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A versatile, plane-wave transfer-matrix formalism is presented, describing the stationary optical
response of multilayered structures where any layer may exhibit a Kerr-type nonlinearity of local or
di6'usive nature. In order to establish the range of validity of this formalism, the results have been com-
pared to exact solutions both for nonlinear interference filters and superlattices. In practical cases, the
nonlinear transfer-matrix formalism is always applicable, except for those superlattice structures where
the layer thickness is smaller than the material wavelength.

I. INTRODUCTION

Recently, there has been an increasing interest in the
nonlinear optical response of nonlinear Fabry-Per ot
(NLFP) resonators, ' thin films, and multilayered struc-
tures for applications in parallel processing devices with
arrays of elements of the Fabry-Perot type, such as non-
linear interference filters (NLIF's), filterlike structures
with epitaxial Bragg refIectors, ' and superlattices
(SL's). Taking advantage of the two-dimensional unifor-
mity now achievable with epitaxial growth and evapora-
tion techniques, these elements can indeed be tailored to
meet the needs of their future applications. Due to the
high number of structural parameters that can be opti-
mized in such devices, there is a need for a design formal-
ism that takes into account the linear and the nonlinear
properties appearing in all the layers. Several such for-
malisms have recently been proposed for guided-wave op-
tics, ' the description of optical harmonic generation in
stratified structures, and also Fabry-Perot-type devices
by Dutta Gupta and Ray. ' '" All of these formalisms
take the "standard approach, " i.e., they rely on the slow-
ly varying envelope approximation (SVEA) and the omis-
sion of spatial third harmonics generated in the cavity
and of nonlinear terms appearing in the boundary condi-
tions.

However, studies of optical bistability in single layer
NLFP resonators have shown that the standard ap-
proach, ' relying on the above-cited approximations, is
valid provided the following two conditions are both
met "' nzI, » «no and L &A, /no. Here no and n2
are the linear and nonlinear parts of the index of refrac-
tion, respectively, I„, is the cavity irradiance level, L, is

the length of the resonator, and A, is the vacuum wave-

length. These conditions are related to the concepts of
the Airy function, the working line, and the finesse of the
resonator. As these concepts cannot straightforwardly be
extended to multilayered structures, and that, moreover,

the second condition is violated in many such structures
(the thickness of individual layers often being A, /4no), the
validity of the standard approach, extended to SL's and
NLIF's should be examined. This is one of the aims of
this paper. Therefore we shall elaborate a nonlinear
transfer-matrix formalism, based on the SVEA and the
related approximations. We shall then compare the re-
sults of this formalism with those obtained with an exact
numerical procedure. Although exact calculations have
been presented before in the case of superlattices, ' '
here we intend to establish clearly and generally the va-
lidity of the SVEA and the related approximations, wide-
ly used in nonlinear optics. A simple rule of thumb will
be derived, showing that, in the case of periodic struc-
tures consisting of thin layers with thicknesses smaller
than the wavelength inside the material, a simultaneous
breakdown of all the approximations occurs, even if the
number of periods of the structure is increased (thus de-
creasing the irradiance levels necessary to obtain bistable
behavior). On the other hand, for high-finesse structures
such as NLIF's, the nonlinear transfer-matrix formalism
gives reliable results when the central spacer layer thick-
ness exceeds the wavelength inside the material (which is
the case in all practically used structures).

Section II is devoted to the elaboration of the matrix
formalism, generalizing the tools we11 known from linear
optics' ' to Kerr-type nonlinear multilayered structures.
We present the method in order to clearly show aO the
approximations made, and because in our mind it is more
general and it has a number of advantages as compared
to other ones' "' previously reported in the literature.
In particular, it takes absorption into account, and treats
both periodic and aperiodic structures. Moreover, it can
be easily extended to the case of saturating nonlinear
media. We will discuss the plane-wave response in the
case of a local or a nonlocal character of the nonlinearity.
The latter frequently occurs in practice, e.g., in opto-
thermal devices with heat diffusion, and in semiconductor
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II. NONLINEAR TRANSFER MATRIX FORMALISM

A. Presentation of the theory: normal incidence

Consider the general stratified structure presented in
Fig. Il. Each layer is characterized by its thickness
dj Lj Ltj ] its linear index of refraction n p, rel ated
to the real part of the linear susceptibility g'"'.

