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Interaction between a charged or neutral particle and a semi-infinite nonpolar dielectric liquid
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We analyze classically the static interaction between a charged or neutral atomic particle and a semi-

infinite nonpolar dielectric liquid. The particle is always external to the liquid. A differential equation
for the shape of the deformed liquid surface in the presence of the particle is derived taking into account
the effects of particle-liquid interaction, surface tension of the liquid, and gravity. The equation is solved
numerically, and the stability of equilibrium shapes is discussed. Analytical solutions for the differential

equation are obtained in the limit of large particle-liquid distances. No equilibrium shapes are found for
particle-surface distances below a certain threshold, and some liquid-independent relations hold at that
threshold. We propose simple models that account for these features of the numerical solutions. The
potential energy of the particle-liquid system is also calculated.

I. INTRODUCTION

The analysis of interactions among neutral or charged
particles and liquid media is relevant in studies of aeroso1
physics, ' of atmospheric processes, biophysics, ' and
surface science. In particular, we refer to studies of
atom-surface interaction processes in liquid He, to the
self-trapping of electrons in macroscopic dimples on the
surface of liquid He, and more recently, to the atomic-
force microscopy of liquid filrns. ' The basic study of the
static interactions between particles and liquids is
relevant to the understanding of such a variety of phe-
nornena.

We analyze here the equilibrium shape for the surface
which limits an incompressible semi-infinite nonpolar
liquid, treated as a continuum, when a charged or neutral
atomic (pointlike) particle is held fixed at a certain height
above it. We also compute the potential energy of the in-
teracting system. To our knowledge, a detailed analysis
of this simple configuration seems to be absent in the
literature. A few of these results have already been re-
ported.

Gras-Marti and Ritchie' calculated the contribution
of capillary-wave (ripplon) excitations to the interaction
energy of a static charged particie with a nonpolar dielec-
tric liquid. This calculation was extended later' for po-
lar liquids. In the quantum many-body formalism used in
these two papers, the self-energy of a charged particle in-
teracting with the liquid is obtained as the zero-point en-
ergy of the coupled charge-ripplon field system. A classi-
cal approach is used in the calculations reported in this
paper, and the results of both theoretical schemes will be
compared. A calculation of the surface shape implied by

II. EQUATION
FOR THE EQUILIBRIUM SURFACE

OF THE LIQUID

We wish to determine the equilibrium shape of a non-
polar liquid surface when a charged or neutral atomic
particle is held fixed at a height R above its original (non-
perturbed) horizontal surface, Fig. 1. Because of the cy-
lindrical symmetry, the radial distance from the symme-
try axis, p, is the only variable. The equilibrium surface,
which will be described by its height z at a distance p
from the origin, is subject to three forces which must bal-
ance: gravity, the attraction between the particle and the
constituents of the liquid, and surface tension. Minimiza-
tion (see Appendix A) of the total potential energy of the
system yields the following nonlinear differential equa-
tion:

1 d p(dz/dp)
p dp [1+(dz/dp)']'" nMgz(p) nu(—r(p)) =0—

the results of Gras-Marti and Ritchie' will be obtained.
This paper is organized as follows. The differential

equation for the surface shape is derived and discussed in
Sec. II. The basic equation is solved analytically in Sec.
III for the limiting case of a distant particle-surface in-
teraction, while Sec. IV discusses the exact numerical re-
sults. Sections V and VI present two simple models that
retain the basic properties of numerical solutions. Fu11
numerical and approximate calculations of the potential
energy of the particle-liquid system are reported and dis-
cussed in Sec. VII. Conclusions are presented in Sec.
VIII.
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A boundary condition that may be used to solve Eq. (1)
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which is a further boundary condition that shall be used
to solve Eq. (1).

z(p~ On ) =0 .

