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Thermal conductivity near the superAuid transition in He- He mixtures below Tz
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We calculate the effective thermal conductivity ~,& in the superfluid phase of He- He mixtures
below Tq within the nonasymptotic field-theoretic version of the model of Siggia and Nelson. The
nonuniversal parameters appearing in statics and dynamics are taken from an analysis above Tz.
The temperature-independent values of ~,z for the concentrations analyzed (0.1%—37%) are in

agreement with experiment.

I. INTRODUCTION

The nonasymptotic renormalization-group theory has
been applied with great success to the superAuid transi-
tion in He. The strategy of the method and the results
obtained have been reviewed recently by Dohm. ' The ex-
tension of the theory to the superAuid transition in
He- He mixtures ' makes possible a quantitative com-

parison of the theoretical calculations with the large
amount of measurements of the transport properties near
this phase transition (see the recent review article by
Meyer ). A first test of the theory has already been start-
ed by an analysis of the model of Siggia and Nelson in its
simpler version where the asymmetric couplings of the
order parameter to the entropy density and the concen-
tration have been neglected. ' The neglect of these cou-
plings lead to some inconsistencies connected with the
temperature dependence of the static susceptibilities of
entropy density and concentration. Strictly speaking
these susceptibilities would be constants, but in the
analysis of Refs. 2 and 3 they have been replaced by their
experimental temperature-dependent values. This re-
placement introduced a weak temperature dependence in
the asymptotic limit in the thermal conductivity above
(most noticeable at higher concentrations) as well as in
the whole critical region below T&. This temperature
dependence is absent in the experimental results as well
as in the theoretical results by Onuki for the complete
model. The reason for this temperature independence is
a compensation of static and dynamic terms in the
thermal conductivity resulting from those couplings.

In this paper we apply a recent nonasymptotic model
F' calculation for T ) Ti, (Ref. 8) to the superAuid phase.
The aim is first to show within the nonasymptotic 6eld-
theoretic renormalization-group procedure the tempera-
ture independence of ~,z and its continuity at Tz. This
allows us to predict the value of the thermal conductivity
at and below T& since all dynamical nonuniversal param-
eters have been determined by a fit in a certain restricted
temperature region of the transport coefIicients above T&.
We apply the theory to concentrations as low as 0.1%%uo

and as high as 37%. The theoretical model, however, is
applicable along the whole X line, which extends to con-
centrations of 67%. Crossover effects to the tricritical

behavior at the tricritical point at 67%, however, are not
contained in the theory and limit therefore the applicabil-
ity of the results at higher concentrations. Furthermore,
for a quantitative analysis static and dynamic measure-
ments at the same concentration are necessary. These are
most interesting further away from T& reaching deeper
into the background (tz ) 10 ).

II. MODEL EQUATIONS
AND THERMAL CONDUCTIVITY

We start with the unrenormalized equations of motion
of the Siggia-Nelson model for He- He mixtures

0

(la)

t)g* ~, ciH .~,~ 5H
(lb)

ay, = —VJ +0
BE

1 q

Bq2 = —VJ +8
Bt 2 q

(2a)

(2b)

with the currents

J; = —A; V —2g; Im(g'Vg) .
5p,

The Hamiltonian is given by H =H&+H

0

HpI@i =f d"x ,'+lgl'+ ,'IV@I'+—- (4)

g denotes the complex order parameter. Below Tz it has
a finite expectation value and one may write
g= (P) +QL +i gr The conserved. densities

P, (x)
P(x) =

qz(x)

are the entropy per mass density Pi(x) =QN&p5o (x)/R
and $2(x)=+N„p5c(x) the concentration fluctuation.
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R is the gas constant, p the average mass density, and X~
the Avogadro number. The square root factor is intro-
duced for convenience.

The matrix

aii a)2

a i2 a22

is given by the background susceptibilities for these den-
sities. Only one of the a; 's is independent.

r

Q=RT+p/Xq J,
and the mass current by

I=+p/X„J2 .