and its attenuation coefticient e., related to the imaginary
part of the linear susceptibility y"":

it(])
a~. =conj /no c . (2)

For the sake of simplicity, we consider an isotropic medi-
um. As a result, the third-order susceptibility
describing the Kerr effect is a scalar (far from resonance).
The electric-field amplitude E. of the normally incident,
monochromatic wave with frequency co inside each layer

devices with diffusion of free carriers. Contrary to a
more sophisticated approach, ' which couples the non-
linear wave equation to equations describing the heat
conduction and the carrier diffusion, we will simply mod-
el the effects of nonlocality by supposing that the index
grating (created due to the interference between the for-
ward and the backward beams inside the layers) is aver-
aged to zero by the diffusive nature of the material. For
the sake of simplicity, we first present the case of normal
incidence, and discuss thereafter the extension to treat
the case of oblique incidence. Our formalism is almost
entirely analytical, and can be implemented straightfor-
wardly. We have indeed obtained a linear expression, re-
lating the irradiances inside each layer with the field am-
plitudes of the forward and backward beams inside the
next layer. This is a nontrivial extension of the well-
known dummy-variable method, ' used in the case of a
single-layer NLFP. As a consequence, the present non-
linear transfer-matrix formalism is just as easy to imple-
ment as a linear one.

As mentioned above, the nonlinear transfer-matrix for-
malism relies on the SVEA and a number of related ap-
proximations. The scope of these approximations is
thoroughly discussed in Sec. IV by comparison with re-
sults from an exact numerical method, explained in Sec.
III. To conclude, in Sec. V a general rule of thumb, to
determine the validity of the standard approach for any
given structure (periodic or not), is presented.

j can be decomposed in a forward and a backward propa-
gating beam:

Ej EFj exp[ i—kjz+iAFf(z) aj(z Ij—i )/2]

+E~~ exp[+ik~z+iP~i(z) a—/(L~ —z)/2] . (3)

Here k =(co/c)no is the wave number, and P~ (z) and

Pzz(z) are the phase shifts due to the Kerr-type non-
linearity (inside the layer j). We shall characterize the
state of light inside each layer by the following column
vector:

We will develop transfer matrices M~ ~+ i to link the (con-
stant, but complex) amplitudes of the forward and back-
ward beams, between adjacent layers j and j + 1:

+Fj EFj + 1=M (&)
Bj Bj +1

This choice makes the calculation of the transmission
coefFicient v. straightforward. Earlier approaches' ""
link the amplitudes of the total electric and magnetic
fields between two layers, making the implementation of
the boundary conditions straightforward. In the follow-
ing sections we show that our approach allows for an ex-
tension of the dummy-variable technique, well known in
the theory of operation of the single-layer NLFP. ' '

As usual, the nonlinear phases PF. and P~ can be
determined by substituting Eq. (3) into the nonlinear
wave equation

d E + (1+y""+iy""'+y' '~E.
~

)E.=O . (6)
z c

Using the SVEA (i.e., disregarding second derivatives and
products of first derivatives} and, furthermore, omitting
spatial third harmonics [i.e., terms in exp(+3ikz+icot)
which arise due to the nonlinearity], it is well known that
the field amplitudes EF/ and E~ appearing in Eq. (5) are
constants, while the nonlinear phases satisfy the follow-
ing equations:

coy'3)

2np. c

Ei EFi EF~

Ea

EF)-i EF„

n-1 n

EFn- l ET

Li L~ Lj2 Lj Lj L j+t L n-2 L n- 1 Ln . z

FIG. 1. Cieneral picture of the multilayered structures con-
sidered.

~~(3)
~ 4a, (z) = [(1+g)IE~,I'e

2n pjc

i'~i '
] (7b)

For a local nonlinearity g= 1. On the other hand, for a
nonlocal (diffusive) nonlinearity, the index grating caused
by the interference of the forward and the backward
beam inside the layer is smeared out, and g=0. The
whole process can then also be represented by a nonlinear
index of refraction n~

' defined by
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~(3)
n (2)

J 2
CpEl pJC

kF. (z)
BFJ(z) EFJ (10a)

The SVEA condition merely states that the phase varia-
tion due to the nonlinear refraction and the amplitude
variation due to linear absorption are small compared to
the wave vector inside the layer:

kB (z)
BBJ(z)= EB (10b)

where we introduced a compact notation for the general-
ized wave numbers:

k~~(z)=k B—,P~ (z) i—a /2, (1 la)
(9a)

or, equivalently,

(9b)

(9c)

Here I„„is defined as eono c(IE. F I+IEBJ. I )/2 (in the
absorptionless case).