It seems physically reasonable to require z to be a smooth
function for all p. For zAR, this implies that

FIG. 1. Schematics of the deformation of the liquid surface
due to the attractive interaction with a point particle.

which will be hereafter referred to as the basic equation.
The liquid enters this equation via M, the mass of its con-
stituents (atoms or molecules; both will be called mole-
cules in the following), its number density n, and surface
tension o; g is the gravity acceleration, and v (r (p) ) is the
interaction energy between the external particle and a
molecule at the surface of the liquid, where
r(p)= Ip +[R —z(p)] ]' is the mutual distance.

For the nonretarded interaction of a charged particle
(of charge Q) with the dipoles it induces in the molecules
of the liquid, we use

u charged( r )
— t ag 2r —4

2 (2a)

where a is the polarizability of the liquid molecules.
Equation (2a) is valid only to first order in a: the interac-
tion energy for a more polarizable liquid has a more com-
plicated form, ' due to the fact that molecules polarize
one another.

For the nonretarded van der Waals interaction of a
neutral atomic particle with the molecules of the liquid,

u neutral( r) — Ar
—6 (2b)

where A is the van der Waals coefficient for the atom-
molecule interaction.

It has to be stressed that solutions of the basic equation
(1) do not necessarily correspond to stable-equilibrium
shapes (minima of the total energy of the system). The
solutions can as well correspond to maxima of the total
energy (unstable equilibrium) or saddle points. These
possibilities will be analyzed later. Furthermore, if the
particle is not held fixed above the liquid, the total poten-
tial energy decreases as the particle approaches the
liquid, and the equilibrium state is then one of total im-
mersion for the particle. This case falls outside the scope
of this paper.

If we remove the particle (i.e., R ~ co) the equilibrium
configuration of the liquid surface has to be planar,
z(p)=0. This is indeed the solution of Eq. (1) in that
case.

III. DISTANT INTERACTION:
LINEARIZED EQUATION

It is convenient to start by considering the case when
the particle is far from the liquid surface. This limiting
case allows us to linearize and simplify the basic equation
(1). The results obtained in this section should be directly
comparable with existing treatments of particle-induced
ripple-wave excitations ' ' ' which only consider small
departures from flatness.

For a large R such that z (&R, one may assume that
the surface is nearly fiat, namely (dz/dp) «1. The
basic equation (1) reduces then to a linear inhomogeneous
difFerential equation,

dz 1dz
dp P "P

n[M—gz +u (p, R ) ]=0 .

This equation may be solved by the Fourier transform
technique, to yield

z""(p)=——f dk kJo(kp)
cr o k +2/a

where

v(k, R)= I dp'p'Jo(kp')u(p', R), (7)
0

and a = (2o/Mng )'~ . is the capillary constant, ' a typical
lateral dimension of the system.

For the charged-particle case the linearized profile of
the liquid is

2 2

z,'h„g,d(p) =
z

du Ki(u)Jo( )
up u

4o.R u +2R /a
(Sa)

whereas for the neutral-particle case, the linear solution
1S

up u 3

z„',"„„,i(p)= 4 du K2(u)Jo( )
So.R u +2R /a

(8b)
In the above equations, K& K2 and Jp are Bessel func-
tions. ' The integrals in Eqs. (8a) and (8b) are dimension-
less functions of R, p, and a.

In Appendix B we derive the solutions (Sa) and (Sb) in
a way that is parallel to the treatment of Gras-Mart1 and
Ritchie' for the interaction of a charged particle with
the ripplon (capillary-gravity-wave) field.

Very good approximations to the maximum height
z (0) of the profiles given by Eqs. (8a) and (Sb) may be ob-
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1000 IV. NUMERICAL SOLUTIONS
FOR THE NONI. INEAR BASIC EQUATION

The method applied to find solutions to the nonlinear
basic differential equation (1) uses standard fourth-order
Runge-Kutta formulas for second-order differential equa-
tions' to solve the initial value problem specified by Eq.
(1), condition (4) and by

z(0) =Z, (10)

0.01
20 100

R {a.u. )

FIG. 2. Linearized results for liquid pro61e heights for a unit
point charge and liquid He (—.—- —), Ne ( ), and Ar
( ———). The straight line ( ———) is the z(0)=R or "con-
tact" line.