The thermal conductivity in the superAuid phase is mea-
sured under stationary conditions, requiring Vp4=0 and
c =0. The first condition leads to a relation between the
concentration and temperature gradient. We use the
definitions of the conjugated fields and write

.r2.
Vp4= —o.V T —cVA=0 (12)

are the couplings to the order parameter,

I ext—

0

Vh 2
— g1 /g2Vh

On the other hand we have for the fluctuations the rela-

tion 5H/5P =h, and hence we get

the external fields. The conjugated fields are

5A
h, =+X„p, h2=+E„p

5H gi 5H

5(2 g~ 5$,
(14)

and b, =@3/m 3
—p~/m„ is the diff'erence in the chemical

potentials of He and He. The functional derivatives
read

5/5q,

and 5/5$= ,' (5/5/1 —i—5/5$T).
The dynamical mode couplings are

0

m4k~ T m4k~ T

pA R pA

and the kinetic coeScients

Using this relation and I=O we can write the heat
current as

and

Q= K,ttV T— (15)

K ff Rp[k —2(gi/g, )L+(gi/g2) P]
The dynamical model will be treated within the field
theoretic Lagrangian formalism' where we also have to
introduce the auxiliary variables P and tIt. From the La-
grangian for the dynamical model we then can calculate
the relevant vertex functions, which contain the effects of
the critical fluctuations in the desired perturbational or-
der. Thus, we obtain the complete expression for the
thermal conductivity including the critical effects, when
we identify the bare dynamical parameters by the ap-
propriate vertex functions. From a dissipation Auctua-
tion relation we have

gk2 qq qq gk2 qq
(17)

The relaxation rate of the order parameter is complex
I =I"+iI"'. The fluctuating forces I9&, 0& and

Oq

0 =
q2

fulfill the Einstein relations

( 8~(x, t)8@(x„t, ) ) =4I"5( t t, )5(x —x, ), —

(8,(x, t)e 8,(x„t,) ) = —2A, V'5(t t, )5(x —x, } . —
(8)

We follow Ref. 7 and identify the heat and mass currents
by comparing with the hydrodynamic currents. The heat
current is then given by

K,~=A p I —2(d) g 1

Bk
I (d)

ak'

gi

g2

'2

I (d)
gk2

(18)

The temperature dependence can be found by expressing
the unrenormalized thermal conductivity through its re-

Comparing both sides with the lowest order by consider-
ing the quadratic terms in the Lagrangian we find that
the dynamical parameters Aq have to be replaced by the' (d)pure dynamic vertex functions (5/Bk )I'"' only, since
2 A is identified with (8/Bk )f and 2 with I
Then we come to
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normalized counterparts. The expressions can be
simplified by a change of the variables. %'e scale and ro-
tate the vector q, so that the static part is diagonalized
and one asymmetric coupling is eliminated. This is
achieved by the transformations ' m =M/ with

III. RKNORMALIZATION

Now we introduce the static and dynamic renormaliza-
tion. These can be performed in the standard way, as it is
done in model F for pure He, " since only one asym-
metric coupling appears. Thus we have (a=4 d)—

RT Bc+'" c ar
PA,

1, BA

aT
PA.

T Bo

Pk

(19)

Q=z' P r —r, =z 'Z r, u =x'Z ZuA„',
(30a)

Ad =Sd I 1+—I 1 ——
2

(30b)

consisting of the A,-line derivatives and
2d —1 d //2p

2

OcrC~=T
,~ PA,

aa ac
(20) m =Z m y

—K' Z 'Z Z yA

The auxiliary variables g and m are normalized as

(30c)

The parameters a;, are
2

aii =R/Cg, a22=
RT c

(a llC 2/R —1) . (21)

172 4Qa l l T2 aa0+ C

PA.

(22)

rn 4 +a 22 T, R T,
A(N„p)'

BC

PA,

Bo0.+ C

PA,

(23)

The mode couplings transform into

y=Z'-/21( 4 =Z-'e (30d)

e/2Z A
—l /2

2 m 2 d

Finally, we renormalize the kinetic coefficients as

(30e)

%'e have made use of relations between diferent Z fac-
tors. ' ' Z„ is the renormalization factor of the quadra-
tic term in the usual 4 theory, which is obtained when
one integrates out the variables m. Since only one cou-
pling y is left after the transformation (19), m, and g,
have not to be renormalized. Only the dynamic coupling
P2 renormalizes as

leading to r=z, I., I *=Zr" I *, A, ;=Zz A, ;, A, ;=A.,I.,p . (30f)

H = CE X — +—Pm2 — m

with the new couplings

(24) The g functions are defined by the renormalization fac-
tors accordingly to

1 BA
~a22 (25)

6
K Z (31)

The new kinetic coefficients read

=M A M'.

