
PHYSICAL REVIEW B VOLUME 44, NUMBER 15 15 OCTOBER 1991-I

Optical absorption and Sommerfeld factors of one-dimensional semiconductors:
An exact treatment of excitonic efFects

Tetsuo Ogawa and Toshihide Takagahara
XTTBasic Research Laboratories, 3-9-11Midori-cho, Musashino-shi, Tokyo 180, Japan

(Received 6 May 1991)

We investigate theoretically excitonic effects on the optical properties of one-dimensional (1D) semi-

conductors. In particular, absorption spectra near a band edge are exactly calculated within the
effective-mass approximation for the 1D system with a direct allowed or forbidden gap. We employ two
kinds of interaction potentials between an electron and a hole describing a modified Coulomb interaction
and a short-range interaction, both of which are free from the well-known divergence problem of the 1D
Coulomb system. The Sommerfeld factor, which is the absorption intensity ratio of the unbound (con-
tinuum) exciton to the free-electron-hole pair above the band edge, is found to be smaller than unity for
the direct allowed transition, in striking contrast to the 3D and 2D cases. This peculiar feature is inter-

preted in terms of the anomalously strong concentration of the oscillator strength on the lowest discrete
exciton state. On the other hand, for the direct forbidden transition, the Sommerfeld factor in the 1D
system is larger than unity and shows similar behavior to those in the 3D and 2D cases. These proper-
ties hold irrespective of the interaction range of the electron-hole attractive potential. The feasibility of
the model potentials is examined, and the Coulomb potential having a cusp-type cutoff is found to be the
most effective to describe the potential in an actual semiconductor wire. A dielectric effect in the wire

structure is shown to enhance these peculiar features of the 1D system.

I. INTRODUCTION

Semiconductor nanostructures are attracting much in-
terest not only from the viewpoint of fundamental phys-
ics, but also from the expectation of their potential appli-
cations to various optical and electronic devices. Quan-
turn confinement in more than one dimension is realized
in quantum wires or quantum boxes made of inorganic
semiconductor compounds. With quantum wires an in-
teresting optical anisotropy in the photoluminescence ex-
citation spectra and stimulated emission from quantum-
wire heterostructures were successfully observed. In
these materials low-dimensional effects are well reAected
in their optical responses. In turn, the optical properties
are good measures to explore the intrinsic nature of low-
dimensional systems.

Quantum wires o6'er a good stage where electrons and
holes are free to move in only one spatial dimension. One
of the most striking features of the one-dimensional (1D)
system is the inverse-square-root divergence of the joint
density of states at the energy of the fundamental optical
gap, which will be called the "band edge" in this paper.
This feature will be manifest most remarkably in optical-
absorption spectra. The singularity in the density of
states is expected to appear above the band edge, namely,
in the interband absorption spectra. Thus it is of great
importance to study the linear absorption spectra around
the band edge in order to clarify the characteristic
features of the 1D system.

In the optical-absorption spectra, excitonic effects play
important roles, particularly in low-dimensional systems.

In a previous paper, we brieAy reported characteristic
features of the 1D exciton formed by a long-range
Coulomb interaction between an electron and a hole. In
this paper we examine more extensively the 1D excitonic
effects on the absorption spectra, comparing with three-
and two-dimensional cases, and clarify peculiar behaviors
of the Sommerfeld factor, which is the absorption intensi-
ty ratio of the unbound (continuum) exciton to the free
electron-hole pair above the band edge.

The ideal limit of the 1D electron-hole system, namely,
infinitesimal wire cross section and perfect confinement,
has been treated as a "one-dimensional hydrogen-atom"
problem in the framework of the efFective-mass theory.
Bound states (1D discrete excitons) of this system were
studied by Elliott and Loudon who clarified pathological
features of the 1D exciton below the band edge, e.g. , (i)
the divergence of the binding energy of the lowest-energy
exciton, (ii) the 5-function-like wave function of the
lowest exciton, and (iii) the violation of the nondegenera-
cy theorem for 1D bound states. Recently, Abe exam-
ined numerically the oscillator strength of 1D excitons in
Peierls systems and found a concentration of oscillator
strength on the lowest exciton state. Thus the lowest
bound state in the 1D system was found to show singular
characteristics. Unlike for the bound states, there are
few studies on unbound (continuum) states of a 1D
electron-hole pair, which contribute directly to the inter-
band absorption. It has not yet been clarified how the
anomalies of the lowest bound state affect the interband
absorption. The interplay between effects of the 1D exci-
tonic absorption due to the bound states and of the diver-
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gence of the 1D joint density of states is to be investigat-
ed in discussing the continuum absorption above the
band edge. This is a main purpose of this paper. Because
there exist well-known singular characteristics in the 1D
Coulomb system, it is desirable to study the system
rigorously without the use of approximation tools, e.g.,
variational methods and WKB methods, to avoid ambi-
guities. Therefore, we shall study exactly solvable mod-
els for an electron-hole pair confined in a purely one-
dimensional system with a modified Coulomb interaction
or other model potentials.