tained for values of R which are small compared to the
capillary constant t2 (which is usually very large in atomic
scale). Using small-argument approximations to the
modified Bessel functions, ' one obtains

2

(0) llcxQ
1 (

2Q
)charged (9a)

and

z"" (0)= —'+ln( )IleU'trR1
4 R Q Y yR

(9b)

In these equations, y =0.577 21 is Euler's constant.
Figure 2 shows these linearized results for the interac-

tion of a particle of unit charge with liquid He, Ne, and
Ar, using the data given in Table I. We see in Fig. 2 that
for distances long enough for the linear approximation
[z(0) «R j to hold, the profile heights are extremely
small, comparable to the size of a single atom. For more
significant values of z(0) (10 a.u), the approximation
z(0) «R breaks down. One should then solve numeri-
cally the full, nonlinear equation (1).

where Z, unknown a priori, is used as a shooting value in
the following way: for a given particle-surface distance,
the solution will show the correct asymptotic behavior
for p —+~, Eq. (3) for a certain value of Z. Incorrect
values of Z lead to solutions that either show a minimum
at some positive value of z (p) for a certain value of p, and
blow up from that p on, or intersect the z =0 line to ap-
parently sink towards minus infinity. The method is ex-
tremely sensitive to small variations in the value of the
guess Z. In the test runs, the agreement between the nu-
merical results for the linear differential Eq. (5) and the
analytical results in Eqs. (8a) and (8b) was complete for
large values of R.

The algorithm has then been applied to the complete,
nonlinear basic equation (1). Figure 3 shows the linear
and nonlinear results for z(0) as a function of R, for a
unit-charged particle in front of liquid He at 1.7 K (ma-
terial parameters given in Table I). For decreasing dis-
tances R, the solutions depart clearly from the linear re-
gime. The strikingly different behavior of the nonlinear
results as compared to the linear results is commented on
in the following.

We see in Fig. 3 that there is only one distance R for
each z (0). An interesting observation is that there is no
profile Z(p) which is a solution of the type described
above for R below a certain critical value R*. This dis-
tance is rather large, R =73 a.u. for a unit charge and
liquid He at 1.7 K. More interestingly, for R )R *, two
different solutions are found for the liquid profile. The
small or low-z(p) solution is the one that approaches the
linear behavior as R increases, whereas the high-z(p)
solution shows a completely different behavior: as R in-
creases, the maximum height of the profile increases too.

A numerical energy variation analysis of the branches
of the nonlinear curve depicted in Fig. 3 shows that only
the low-z (0) branch corresponds to an energy minimum,
whereas the high-z (0) corresponds to a saddle point.

If Z* is the maximum height of the profile z (0) for the

TABLE I. Values, in atomic units, of the material constants (Refs. 20 and 21), the capillary constant
a, and the van der Waals coe%cient (Refs. 5, 6, and 22).

Atomic polarizability a
Atomic mass M
Number density n

Surface tension o.

Capillary constant a
van der Waals coefficient'A

He (1.7 K)

1.37
7.30x10'
3.12 x 10-'
2.25 X 10
1.35 X 10
1.7

Ne (25 K)

2.63
3.68 x 10
5.34 x 10-'
3.53 X 10
1.81x10'
4.0

Ar (85 K)

10.9
7.28 X 10
3.13 x10 '
8.48 x 10
2.62 X10
47

'Between like atoms.
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100 of the linear approximation. Note that both profiles
show a very Hat top and have similar shapes.

50—
C)
N

50 100

R (a.u. )

150

FIG. 3. Comparison of linear ( ———), nonlinear ( ),
and scaled-shape approximation (—~ —.—) heights of the liquid
profile induced by unit point charge in front of liquid He. The
arrow indicates the maximum z(0) above which solutions do
not correspond to stable-equilibrium situations.

2W'"
charged Z charged (1 la)

Results (in atomic units) for a single atom in front of its
corresponding liquid, obtained using the data in Table I,
are the following: He, R ' = 15.85, Z' =3. 16; Ne,
R*=12.16, Z*=2.47; Ar, R*=15.05, Z*=3.03. The
corresponding liquid-independent result for the neutral
particle may be written

neutral 5Z neutral (1 lb)

Sections V and VI deal with simple models that repro-
duce these liquid-independent results.