It is useful to introduce the following dimensionless
dynamical parameters

wl =I '//(, , w2=1'/p, w3=2/(kp)'

and the couplings26

Ko —PR

2
&~a%$2

m4RTc a22a ii

Taking all together K,ff may be written

&dF= &0l:~ 2(u I /0—2 )I + (u 1 /t2 )'P'l

with

(27)

(28)

fl =gl/(&I")' ', f2=g2/(PI")'/' . (33)

The g functions and the renormalized vertex functions
will then become functions of these parameters. We are
now in a position to express the unrenormalized K,ff
through its renormalized counterpart, using the relations
which hold for the vertex functions above as well as
below Tq..

The expression (18) now contains the vertex functions of
the new variables in the form

j(d) ~ I (d)
] ]

(34a)

e o gk2 mlm] g gk2 mlm2
[&2

r

gk2 m2m2
(29)

or'"' =Z exp
ldx 8 I (dl

gk2 mim~ m
l x m gk2 mlm~

oI' ' =Z exp —2 g I' '~dx
k2 m2m2 i ~ gk2 m2m

(34b)

(34c)
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All vertex functions depend on the parameters u (I), y(l),
g,.(l) (i =1,2), A(l), p(l), L (I), and I"(I). Their I depen-
dence is found from the solutions of the Aow equations

I Ii, ( I)=k(l)gi,

(i) The temperature derivative of (d/dt's)v, tt(l(tz)) is
proportional to (d/dl)v, ir(l). Performing the derivative
one uses the fiow equations and takes into account the
structure of the g functions. Let us first separate the
dynamical parts in the g functions:

I p(l) =p(l)g„,d

I L (I)=L (I)(L
d

with suitable initial conditions. For g, (I) we have

I g, (I)= ——g, (1), I „g,(1)= —g&(1)

(35)
(39)

g' ' = —
{g, ( I ) /[21"'( I )Ii ( I ) ] J ( 1+Q),

g„'"'= —[g,'( I) /[21"( I)p(1) ] ](1+Q),

gL
'= —[g, (l)g2(l)/[2I" (I)L (I)]](1+Q),

(40b)

(40c)

Note that gi has only dynamic terms. The dynamical
parts then have the structure

(36)
The perturbational dynamical contributions to the renor-
malized vertex functions have the following particular
structure above as well as below Tz.

A(I) L (I)
I (d)

~kz m,. m,. L (I) p(1)

I A,(l) — L (I) =0gi(1)
g21

(41)

where Q contains the higher than one loop contributions.
With Eqs. (35), (36), and (39) one finds

r

gi(l)
4I"(I) g, (l)g2(l )

g, ( l)g2( I )

2(l) (1+P) d gi(l) gi(l)
I p(1) —L ( I)

(37)
The expression P contains all higher than one loop terms.
It is this structure which leads to a cancellation of all
higher than zero loop terms in K,z. Inserting the vertex
function we can write for the thermal conductivity the
exact expression within this model,

~,ir(1 ( t~ ) ) =~o [ A ( I )
—2 [g, ( I ) /g 2 ( I ) ]L ( I )

+[gi(1)/g&(1)]'p(1)[ . (38)

To connect the Row parameter l with the temperature t&

(tt, = [Ti (5)—T]/Ti (b, ) ), we impose the relation
I = [2tt, (tx)]' [for the relation of tt, to the experimental
value of tx X molar concentration, tz = [ Ti (X)
—T]/Ti(X)) see, e.g., Ref. 14]. The fiow of u(l) and

y(l) is determined by the specific heat above T3. '2
Equation (38) is the central result of our paper. All pa-

rameters appearing in this expression for the thermal
conductivity are known from our analysis above T&,
namely the initial conditions of the flow equations for the
l-dependent dynamical parameters and the static quanti-
ties.