The second purpose of this paper is to clarify
comprehensively characteristic features of the oscillator
strength of the discrete bound states of the 1D exciton.
In particular, we focus our attention on the concentration
of the oscillator strength on the lowest bound state and
also on the dependence of the degree of concentration
upon the potential shape. This study provides a key idea
to understand peculiar behaviors of the interband absorp-
tion of the 1D system.

This paper is organized as follows. In Sec. II three at-
tractive potentials between an electron and a hole are in-
troduced to make our model analytically solvable without
the divergence difficulty. Two of them are slight
modifications of the long-range Coulomb potential in
which a cusp-type cutoff is employed, and the other one
represents a short-range interaction. Therefore, we can
compare effects of the interaction range on optical prop-
erties. In Sec. III we solve exactly the 1D Schrodinger
equation for the above potentials within the effective-
mass approximation and obtain normalized wave func-
tions of the unbound state. Interband absorption
coefficients for both allowed and forbidden transitions
and corresponding Sommerfeld factors are analytically
calculated with the use of the unbound wave functions.
Properties of discrete bound states of the 1D exciton are
clarified in Sec. IV to reveal their characteristic features
which come essentially from the one dimensionality.
Comparisons with the 3D and 2D cases are made in Sec.
V. The feasibility of the model potentials employed in
this paper and a dielectric effect on the electron-hole at-
tractive potential are also discussed there.

II. A I I'RACTIVE INTERACTIONS
BETWEEN AN ELECTRON AND A HOLE

quantum wire and the x and y axes to be the lateral direc-
tions. If the confinement of carriers in the lateral direc-
tions is strong enough, the exciton envelope function can
be approximated as

@(r„rh ) =e' f, (x„y, )fh(xh, yh )P(r, rh ), —(2.2)

B B
2

+
2 +Uh(xh~yh) fh{xht3h)

2 h B g Byg

=shfh'(xh yh» (2.3b)

where c, and c,I, are the subband quantization energies,
we can reduce Eq. (2.1) as

, +V{r. rh) f.«.». »h(xh 3h)0(z)
2p Bz

o o AE2 2

2(m, +mh )

Xf, (x„y, )fh (x/„y/, )y(z), (2.4)

where p is the electron-hole reduced mass and z =z, —zh.
Iff, and fh are normalized as

fdx, dy, ~f0(x„y, ) ~'=1,

f dxhd3'h Ifh(xh 3'h )I

{2.5a)

(2.5b)

Eq. (2.4) is further reduced to

where the Cartesian coordinates of the electron (hole) are
denoted with the suffix e (h), Z (X) is the z coordinate (the
wave number) of the center of mass of the exciton, the
first factor represents the plane-wave-like motion along
the z axis of the exciton center of mass, f, (fh ) is the
lowest subband function confined in the lateral directions
for the electron (hole), and P is the envelope function
describing the electron-hole relative motion. Assuming
that p is a function of only z, —

zh and noting that the
subband functions satisfy the equations

f2 B2 B2+ +U, (x„y, ) f, (x„y, )
2m, Bx, By,

=e,f, (x„y,), (2.3a)

To calculate the energy spectra of excitons and their
optical properties, we must solve the Schrodinger equa-
tion. In the effective-mass and envelope-function approx-
imations, this equation is given as

V, — Vh + U, (r, )+ Uh(rh )+ V(r„rh )
2m 2m)

with

fi d + V,/r(z) /t/(z) =E/t/(z),
2p dz

o o AK
2(m, +mh )

(2.6)

(2.7a)