The omission of the spatial third harmonics is general-
ly motivated by an averaging procedure of the high-
frequency components over the space coordinate z over
an integral number of half wavelengths inside the materi-
al. This approach is certainly questionable in the case of
thin layers (thickness d -A, „„;,), as has already been dis-
cussed in the case of a single-layer NLFP. ' For the mo-
ment we will simply assume that we may disregard these
terms, and postpone the discussion until the end of this
section.

The boundary conditions express the continuity of the
electric and magnetic fields across each interface. The
magnetic induction fields inside the layer j can be calcu-
lated from Eq. (3) using Faraday's law, yielding

(12)

where the matrix A (z) is given by

kBJ(z) =kj+B,it)BJ(z) i a—j. /2 . (1 lb)

The latter include an (imaginary) contribution due to the
absorption, and a space and intensity dependence due to
the phase inhomogeneities of the forward and the back-
ward beams, a typical nonlinear dispersion e6'ect. In clas-
sical approaches of the NLFP resonator, ' this inten-
sity dependence of the magnetic-field amplitudes, and
thus also of the boundary conditions, is neglected,
motivated by the fact that the Fabry-Perot etalon is an
interferometric device, far more sensitive to small phase
variations than to small amplitude variations. For the
time being, we will also assume this to be valid. The
boundary conditions linking the electric and magnetic-
field components will therefore only display the non-
linearity in their phases. We shall come back to this
later.

The boundary conditions at the interface z=L, be-J
tween layers j and j+1 can be written in terms of the
electric-field amplitudes in a matrix form:

r

EFj EFJ+
A (L )E =A +, .(L )

Bj Bj + 1

AJ(z) =
—ik.z —a.(z —L. )/2 iP .(z)J e J J & e FJ

—ik, z —a.(z —L. &)/2 iPF.(z)
ik (z)e —' e ' ' ' eFj

ik.z +a.(z —L.)/2 i(I5». (z)e'e''e
ik.Z +aj(Z L)/2 iPB (Z)— . (13)

The initial phases can be chosen freely. A convenient
gauge is m2& = Fj Fj + & i [p~.(L. ) —pF. (L . ) ]

kB.+kF
(16c)

NFj (Lj —1) PBj ( j—1)

The transfer matrix M. + &
then becomes

(14)

m22 = kFj+kBj+$
exp I aj+, (LJ Lj+,)/2—

Bj Fj

with

m)) =

tlat )2
=

m I i m I2

m2i m22

r

kB'+kF +$

kB +kF.
T

2ik-L. +a (L.—L. ()/2J J J J (16a)

kBj kBJ' + 1
exp[ a)j(+LJ Lj+i)/2—

kBj + Fj

(16d)

Here 5J=Q~~(LJ)+(kj+, +k, )L is a phase factor, ir-
relevant for what follows. If, as stated before, we neglect
the nonlinearities appearing in amplitudes at the boun-
daries, the generalized wave numbers kFJ and kBj, ap-
pearing in Eqs. (16) simply reduce to kj.

B.Oblique incidence

+aj(LJ —LJ ) )/2

+2i(k +, +kj )LJ.], (16b)
As stated in the Introduction, we restrict ourselves to

Fabry-Perot resonators filled with an isotropic material.
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The generalization of the theory to oblique incidence is
then straightforward in the case of TE polarization. In
Eqs. (3), (7), (13), and (16), one should simply substi-
tute' '

k ~k, =k cos8, a ~a / cos8), (17)

where 0. is the angle of propagation inside each layer j.
Here we suppose that no total reAection occurs at any of
the interfaces, although the formalism can easily be gen-
eralized to include tunneling phenomena.

