transition

"special"
transition X=

a+b
at +bt
at +bt

at +bt
(4.3)

FIG. 8. Phase diagram of the semi-infinite system in mean-
field theory. g is the surface enhancement factor and t is the re-
duced temperature. The bold lines indicate various phase boun-
daries.

at +bt
a+b

It can be checked easily that AX =A,X, with

A, =P[4+Jv(t +r ')], (4.4)
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provided that t is the solution to the following polynomi-
al equation:

+i+1 4(J —1)
=g+ 1

t "+t Jv
(4.5)

which defines the surface enhancement factor g. The
solution of Eq. (4.5) gives us the first transition tempera-
ture. The behavior below this temperature requires
knowledge of solutions of the coupled nonlinear equa-
tions (4.1). The magnetization profile just below this tem-
perature is proportional to the eigenvector X, and its be-
havior crucially depends on g. There are three distinct
behaviors.

(i) g (0 corresponds to weak surface coupling. The
value of t in Eq. (4.4) is complex and the magnetization is
smaller at the surface than in the bulk, i.e., the transition
indicates the onset of bulk order. [Magnetization profiles
at lower temperatures are indicated in Fig. 9(a).] Setting
t =e', Eq. (4.5) simplifies to

n —1
(g + 1)cos (4.6)

T//(n) =4+2Jv —Jv —2Jv +0
n n ng n'

(4.7)

The solution a closest to zero gives the largest eigenvalue

Setting A,„=1 determines the transition temperature
T/i(n) which in the n~ao limit behaves as

Jv
Ts(n) =4+ (1+g)Jv+ 1+0

+Ji (1+g) "+ +O((l+g) "+') . (4.8)

As n ~ oo, Ts(n) ~Ts =4+ (1+g)Ji +Ji, /(1+g),
which reproduces the phase diagram in Fig. 8. Again, we
introduce a surface length scale gs =—1/ln(1+g) in terms
of which Eq. (4.8) can be rewritten as

(ii) With g =0, t =1 and the magnetization profile
below T~ is uniform. This special transition is not
modified by finite-size effects, i.e., T//(n)=Tc for all n.
In cases (i) and (ii) the heat capacity exhibits a single
jump at T&.

(iii) For g) 0, the surface couplings are sufficiently
strong to produce surface ordering before the bulk. Typi-
cal magnetization profiles are shown in Fig. 9(b) and indi-
cate a decay of the magnetization into the bulk. Just
below the transition, as seen from the eigenvector in Eq.
(4.3), the magnetization decays as r"-ex p( n—lgs ), with
t —1 —1/gs -(1+g )

' from Eq. (4.5). The heat capacity
exhibits a discontinuity at this instability temperature
Ts(n ). Upon further cooling the profile changes continu-
ously, but due to finite thickness a sharp bulk transition is
absent. One can, however, still define a position T/i(n)
for the second peak in heat capacity that approaches Tc
as n —+~.

Solutions of the linearized equations again provide us
with the finite-size dependence of the surface transition
temperature, and we find

Ts(") Ts+Jv(1+g) exp( n/ks—) (4.9)
The bulk transition approaches its asymptotic limit
T& =4+2J& from below; the leading correction scales as
1/n (v= —,') with a coefficient that is independent of sur-
face coupling. We can also include the 1/n term into a
scaling form, b, T//(n)=1/n f(n/gs) with ps= 1/g.

The surface transition exponentially decays to its semi-
infinite limit from above, with a decay length set by gs.

The study of the finite-size efFects on the bulk peak re-
quires much more work. This is because in a finite-size
system there is no sharp discontinuity and the heat capa-
city is rounded off at the pseudocritical temperature
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FIG. 9. (a) A typical magnetization profile for g (0 with
n =7, J&=1, and Jzv= Jv=0. 5. The bulk transition tempera-
ture is at T&(n) =4.9239. (b) A typical magnetization profile for
g )0 with n =9, J+=1.4, and J~~=J~=0.5. The surface tran-
sition temperature is T&(n)=5.7564. Points are connected to
guide the eyes.
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FICx. 10. Heat-capacity curves for the model with four cou-
plings in mean-field theory. The number of layers varies from 3
to 11.
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FIG. 11. Peak positions as a function of n in mean-field
theory. The different symbols correspond to different surface
couplings, and J&=0.5.