XN(r„rh ) =EN(r„rh ), (2.1)
V,/r(z)—:Idx, dy, dx„dy„V(r„r, )

where m, (mh) is the efFective mass of an electron {a
hole), U, (Uh) is the confinement potential for the elec-
tron (hole), and V is the electron-hole Coulomb interac-
tion potential. Here the origin of the eigenenergy E is
chosen to be the bulk band-gap energy E "'". In the fol-
lowing we choose the z axis to be the direction of the

&& If,'(x„y, )l'Ifh(xh 3h)l'. (2.7b)

In this final form, the exciton problem is reduced to a
completely one-dimensional equation concerning the z
coordinate of the electron-hole relative motion. This is a
consequence of the strong confinement in the lateral
directions and the assumption that the electron-hole rela-
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tive motion can be regarded as purely one dimensional.
In a general situation where these assumptions cannot be
postulated, the subband mixing and three-dimensional
character of the electron-hole relative motion should be
taken into account and the exciton problem becomes
quite involved. Here, in order to see the essential features
of the 10 system, we consider the simplest case and dis-
cuss Eq. (2.6) in detail.

The effective attractive potential between an electron
and a hole given by Eq. (2.7b) is free from the singularity
of the bare Coulomb potential at the origin as a result of
averaging with the lateral subband wave functions. How-
ever, this effective potential can be given only numerical-
ly and the eigenvalue problem of Eq. (2.6) cannot be
solved analytically in general. In this paper, as examples
of an attractive potential that does not have the singulari-
ty at the origin and that also allows fully analytical treat-
ment of Eq. (2.6), we employ the following potentials for
V,s.(z):

2

III. UNBOUND %AVE FUNCTIONS
AND INTERBAND ABSORPTION SPECTRA

A. Long-range interaction cases

1. Coulomb potential unth a cusp type-cutoQ V&,„{z)
In the calculation of the interband transition, the wave

functions of the unbound electron-hole pair are neces-
sary. The energy of the interband transition has a con-
tinuous spectrum and is positive (E )0); it is scaled by a
wave number k as E—=A k /2p. It should be kept in
mind that this energy E is related only to the electron-
hole relative motion and does not include the bulk band-
gap energy E "', the subband quantization energies c,,
and c.z, or the energy of the center-of-mass motion
iri E /2(m, +mt, ), as can be seen from Eq. (2.7a). Intro-
ducing an independent variable x:2ik—(~z~+zo) (x is
purely imaginary), the 1D Schrodinger equation is re-
duced to the Whittaker equation, i.e.,

(2.8a) d P(x) 1 ia
4 x (3.1)

e Azoe
Vi,„s(z)—:— +

e, (lz +=.) e, ( z~+z, )' (2 8b) where

(3.2)

z
V,h„,(z) —= —Vosech (2.8c) with the bulk exciton Bohr radius az =—e&A /pe . Two

independent solutions of Eq. (3.1) are given as

where e& is the dielectric constant of the wire material.
These potentials are not hypothetical, but have some
practical relevance. In fact, the effective potential of Eq.
(2.7b) can be fairly well approximated by V„„(z)as will
be shown in Sec. V. Our main attention will be paid to
V„„s(z) and V,h„,(z). The Vi,„s(z) potential describes a
long-range interaction with a cusp-type cutoff which is
characterized by one parameter zo ~0. As zo decreases,
this potential approaches the bare Coulomb one. On the
other hand, the V,h„,(z) is a short range interaction-
specified by the strength Vo (depth of the potential) and
the eff'ective interaction length g (width of the potential).
This potential may simulate a kind of screening effect un-
der strong excitation. The potential V,",„(z) in Eq. (2.8b)
is a modified form of Vi,„(z) and was introduced by El-
liott and Loudon to describe the 10 exciton motion un-
der a magnetic field. Although results in this case are
similar to those for V~,„(z), the calculational procedure
is easier and simpler than that in the V„„s(z)case.