The extension is much less straightforward for a TM
polarized beam incident on the structure. In the case of a
local nonlinearity, different elements of the third-order
susceptibility tensor have to be taken into account, even
for an isotropic material, except if one is far from reso-
nance. We will not treat this case here. However, in the
case of a diffusive (e.g. , thermal) nonlinearity, the non-
linear process can be adequately described by a second-
rank tensor, thus of the same rank as the linear suscepti-
bility tensor. For cubic crystals, this tensor is isotropic.
The theory developed above is then valid, provided the
following substitutions are made in Eqs. (3), (7), (13), and
(16)

C. Implementation

The matrix M + i formally allows for the calculation
of the forward and backward beam amplitudes in the lay-
er j from those in layer j+1, but it must be borne in
mind that the matrices still depend on the beam's intensi-
ties IEz~l and IE& I

through the nonlinear phase shift

P~J(LJ ) PFJ.(LJ ) appe—aring in mz, and m&2. In the nu-
merical implementation, we can circumvent this tran-
scendental dependence on the beam intensities by gen-
eralizing the so-called dummy-variable approach, well
known in the theory of the single-layer nonlinear Fabry-
Perot' resonator. By this approach we mean that we can
calculate the global transmission coefficient ~ (and the
reffection coefficient p):

r= IE, I'/IEgI', p= IEg I'/IEsl' (19)

without the need for a fixed point iteration as in Refs. 10,
11, and 19 (ET, Ez, and Ez are the transmitted, reffected,
and incident field amplitudes, respectively).

The strategy now is the following: by construction, the
nonlinear phase shift only appears in the second-row ele-
ments m2i and m22. This is a consequence of a proper
choice of the initial phases and is crucial for the im-
plementation. The beam intensities

I E~ I
and

I E~ I
can

be calculated as follows:

IEF) I' ll iiF~)+ i+m i2&a—, + i
I'

IFa& I'=
I m2iF~)+i+ m2zEa&+iI' .

(20a)

(20b)

aj ~a~ / cos8~, k~ ~k/, =kj cos81,

k~ ~k, /n, kii ~k, /n

One has to remember that in Eq. (7) for the nonlinear
phase shifts, the factor g has to be taken equal to zero
again due to the diffusion of the nonlinearity.

Note that the dependence on the nonlinear phase shift
exp[i[Ps. (L. ) 8—F (L. )]] has disappeared from Eq.
(20b). Once the beam intensities are calculated from Eqs.
(20a) and (20b), the nonlinear phase shift

Ps (LJ .) P—F, (L )c.an be calculated by a straightforward
integration of Eqs. (7a) and (7b), yielding

i'~, (L, ) Pp&
—
(L& ) =

(2+'9)~XJ (1—e ' ')
2 o

x(IE„I'+IE„I') . (21)

This expression can then be substituted in the matrix ele-
ments, and Eq. (5) can be used to obtain the complex
beam amplitudes in the preceding layer. By working
backward, one benefits from the outgoing wave condition
(no backward propagating beam in the layer n+ 1):

(22)

We consider it to be the power of our formalism that the
procedure used for the single-layer nonlinear resonator
can be extended to an arbitrary number of nonlinear lay-
ers, in the sense that a linear relation can be given to cal-
culate the intensities inside the layers, determining the
nonlinear phase shift [Eq. (21)]. The main difference with
the single-layer Fabry-Perot is, however, that no analyti-
cal relation can be given between the intensities in adja-
cent layers in general, nor between the transmitted inten-
sity and the layer intensities. This implies that no single
dummy variable can be given for the whole structure, and
thus that the SVEA conditions Eqs. (9a) and (9b) cannot
be evaluated a p~iori for a general stratified structure.
Section IV will be devoted to this issue.

This nonlinear transfer-matrix method can be applied
to all kinds of multilayers, such as, e.g. , NLIF's or finite,
periodic SL's. The expression for the transfer matrices
M +, is given analytically in Eq. (16), so the numerical
procedure is simple and only consists of multiplying the
matrices, squaring to get the irradiances, and finally plot-
ting the response curve. This takes no longer than a few
minutes on a personal computer for the structures de-
scribed in Sec. IV. Preliminary results in the case of both
superlattices and nonlinear interference filters can also be
found in Ref. 26.