IV. DISCUSSION OF THE THERMAL CONDUCTIVITY

Before we evaluate the thermal conductivity we show
(i) its temperature independence and (ii) its continuity at
TA. ~

from which immediately follows

K,~=O .
tx

(43)

(ii) In order to show the continuity of the thermal con-
ductivity at T& we rewrite K,z in the dynamical variables
w; (I) and f, ( I)

g, (l) g', (I)
Keg

—Kp 1/2 2f, ( I)w,'~'( I) g', ( I)

2f2(l)w, (l)

f, (1)

f2(1)

f i(1)
(44)

This has to be compared with the expression v~(l (t~)) at
T~, taken from the calculation above T&.8

where

c + (l)g2(l)pCi, ~~
3„(I),f, (I)w2~'(I)

(45)

c+ =[1+y (I)F (u(l))] (46)

and I (tz) is connected to t~ by I (t~)=(t~(tx)), and the
function t&(tx) =[T—T&(b, )]/T&(b, ) has to be taken
above Tz. I"+ is given by the amplitude function of the
specific heat and u (I ) = u ( I ) —3y (I). The amplitude
reads

[(1—
—,'f i )(1—

—.'f ~) —(w3 —
—.'f if» ]

—1

CJ,

I

(Cq/C~, —1)(1—,'f, )+ c+ (1—
—,'f 2) 2c—+-

W2

r 1/2
Wi

(w3 flf2)
W2

(47)
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w3(l) = —1+A, l'/ (48a)

Although we have only calculated the one-loop expres-
sion for the thermal conductivity above T&, in the limit
T~T&, and only in this limit, the higher loop contribu-
tions drop out. The reason is again the structure of the
vertex functions; see Eq. (37) (further details will be given
in Ref. 8). Now let us perform the limit T~ Tz, meaning
I~0, for the one-loop expression explicitly. Within these
limits y( l )~0, c+ ( l )~ 1, and the parameters w 3 and

f, Ifz behave like

KZ- =PR
m RTca' f~w*'

4 11 2 2

(a )
—1/2A 1/zg —1/2

(Cz /CP+, —1)

Thus the asymptotic value can be reduced to
' 1/2

azz 2A3
KO a f eWe1/2

(54)

and

f, (l)/fz(l)= —1+AIl'/ (48b)
g 1/2g —1/2

d &0
' 2 (55)

(g
—il) —1/2 A 1/2 (51a)

(51b)

We further use the static relation

I — =azzc Z exp 2
'+ 2 —2 I dx

2 2 1 X

2

(Ci /CP~ —1)
PA,

(52)

in order to eliminate the exponential in Eq. (51b). Then
we get

a,'/ c+(l)11 +

' 2
OT

RT Bc
(Cz /CP+, —1) (53)

Inserting this into Eq. (50) and using (20) and (21) we find

We want to note that the sign of the fixed point value
f, (0)/fz(0): f*, If2

—is determined by the sign of
gi/gz. As g, /gz is negative in the region of concentra-
tions smaller than 37% we have taken f 1 /f z

= —1. In
consequence the fixed point value of w3 is w3(0)= —1.
For concentrations higher than 37% one has to take the
fixed point values f*, /fz =1 and w3 =1 instead. The
ratio of the couplings g1 and g2 is finite in the limit I~0

gi(l) f1(l) w, (l)
~wz(0)/wi(0) . (49)

g', (l) f', (l) w, (l)

Even if the nonscaling fixed point is stable, for which
wi(0)—:wi =0 and wz(0)=wz =0, the ratio
wz(0)/w, (0) is finite. The same is true for
A 3 ( 0) /w z

' . Inserting Eq. (45) into «r we obtain,
after cancelling the A& terms (@=1),

g, (l)
Kz- —pCg (50)

fzwz [QC&/Cp+, —1 —gz(l)/g, (l)]

From the fiow equations for g,.(l) (36) follows [we have
chosen « =g'o ' (Ref. 2)]

(Cz /CP+, —1)

On the other hand inserting the limiting behavior of the
dynamical parameters, Eqs. (48), into Eq. (44) for sc,s,
leads to

fz(l)wz(l)' g2(l)
(56)

Then from Eq. (53) follows immediately that «.,s=«( T&).
Note that we equally well might have used Eq. (53) in its
form below T&, where c+ and CP+, are replaced by c
and CP„respectively. From the theoretical point of view
both expressions should lead to the same Aow, as also fol-
lows from Eq. (51). However, in practice there will be a
difference, first because the e+ are not known exactly, but
only in some perturbational order, and second because
the experimental CP, may differ in accuracy.