Tz(n). Thus the behavior can only be studied numerical-
ly by solving the nonlinear equations. We developed a
program to solve the full set of equations (4.1) on the
computer. The resulting magnetization profile was used
to compute the energy and heat capacity. Some typical
heat-capacity curves are shown in Fig. 10. We see that in
addition to the sharp singularity at Ts( n ), there is a
rounded off anomaly at a lower temperature T~(n) which
evolves into the bulk discontinuity as n —+Do. The posi-
tion of the peak as a function of n is plotted in Fig. 11 for
three different surface couplings. As in the two-
dimensional system, Tii(n) has a nonmonotonous depen-
dence on n (initially deceasing with n, and eventually ap-
proaching its limiting value from below). Note that, un-

like the d =2 case, Tz(n) in Fig. 11 decreases as the sur-
face coupling is increased. However, in this case gs is
also a decreasing function of Jz so that dependence of
Tz ( n ) with gs is similar to d =2.

The data in Fig. 11 can also be collapsed upon ap-
propriate rescaling of the axes. By analogy with d =2 we
expect DTIi(n, gs)=ps ' 'Fz(n/gs), where v= —,

' in the
mean-field theory. [This can be obtained by minimizing
C(nt, n/gs) to obtain a peak at t =1/n' f(n/gs). ]
The length scale gs is obtained directly from the mea-
sured collapse of the magnetization profile and is in fact
different from gs calculated earlier at the surface transi-
tion due to nonlinear corrections. The resulting scaling
function is indicated in Fig. 12 and has the same qualita-
tive behavior as the result for d =2, although the ex-
ponent v is different. For large n, Es(x)~a/x with a a
negative constant.

In order to compare with the experiments on thin
films, we calculated heat capacities for n varying from 3
to 11 using four suitably chosen interactions. The results
are plotted in Fig. 10, and again, the additional coupling
Jz~ is necessary to reproduce the behavior of thin-film ex-
periments [7]. For n )4, we see the two typical peaks
with the relative weight of the bulk peak increasing with
n. For sufficiently strong Jz~, the two peaks merge at
n =4, and the surface transition temperature jumps
significantly from n =4 to 3. All these qualitative

1.0

0.5
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'h
@ 0

(:I

5 10 15

FIG. 12. Data collapse for the curves in Fig. 11.

features are similar to the 2D Ising model case, and are in
qualitative agreement with experiments.

V. CGNCLUSIGNS

We have studied layered systems with strengthened
surface couplings both in 2D (Ising model with strong
fiuctuation) and in mean-field theory (no fiuctuations).
Both approaches reveal two peaks in the heat capacity
corresponding to the onset of surface and bulk ordering.
Finite-size scaling behavior is determined by a length
scale gs associated with the surface coupling. In the
thick-film limit, the surface peak approaches its limiting
position from above, while Ts(n) first decreases and then
increases to approach Tc from below, following a new
scaling function of n /gs. Since this is true in both cases,
we believe that the behavior is generic to all models. A
more appropriate model for the experimental system is
the layered XY model. It is known from analytical work
that the 2D XY model possesses no heat-capacity singu-
larity at its transition. However, experiments carried out
on thin films as well as Monte Carlo simulations reveal
sharp peaks in the heat capacities. This is a problem that
is still unresolved. Our recent Monte Carlo simulations
on the layered XY model with strengthened surface cou-
plings also reveal two peaks in heat capacity with shifting
trends similar to that in the Ising and the mean-field
cases. Comparing with experiments, we speculate that
gs —100 for liquid-crystal films, so that present experi-
mental results are still in the preasymptotic region where
only a decrease of T~ ( n ) with n is observed. For thin
films where we do not expect any universal scaling, we
can reproduce heat-capacity curves in qualitative agree-
ment with experiments by using a strengthened interlayer
coupling at the surface. It would be interesting to deter-
mine Fs(x) analytically for general spin models. Also, we
would like to understand how different boundary opera-
tors change the asymptotic amplitudes, as exhibited in
the Ising example.