To test the validity of the standard approach as de-
scribed above [i.e. , SVEA, omission of the nonlinear am-
plitudes in the boundaries (NI.BC), and third harmonics],
we will compare the results of the nonlinear matrix for-
malism with those of an exact procedure, introduced in
Sec. III. The approximation that can be dropped most
easily is the omission of the nonlinearities appearing in
the boundary conditions. The inclusion of these extra
nonlinear terms has already been discussed in both the
case of a single-layer FP (Ref. 13) and that of a FP with
linear reAection coatings. In both cases the effects were
shown to be negligible except for thin layers (with a
thickness L of the order of A/no), and/o. r for high inten-
sities driving the FP in the multistable domain of opera-
tion (n2I„„ofthe order or larger than no). As a matter
of fact, the NLBC can be incorporated quite easily in the
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III. EXACT NUMERICAL PROCEDURES

The nonhnear wave equation, Eq. (6), can be rewritten
as follows:

with

d E(z) = —a.(z )E(z )
dz2

(23a)

K(z)= (I+/' +i/" +y ~E.
~

)2 J J J J (23b)

where E(z) is the total electric field at a point z of the
structure. Note that x is a function of z for two reasons:
the values of the parameters no. , y'"', and y' ' appearing
in the expression for ~ depend on the layer and so on z,
and, in addition, ~ depends on the field amplitude because
of the Kerr-type nonlinearity.

The electric-field amplitude and its normal derivative
dE/dz are both continuous functions of z everywhere in
the structure. Therefore Eq. (23) can be directly integrat-
ed, with an integration step hz. The length of the struc-
ture, and therefore the integration domain, are finite, so
many methods are suited, provided Az is small enough.
Nevertheless, it is preferable to use a stable scheme, in
order to avoid overflows due to numerical instabilities,
which lead to a growth of the truncation errors, e.g.,

E(z„+2)= [2+(bz ) a(z„+)t]E(z„+)tE(z„), (24)—

above-developed matrix formalism, without loss of the
simplicity. This can be seen from Eq. (16), where the
NLBC terms are present in the generalized wave num-
bers, defined by Eq. (11). However, it was shown recently
that, only in the case of a local nonlinearity, the contribu-
tions arising from the spatial third harmonics can be of
the same order of magnitude as the corrections due to the
NLBC. '" On the contrary, in the case of a diffusive non-
linearity, no effects from spatial harmonics can occur.
We have therefore opted for a global approach of the
problem, instead of lifting the approximations one by
one.

i/~ (z)
Ez~e ', respectively. One then obtains

2

Qz ~z c

(25a)

2

Gz cfz

(25b)

Note that the SVEA consists in further neglecting the
second-order spatial derivatives. These equations can be
integrated in a similar way as Eq. (23), starting in the
substrate.

IV. SUPERLATTICES AND NONLINEAR
INTERFERENCE FILTERS

A. Superlattices

Much work has recently been devoted to the nonlinear
optical response of SL's (a typical structure is depicted in
Fig. 2), both from the theoretical and the experimental
side. Chen and Mills proposed an exact calculation of
the nonlinear optical response, first of a lossless thin
film, later of bilayers and superlattices. ' ' Since they
rely on energy integrals, absorption cannot be taken into
account. Reinisch and Vitrant also treated the thin-film
problem exactly by a fully numerical procedure, in which
absorption can easily be taken into account. Several
theoretical papers have been devoted to the explanation
of the solitonlike shapes which appear in the amplitude of
the field envelope at the resonance point as a function of
the spatial coordinate. ' However, to our knowledge, no
comparison between exact numerical calculations and ap-
proximate analytical ones, clearly establishing the limits
of the standard approach, has been reported yet.

The response for a 40-period SL of a unit cell of two
layers is shown in Fig. 3. Each of the layers has a quarter
wavelength optical thickness, and the high refractive in-
dex layers exhibit a positive nonlinear susceptibility,

where z„+,=z~+n Az is the position of the nth discrete
point. One can easily show that in the linear case a trun-
cation error propagates during the integration of Eq. (23)
without growing, whatever the step size hz. As a conse-
quence, the implementation of the method is very easy
and one has only to be sure that, using Eq. (24), bz is
small enough such that the solution of the discretized
equation is close to the exact solution at the required pre-
cision. This is checked by using smaller values for hz.
The procedure starts in the substrate layer (j=N+ 1)
with the value of ET, which is supposed to be given. The
first two points can be determined in the substrate since
the solution there depends only on ET. After integration,
EI and Ez are determined as functions of Ez-.