Figure 4 shows a comparison between a numerical
solution of the nonlinear equation and its linearized coun-
terpart for a distance R outside the range of applicability

smallest particle-liquid distance for which a solution ex-
ists, R', we have found the following numerical results
(in atomic units) for a unit-charged particle in front of
liquid He, Ne, and Ar: He, R =72.9, Z*=24.1; Ne,
R*=44.2, Z =14.6; Ar, R*=44.8, Z'=14. 8. The
data in Table I have been used in the calculations. This
suggests an interesting liquid-independent relation,

V. THE SCALED-SHAPE APPROXIMATION

We have found a very simple, liquid-independent mod-
el that gives a very good approximation to the numerical-
ly computed profiles, including the simple relations (1 la)
and (1 lb). Numerically computed profiles show shapes
that are almost liquid independent if p is measured in
a/&2 units, and they simple scale vertically for all p
when we change the height of the particle R. Thus the
profiles may be approximately written in terms of a
"universal" function as follows:

' (p)= (0)F(&2p/ ) .

Here the superscript SSA stands for "scaled-shape ap-
proximation. " The function F(x) should satisfy the fol-
lowing boundary conditions:

F(0)=1

lim F(x)=0 (14)

2
Echarged ~ ~ A chargedZ

nag
2[R —z(0)]

whereas for the neutral-particle case,

and it is diff'erent for each type of interaction (charged or
neutral particle).

In addition, we will assume that surfaces are so smooth
that (dz/dp) ((1 (this allows us to write a simple ex-
pression for the surface-tension energy), and that the
particle-liquid interaction may be approximated by the
interaction of that particle with a planar surface located
at a height z(0) (see the flat top of profiles in Fig. 4).
With these approximations, the total potential energy of
the system (see Appendix A) may be written as a function
of R and z (0) only. For the charged-particle case,

8 I I I
i

I I I
i

I I 1
i

I I l (
I I I

i t I i
i

I I i i t I I

6[R —z(0)]

A„,„„,l and A,h„ged are constants related to the corre-
sponding scaling function F„,u„,l or F,h„,d by

A = f dx F'(x)+ (16)

0 i i & I

10

Minimization of the energy expressions (15a) and (15b)
with respect to z (0), for a given value of R, yields an ex-
pression relating R and z (0) for each case:

1/2

R,„.„„=z(0)+ nag
chargedZ

FIG. 4. Comparison between the profiles for a unit charge in
front of liquid He, R =96 a.u. , obtained using the linearized Eq.
(4) (———) and the exact Eq. (1) ( ).

nA
Rneutral z(0)+

4 A ( )neutral

1/4

(17b)
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Minimization of R in (17a) and (17b) with respect to
z(0) yields the liquid-independent equalities (lla) and
(1 lb). The corresponding values of R * are

1/3
nag 2

charged
charged

(18a}

nA
neutral

neutral

1/5

(18b)

There is an even simpler approach to the computation
of profile heights, based on two of the above approxima-
tions: the Hat-top approximation and the small-slope
[(dz/dp) &(1] approximation. Thus one may just sub-
stitute z(0) for z(p) in the last term of the right side of
Eq. (1) [z(p) only starts to depart appreciably from z(0)
when p is large enough for the potential to be very small]
and take the linear form of the surface-tension term to
write

Z 1 dZ

dp p dp
n[M—gz (p ) + U (p, R —z (0) ) ]=0 . (19)

The solution of this equation is just Eq. (6), with R —z (0)
instead of R. The resulting implicit expression has to be
solved iteratively. Or, one may use R —z(0) as an in-
dependent variable to get the corresponding values of
z(0) and R. The agreement of this approximation with
the numerical results is remarkable, especially near the
minimum distance R, where the linear approximation is
not applicable. A comparison between the results of this
treatment and those of the scaled-shape approximation
shows that the "constant" A in Eq. (16) depends logarith-
mically, i.e., very smoothly, on R —z (0).