W''I »2(x)—:I (1+ia)xe

X [F(1+ia,2;x)+G(1+ia, 2;x )],
(3.3a)

W' ', ,~2(x)—:I (1 ia)xe—
X [F(1+ia,2;x ) —G(1+ia, 2;x )],

(3.3b)

x +(2—x) —(1+ia)u =0 .
0 dQ

dx

Their explicit forms are written down as

(1+ia)„x~
F(1+ia,2;x ) = g (2)„!n

(3.4)

(3.5a)

where I (x) is the gamma function and F(1+ia, 2;x ) and
G(1+ia, 2;x ) are two basis solutions of the conffuent hy-
pergeometric equation

G(1+ia, 2;x ) = (e —1) [21 +nor cot(vr+i rra) irr]F(1+ia, 2;x )—
2&1

QQ (1+ia)„x~—2 g [g(1+n )+g(2+ n ) —g(1+ n + ia)],+ 2, (3.5b)
x~I(1+ta)~' '
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p lD(lllco ) = 2
6(illco —Eg )

2p
Mk

e(~~ —E, ),
1Tfl Q tris —E

(3.11)

position. A characteristic feature of the 1D system is the
van Hove singularity of the density of states p&D at the
band edge, i.e.,

which is plotted in Fig. 2(b). The most striking features
are S,""g (co) & 1 for all illco & Eg and S,""g(Aco=Eg ) =0 at
the band edge. Comparison with 2D and 3D cases will be
made later.

In this long-range case, the absorption spectrum in the
iv &0 region (true continuum above the band edge) con-
nects smoothly with that in the w & 0 region (quasicontin-
uum just below the band edge) where the absorption spec-
trum consists of many discrete lines due to the exciton

where 6(x) is the Heaviside step function and the band-
gap energy' of the wire is defined as E —=E "'"+e,+sI,
+Irt K /2(m, +mt, ) [see also Eq. (2.7a)]. This is refiected
in the spectrum associated with free electron-hole pair
creation, which will be called the "free absorption" spec-
trum, i.e.,

PQ I ~ I ~ I I I ~ I5

Direct allowed case
1

I

(a) .

m+E
SC'D "-(~)=8C

Q 0
lD

(3.12)

moR
C. = ', /(c/e. r/v)/2.

cg'A
(3.13)

where the photon energy and band-gap energy are scaled
by iv = (Iitro E)/R " a—nd E =Eg /R *, respectively, and

.U

(b
O
U

.0
Q.
O
V)

400

300

200

100

\

I

I

'I z, ja,*=2.0

In this energy scale, a= 1/v'w and kzo=(zo/anal )Yiv.
Taking account of the attractive interaction [Eq. (2.8a)]
between an electron and a hole, the absorption intensity
above the band edge is modified to

0 ~ I ~ I a I ~ I a I ~ I ~ I I I

-2 0 2 4 6

Photon energy (R )

iDl2lg'" —D"'~' 'i
~long —C en.a

[D'" i'+ iD"'i'

It long(

g long( ) It. 1D,free(
a

e o o o oiDl

8 iD( & i2+ iD(2) i2

(3.15)

Figure 2(a) shows optical-absorption spectra above E
for various values of the cutoff zo/a~. Absorption inten-
sities due to bound states below E are omitted in this
figure. We find from Fig. 2(a) that the absorption
strength is smaller than the free absorption K,' ' "' for
any value of zo and that the band-edge singularity is re-
moved. That is, the singular nature of the 1D joint densi-
ty of states is not rejected in the interband absorption
spectrum for an allowed transition when excitonic effects
are taken into account. Additionally, the downward con-
vexity of the spectra changes to the upward one as zo is
decreased. More remarkably, the smaller the cutoff zo is,
the weaker the absorption intensity becomes. As the
cutoff length decreases ultimately to zero (zo —+0), where
the attractive potential approaches the bare Coulomb po-
tential, the interband absorption vanishes and the materi-
al becomes transparent even for the photon energy above
the band gap.

These anomalous features can be seen more clearly in
terms of the Sommerfeld factor. This factor, which is the
ratio of the absorption coefficient of the unbound exciton
to the free absorption, is given as

j.2

0.8

Q
0.6

E
o 0.4E

0.2

0 I I I

0 2 6

Photon energy (R )

FIG. 2. (a) Absorption spectra due to a direct allowed transi-
tion in the case of long-range interaction are plotted by solid
curves as a function of the scaled photon energy
m=(%co —Eg)/R* for several values of the cutoff length, i.e.,
zo/a& =2.0, 1.0, 0.5, 0.2, and 0.05 (from top to bottom). The
dashed curve indicates the free absorption spectrum showing
the band-edge divergence of the 1D system. Discrete exciton
absorption lines below E~ (m (0) are not shown here. (b) Som-
merfeld factors for the allowed transition for the same values of
cutoff as in (a). These factors are always less than unity, indicat-
ing the suppressed interband absorption.
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I (f le'"'""a & Ii &
I'=