In the diffusive case, Eqs. (23) must be replaced by
different ones using the decomposition in forward and
backward propagating waves, given by Eq. (3). Let us

ipF. (z)
denote by E~ and Ez the quantities Ez.e ' and

N period superlattice: N{HL)

H L

nH = 2.7 n L= 2.2

u=p a=p

H L H H L H L

X(3) p XO) p

L =~L�-=X
4n t- 4nH L

FICi. 2. Structure of an X-period superlattice: X(HL). H
and I. are quarter wavelength layers of high and low refractive
index material, respectively. In all figures we took n0=2. 7,
nI =2.2, and A,p=448 nm. Absorption is not taken into ac-
count, and only the H layers were chosen to have a (positive)
nonlinearity.
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4(c)] is much lower than for the 40-period structure, and
corresponds to a more acceptable value of n2I„, =0.1.
If, however, we increase the thicknesses of all the layers,
instead of increasing the number of periods, the
difference between the SVEA and the exact calculation
diminishes (Fig. 5), although the incident and transmitted
irradiance levels necessary to observe bistability are
higher in this case. The cavity field is of about the same
magnitude as the maximum in the 100-period SL of high
(H ) and low (L ) refractive index layers.

Two parameters thus seem equally important in the
discussion of the validity of the standard approach in the
study of the nonlinear optical response of SL's: the cavi-
ty field, or equivalently, the cavity intensity I„„[cf.Eqs.
(9)], and the thickness of the nonlinear layers (or the
number of nonlinear layers). This must be concluded
since the cavity fields for the five-period (8H8L ) and the
100-period (HL ) structures are about the same in magni-
tude, while the SVEA yields accurate results for the five-
period (8H8L) structure and is not reliable anymore for
the 100-period (HL) SL [we even obtained rather good
agreement between the two calculations for a five-period
(4H4L ) structure with an even higher cavity field magni-
tude as in the 40-period (HL )]. We explain this by not-
ing that the small errors made in the field calculation (us-
ing SVEA) in every nonlinear layer accumulate through
successive applications of the boundary conditions. To
do better than the SVEA approach, it is thus necessary to
apply the exact boundary conditions to the exact solutions
of the nonlinear wave equation, Eq. (6), and it is not
sufhcient to apply the exact boundary conditions to ap-
proximate solutions, as is done in Refs. 13 and 27. Sum-
marizing, it can thus be stated that the SVEA is only
applicable in calculations of the nonlinear optical
response of SL's when the thickness of the nonlinear lay-
ers is larger than the wavelength inside the material.

B.Nonlinear interference Slters

NLIF's have attracted a great deal of attention since
the first report of optical bistability in such structures.
Indeed, due to (i) the high nonlinearity of thermal origin
that can be obtained; (ii) the number of suitable lattice-
matched high index materials such as, e.g. , ZnS, ZnSe,
and CdSe; (iii) the range of different wavelengths in the
visible that can be used; and (iv) the possibility of room-
temperature operation, NLIF's are considered promising
candidates in view of all optical nonlinear signal process-
ing. Switching times in the nanosecond range, and re-
cently even faster, have been reported, although they
are more typically in the microsecond to millisecond
range. Also devices such as epitaxially grown etalons of
materials such as CxaAs/Al Cra, As can be treated '

using the nonlinear transfer-matrix formalism.
The structure of an interference filter (Fig. 6) consists

of a nonhnear spacer layer of high index material
sandwiched between two high reAectivity mirrors com-
posed of stacks of alternative layers of high and low in-
dex materials. The whole is mechanically (and thermally)
supported by a substrate, which we will not consider in
the simulations shown here. We may thus describe the

.S I),'tcc t' ll, t(. k tlltrr()r st, i(.k . Xz pert(xls

tl = .7 tl
It

'
t

tl = 2.7

I) ~
I I
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[
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FIG. 6. Structure of a nonlinear interference filter
N&(HL)M(HH)N2(LH), again with nH=2. 7, nI =2.2, and no
absorption taken into account. The H layers have a positive
nonlinearity. The resonant wavelength A,o of all the filters dis-
cussed is 448 nm.