VII. PGTENTIAL ENERGY
OF THE PARTICLE-LIQUID SURFACE SYSTEM

The expressions for the total potential energy of a
charged or neutral particle in front of a liquid surface are
given by Eqs. (A2) —(A5) in Appendix A. As it has been
shown in Sec. V, they may be approximated, using a
scaled-shape approximation, by the simple expressions
(15a) and (15b). The exact expressions have been numeri-
cally integrated during the process of solving the basic
diQ'erential equation. Results for a charged particle in the
long-distance limit reproduce the linearized result of
Gras-Marti and Ritchie. ' The self-energy of a charged
particle in front of the surface [which excludes the contri-
bution of the unperturbed planar surface,
E i,„„= rrnag /(2R)]—may be rewritten in the linear
approximation as

2 2 4

]{jog4 0 g +2/ /g

[see Eq. (11) in Gras-Marti and Ritchie'2].

The parameter A may either be used as an adjustable pa-
rameter to fit the numerical results or may be computed
for each pair of numerical results [R, z(0)] to check its
small range of variation.

VI. THE FLAT-TQP MQDEL

Figure 5 shows a comparison of potential energies, for
a unit charge in front of liquid He: the full numerical in-
tegration result, as well as the sealed-shape approxima-
tion, obtained from Eq. (15a), and the linear result, Eq.
(20a), are shown, all plotted relative to the potential ener-
gy for the unperturbed plane. As expected, the nonlinear
and linear results meet in the long-distance limit. These
results may be used to estimate the range of R where the
linear approximation is applicable (this approximation
was also used by Gras-Marti and Ritchie to compute
the energy loss of a charged particle moving parallel to
the surface of the liquid}.

An expression for the neutral case may be obtained fol-
lowing closely the procedure of Gras-Marti and Ritchie'
for the van der Waals potential:

n A 5

neutral
64 + 8 0 + 2+ 2+ 2~& 2 2 (20b)

Qg

O

Q. 2
UJ

UJ
cQ

7Q 120

R (a.u.)

170

FICx. 5. Contribution of the profile of the liquid to the image
potential of a unit point charge in front of liquid He (AE) rela-
tive to the contribution of the plane ik~&,„„=—m.nag /2R):
full curve, numerical result; dashed curve, linear result (Ref. 12);
dotted-dashed curve, scaled-shape approximation.

It may be added that, if one integrates (in the linear ap-
proximation) the corresponding form of the interaction
energy, Eq. (A3), using the linear result for the profile,
Eqs. (8a) and (8b), one obtains exactly twice the self-
energy, Eqs. (20a) and (20b). This is consistent with the
fact that the profile depends linearly on the perturbation
and that the interaction energy also depends linearly on
the profile and the perturbation.

Forces may be computed by diA'erentiation of the total
potential energy. The results for a neutral atom in front
of a dielectric liquid, for instance, may be used to predict,
at least qualitatively, ' the behavior of a liquid in the
atomic-force microscope. ' ' In these experiments, the
gradient of the force between a tip and a surface is mea-
sured by observing the static or dynamic behavior of a
microfabricated cantilever that holds the tip.

It should also be noted that, according to a simple
simulations of "frozen" liquids where molecular structure
is explicitly taken into account, a single external atomic
particle moving parallel to the surface hardly experiences
any variation of the potential energy due to the eA'ect of
individual molecules in the liquid, even at the shortest
equilibrium distances computed. In addition, if the mole-
cules of the liquid are allowed to move, canonical averag-
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ing over the positions of the liquid molecules would lead
to a zero balance of lateral forces. These considerations
confirm the validity of the continuum approximation
used. throughout this paper.

VIII. CONCLUSIONS

We have computed classically the static interaction be-
tween a charged or a neutral particle and a semi-infinite
incompressible, nonpolar, dielectric liquid, when the par-
ticle is held fixed above the surface. The results obtained
in the long-distance regime for the charged-particle case
agree with the previous quantum-mechanical treatment
by Gras-Marti and Ritchie, ' that was applied also to the
case of a moving charge.