V. CALCULATION OF «,1t( Ti„)

We are now in a position to calculate K,z in two ways.
On the one hand we can extrapolate the thermal conduc-
tivity above Tz, «z(tz), to Tz. This is done by using the
How equations for the dynamical parameters in the ex-
pression for ~z.(t~) and letting tz become so small that
ar(tx) reaches its plateau value. This value is then
identified with K,z. belo~ T&. On the other hand one may
directly calculate «,s at some value of tx below Tz [e.g.,
at the background value l (t2o) from above].

Of course both calculations lead to the same result
once the initial conditions of the dynamical parameters
above T& have been chosen. We already have mentioned
that the asymptotic A, value of the thermal conductivity
reached from the normal Auid side is independent of the
loop order. The initial parameters are taken from a fit of
the transport coeKcients over a certain region of I&. It is
this procedure where both the low order (one-loop) ap-
proximation for the expressions of transport coefficients
and the low order approximation (one loop for model F'
terms and two loop for model E' terms) for the fiow equa-
tions enter the result for the initial parameters found
from the fit. In this respect the A, value of the thermal
conductivity is a test of the approximations used in the
theoretical calculations. One might, however, eliminate
one dynamic parameter by imposing the condition
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FIG. 1. Thermal conductivity above and below Tz for different concentrations as a function of temperature
tt = ~T Tz(X)—~/Tq(X)]. The solid curves are obtained from a fit in a restricted temperature region (see text) above Tq of the
thermal conductivity and the thermal diffusion ratio (Ref. 8). The experimental data are taken from Refs. 6, 15, 16, and 17.

VI. DISCUSSION

Beside the thermal conductivity an interesting quantity
is the diffusive relaxation rate I o. From Khalatnikov's
hydrodynamics one finds the relation'

~ea

pCp, (1+B) (57)

with B =g, /g2. We have calculated I o from the deter-
rninant of the coefficient matrix of the linearized equa-
tions (1) and (2), leading to

IC ff g zdetA 1 —p '2 'y'(g) /71Io=
g '~& 1 —(g 'y) ( j) /(' g '~A)

(58)

0
in the zero-loop approximation, with r~ =&+ (g) u /2.

lr, tr(theor) =a,tt(expt).
In the extrapolation we also use the experimental

determined flow of the static coupling y outside the re-
gion where experimental specific heat data are available
by using an extrapolation. However, the value of the
specific heat also does not actually enter the A, value of
KT.

In Fig. 1 we display the fit and the result of ~,z for vari-
ous concentrations. We fitted ~T and kT over the tem-
perature region 10 (tz (10 ' for the molar concen-
trations X =0.053, 0.154, and 0.366.' For the smaller
concentrations' we fitted over the region
10 & t& & 10 ' because otherwise there are not
enough kT data in the smaller temperature region. No fit
was made for D since taking D into account reduces the
excellent agreement of scT essentially. One may attribute
this quantitative disagreement with the experimental
values to the neglect of the model-F two-loop terms (see
Ref. 8 for a discussion).

In performing the transformation (19) the second ratio
can be reduced to

g zdetA R
Cp, (1+B) (59)
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JL tgSL

Thus the two expressions in the unrenormalized theory
are different and the difference will be zero when j =0.
In the critical region we may introduce the appropriate
vertex functions for the bare quantities in (58) and ex-
press them through the renorrnalized vertex functions. '

Although we have not calculated this complicated ex-
pression explicitly we expect that y(l) appears at the
place of j . Thus relation (57) is only fulfilled in the
asymptotic region near T& or deep in the background re-
gion where the asymmetric coupling y(l) goes to zero.
In the nonasymptotic region corrections of the order y(l)
appear.

For concentrations lower than 0.1% the thermal con-
ductivity below T& deviates from the c ' law found by
inserting the concentration dependence of the static and
dynamic parameters into the expression (44). ' This
discrepancy is an unsolved problem of the background
theory, rather than the critical theory, which is based on
the hydrodynamic equations. We want to notice that the
dynamic background parameters A(l~), p(lc), and L(lc)
are considered to be equal above and below T&. There-
fore we expect the same concentration dependence of
those dynamic parameters in the expressions for the
transport coefficients above and below T& leading to the
c ' behavior (for another point of view see Ref. 21).
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