structure as Ni(HL )M(HH)N2(LH) in terms of quarter
wave optical thickness of high (H ) or low (L ) index ma-
terial (N 1, Ni, and M are positive integers). Usually, it is
the H-index material that heats up due to absorption,
which causes a change of the refractive index with tem-
perature. The whole process can then be characterized
by a nonlinear index of refraction nz [Eq. (8)], while the
term rI in Eq. (7) has to be set equal to zero. In fact, in a
NLFP with a totally nonlocal nonlinearity, one can just
take the linear Airy formula and substitute the linear in-
dex of refraction no by no+ n ' 'I„„,with n ' ' defined by
Eq. (8). Of course, although heat diffusion inside one lay-
er is thus taken into account, diffusion from one layer to
another is not. It may be that the heat absorbed in one
layer is transferred to the neighboring ones, causing the
latter to react nonlinearly too. In some devices ' this
separation between the absorbing layer and the nonlinear
layer is even exploited in order not to deteriorate the
finesse of the resonator by too high an absorption. Such
effects are not taken into account by our formalism; the
optimization of NLIF is discussed in Ref. 37, the cavity
optimization in terms of the localization of the absorp-
tion can be found in Ref. 38.

The structures we will consider here have the following
parameters. For the H-index layer we take the material
parameters of ZnSe with no=2. 7 for the L,-index layer
we take ZnS with no=2. 2. For the sake of simplicity,
and in order to allow for any easy interpretation of the
response curves, no absorption is included for the mo-
ment (discussions of the influence of absorption in Refs.
26 and 38, and in Sec. IV D here). The filters were al-
ways designed to have a resonance (in the linear regime)
at A,„,=448 nm, while the working wavelength, deter-
mining the detuning, was chosen to be about twice the
full width at half maximum of the resonance peak as a
function of the wavelength [Fig. 7(a)]. In most practical
devices, the nonlinearity is most often of diffusive nature,
so we have to set 1)=0 in Eqs. (7), or, for the exact solu-
tions, use Eqs. (25).

In Fig. 7(b) the response of a 6(HL )6(HH )6(LH ) filter
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them suited for multistable operation. Also, one should
bear in mind that the group velocity goes to zero close to
the band edge (as is well known in solid-state physics), de-
creasing the switching speed. Further information con-
cerning the dynamical behavior of SL's, using a formal-
ism based on the nonlinear transfer matrices and includ-
ing the effects of absorption and of Debye relaxation
times, can be found in Ref. 39. A numerical study of the
dynamical behavior, based on a coupled-mode analysis,
can be found in Ref. 40.

V. CONCLUSION

In this work we presented a thorough discussion of the
validity of the slowly varying envelope and related ap-
proximations (i.e., the omission of the nonlinearities in
the boundary conditions, of spatial third harmonics, and
of the second derivatives appearing in the nonlinear wave
equation) for the calculation of the nonlinear steady-state
response of stratified media submitted to monochromatic
plane-wave illumination. These structures are promising
devices for digital optical information processing because
they behave like bistable nonlinear Fabry-Perot etalons,
but with improved characteristics resulting in lower bi-
stability thresholds.

We proposed a versatile transfer-matrix formalism,
based on the SVEA and the related approximations. This
formalism is intrinsically simple in both its derivation
and its implementation, without the need for numerical
iteration nor optimization procedures. It can further-
more be applied to a wide range of Kerr-type nonlinear
structures, both periodic and aperiodic, including linear
absorption and nonlinear effects arising in several layers
simultaneously. By comparing the results of the non-
linear transfer-matrix formalism with an exact numerical
integration of the nonlinear wave equation, we can con-
clude that it makes no sense to drop one of these approxi-
mations while maintaining the others [as was previously
reported in the literature' ' ' by applying (more) exact
boundary conditions to approximate solutions]. We also

found that, analogous to the case of a single-layer NLFP
resonator, two conditions have to be fulfilled in order for
the approximations to be valid: (i) the cavity irradiance
level has to satisfy n2I„„«no in each layer, and (ii) the
thickness of the nonlinear layers has to be larger than the
material wavelength (L )A, /no ). But in all realistic
cases, the fulfillment of the second condition automatical-
ly leads to the fulfillment of the first one. We can thus
propose the following rule of thumb for an a priori evalu-
ation of the validity of SVEA and the related approxima-
tions for a given structure: for superlattices it is no
longer valid when the thickness of the layers is smaller
than the wavelength inside the material; for high-finesse
structures such as nonlinear interference filters, it is valid
in all structures where the spacer thickness exceeds the
wavelength inside the material. Our easy matrix tech-
nique can thus be used to calculate the nonlinear optical
response of a large number of practically useful struc-
tures. Moreover, it can be used as a starting point for the
study of the dynamical behavior of stratified structures,
including the effects of absorption and of finite Debye re-
laxation times of the material.
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