Some interesting results include (a) the existence of a
threshold distance R, below which no equilibrium solu-
tions are found; (b) the inadequacy of the linear treatment
at near-threshold distances; and (c) the availability of
simple models that reproduce the nonlinear results and
may be used to estimate them easily for new cases of in-
terest.

These results suggest that, at short particle-liquid dis-
tances, where the perturbation of the liquid is stronger,
any dynamical treatment should go beyond the first-order
or linear approximation.

The results for the case of the neutral particle are
closely related to the observed behavior of liquid surfaces
in atomic-force microscopy, ' and in fact, the extension
of this treatment to study the interaction of a spherical
tip with thin liquid films has already been published. '

Our results predict a strong effect of nonlinearity in the
short-distance interaction of a helium atom with a
liquid-helium surface. The possible inAuence of these
nonlinear effects on the problem of scattering of He
atoms on liquid-helium surfaces still has to be as-
sessed.

5E[z]=0 . (Al)

The total energy of the system is the sum of the in-
teraction term, the surface-tension term, and the gravita-
tional energy,

E =E;„,+E +E (A2)

The attractive interaction between the particle that we
place above the liquid surface and the molecules of the
liquid can be described as a sum of pairwise interactions
of the form u (r), Eqs. (2a) and (2b). The interaction ener-

gy takes the form

E;„,=2mn f dpp f dt u(r), (A3)
0 oo

where r is [p +(R —r) ]' and n is the number density
of the liquid. The contribution from surface tension o. is

E =2mo f dpp[(1+z' )' —1],
a

(A4)

where the integral is the change of the surface area. The
gravitational term {using the unperturbed surface as the
origin of potential energies} is

E =nMng f. dppz (p), (A5)

where M is the mass of the liquid molecules.
Variation of the total energy' with respect to z(p)

yields the difFerential equation (1). Our choice of origin
for the potential energies (unperturbed surface, particle at
infinity) guarantees that the equation satisfies the condi-
tions z ={dz/dp)=(d z/dp )=0 for p~~. Due to the
infinite volume of the system considered, there is no con-
straint of volume conservation.

The total potential energy E of the particle-liquid sys-
tem is a functional of the axisymmetrical surface profile
z (p). We are looking for solutions z (p) satisfying
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APPENDIX A; DERIVATION OF EQ. (I)

The equilibrium equation, Eq. (1), describes the station-
ary points of the total potential energy of the system
(D'Alembert's principle). Some of the stationary points
will be minima, and thus will correspond to stable equi-
librium. Leiderer, Ebner, and Shikin have minimized
numerically the energy of a system that bears some
resemblance to the one considered here (charge-
containing dimples in the surface of liquid He under an
electric field).

APPENDIX 8: ALTERNATIVE DERIVATION
OF THE LINEAR SURFACE PROFILE, EQ. (6)

In Sec. III, the linearized version of the equilibrium
profile is obtained from the linearized differential equa-
tion. Another possibility is to perform a direct minimiza-
tion of the linearized form of the total potential energy in
reciprocal space. For this purpose, we expand the sur-
face profile in terms of Fourier components,

z(p) =0 ' g Zq exp( —ik p)
k

(Bl)

Ei',"=
—,
' g(Mng+crk )ZqZ

k

Minimization of E'„",+E&;'z with respect to Zk yields

(B3)

where Q is a normalization area. We take the linear form
of the interaction energy,

E,"„",= n f f d p z (p }(up, R ),
and use Cole's' linear expressions for the surface-tension
and gravitational potential energy of the liquid limited by
z(p),
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Z'q = — II i/P U (k, R )

Mng+crk
(84)

where U(k, R) has been defined in Eq. (7). Substituting

(84) into (Bl) and taking the limit Q~oo, one readily
gets the linear profile, Eq. (6). The expressions for the
self-energy, Eqs. (20a) and (20b), may be obtained by sub-
stituting Eq. (84) into Eqs. (82) and (83) and taking
Q —+ oo.
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