Rote added. After this paper was accepted for publica-
tion, we learned that recent experiments have confirmed
the predicted nonmonotonic behavior of T~ (n ).
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APPENDIX A: EXACT SOLUTION
FOR THE ISING MODEL %'ITH FOUR COUPLINGS

n 2 2+ ln cosh( Ji P)+ —ln cosh( Js&P)
2n n

+ ln sinh(J&P) .n —4
2n

The singular part of the free energy is given by

(Al)

Pf„„=—I— ln(F+A, + +F 1," ) .
n 0 77 1 —co

(A2)

This expression is similar to the expression in Eq. (3.2),
except for a difference in powers of k+, and with F+ re-
placing f+. Here A, + are defined as in Eq. (3.5), and F+
are given by

F+ =D ~ Vg+2 V+ V EqDq+E~ Vp

with V+ the same as in Eq. (3.4). Ez and Dz have the fol-
lowing expressions:

D~= [(1—Z, ) +4Z, co~][(1—Zs) +4Zsco ]

+16ZsZiZsvoi (1 ~ )

E,= —4a)+1 —co'[Z, Z, [(1—Zs) +4Zsco']

(A4)

+Z~ZsZsi, [(1+Z, ) 4Z, ci) ] j
—.
(A5)

In this appendix we give the full expression for the par-
tition function of the Ising model with four couplings on
the strip geometry in Fig. 1. With the additional cou-
pling Js&, the full expression is

Pf = Pf—„„+——ln cosh( JsP)+ ln —cosh( JHP)
2 2

(B1)

The parameters T and H in the dual model are related to
T and Js through relations (3.12). Using the chain rule
for differentiation, we have

a aT a aH a
aT~ aT~ aT aT~ aH

aH '8' aa
BT Qjf~ BT

2
aT a2

aT . aT'

BT 8
BT BH ()T

(B2)

Note that in the 2D Ising model there is no singularity in
the first derivatives of the free energy, and we only con-
sider the second derivatives in the last three terms of the
above equation. The last two terms contain second
derivatives of f with respect to the boundary field, which
are not singular when HWO [this is true for any finite Js
through relation (3.12)]. Hence, the only singular term is
the second derivative with respect to T, and in the limit
n —+00 we have

C (n, T,Js)= —T1 BT 8 T——f(n —2, T,H)
BT BT T

(B3)

Again, we only keep the term corresponding to second
derivative of f, and the above equation reduces to

T BT — a2
C'(n, T,Js)= —T f(n —2, T,H)

T ~T BT

(B4)

Since the quantity in the large parentheses is
C (n —2, T,H), we get the following relation for the
singular part of the heat capacities of models 1 and 2:

T2
C'(n, T,Js) = C (n —2, T,H) . (B5)

BT

As n ~~, the heat-capacity peak approaches T&, and we
can evaluate the coefficient at Tc. Since the Ising model
is self-dual, Tc = Tc, and from Eq. (3.12) we obtain

Starting with the duality relation in Eq. (3.11), take
two derivatives with respect to T to obtain the following
relation [for large n, (n —2)/n = 1]:

C (n, T,Js)= —T = —T —f(n —2, T,H)
a'f a' T—
a2T 8T2 T-

The parameters Z, , Zz, and Zz are given as before while
the new Parameter Zsi is given by Zsi, =tanh(PJsz). clT = —1.

rc
(B6)

APPENDIX B: DUALITY RELATIONS

In this appendix, we prove that in the large n limit, if
the heat capacity of model 1 has a peak at hT, then the
corresponding dual model (model 2) will have a peak at
AT= —AT with equal height. We will use C' and C to
denote heat capacities for models 1 and 2, respectively.

We therefore conclude that if model 1 has a peak at T,
then model 2 has a peak at T with the same height. Us-
ing relation (B6), if the peak in model 1 is b.T away from
T~, then the peak in model 2 is AT away from T~ with
hT= —AT. For the special case Js = ~, H =0 and does
not depend on T. Still there are no contributions from
the last two terms in Eq. (B2), and hence the above con-
clusion based on Eq. (BS) is still valid.
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