2mo

d P"„(0)
l&clllu &I',

bound states. This is a characteristic feature of the long-
range Coulomb interaction.

b D. irect forbidden transition In. the case of forbidden
transition, on the other hand, ( c

I
e.p I

u & =0. Here we
can derive

zom:— —+23
4 a~

' 1/2
1

2
(3.21)

The solutions of this equation have simpler forms than
Eqs. (3.3), resulting in easier mathematical manipula-
tions. The Sommerfeld factors for allowed and forbidde~
transitions are given, respectively, as

for an ungerade wave function, where an explicit form of
&clMlu& is given' as

& cl pin &&nl aplu&

S,""g "(ro)=
I I

W', (2ikzo I

+ I
V'; (2ikz ) I ]

Sf'"g "(to)=2e
I I W; (2ikzo) I'

(3.22a)

&cia.pin &&nlplu & (3.16)
+IV;., (»kz, )I'] ', (3.22b)

where In & is an intermediate state available in the k p
perturbation. Then the absorption coefficient is calculat-
ed as

0.4
Direct forbidden case (a) .
II ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~

where

I Wo Do —Wo Do 'I~ pr(2) (&) (&) (2) 2

w+X, I
W',"I'+

I
W',"I'

(3.17)
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0.2

0
U
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o 0.1

0 8z !a *=0.05

0.2

c'tl m oa~ 2R
(3.18)

0 I I ~ I ~ I ~ I ~ I ~ I ~ I ~

The results are illustrated in Fig. 3(a) for several values of
cutoff' zo/an't. Unlike in the direct allowed case, the ab-
sorption becomes stronger than the free absorption

f ' "' for any value of zo. Therefore, the Sommerfeld
factor defined by

4 6 8

Photon energy (R)
10

It long

Slong(f It 1D, free(

I

Wlz)D(l) W(l)D(2l I&

I
w' "I'+

I

w"' I'
(3.19)

is larger than unity as shown in Fig. 3(b). As the cutofF zo
is reduced, the absorption intensity for the forbidden
transition becomes large in contrast with the case of al-
lowed transition. This results from the fact that the
derivative of the envelope function at the origin becomes
large as the electron-hole attractive potential approaches
the bare Coulomb potential. At the band edge, the Som-
merfeld factor diverges because K' ' "'(fi =Eg ) =0.CO=

g

2. Coulomb potential with a cusp type cutoQ V-,", g{z)

U

E
E 2
0

~ I ~ ~ ~ I ~ i ~ I0 ~ ~ I ~

0 2 4 6 8

Photon energy (R )
10

d P(x) 1 ia—+ +
dx2 4

m —
—,
'2

/=0, (3.20)

where

In this case the procedure for obtaining the unbound
wave functions is almost the same as in the V ( )e

&
z case.

Equation (3.1) is slightly changed to
FIG.. 3. (a) Absorption spectra due to a direct forbidden tran-

sition in the case of long-range interaction are plotted by solid
curves as a function of the scaled photon energy ur for several
values of the cutoff, i.e., zo/a& =2.0, 1.0, 0.5, 0.2, and 0.05

rom bottom to top). The dashed curve indicates the free ab-
sorption spectrum. (b) Sommerfeld factors for the forbidden
transition for the same values of cutoff as in (a).
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where W'; (x) and V,. (x) are the basis solutions
of Eq. (3.20), which are expressed as

W; (x)—: , . M; (x)
I ( —2m)

I —,
' —I +icf. s= —,'[ —1+(1+4Vog )' ]&0 . (3.27)

have kg=g&w. Here s is an important parameter to
characterize the short-range interaction, which is defined
as

I (2m)+, M, x
2

. e ' I ( —2m)
I —,

' —m i a—)

e' I (2m) M; ),
2

(3.23a)

(3.23b)

Then the envelope function pk(z) for unbound states can
be written in a linear combination of two basis solutions
given as

( g) ( 1 g2)
—ikg/2

1—XF —ikg s, —ikg—+s+1, 1 —ikg;

W', „(x)= W; (x),

V'; (x)—: V; (x),=d
(3.23c)

(3.23d)
g2 )

—ik g/2
k

ikg

(3.28a)

with the use of a conAuent hypergeometric function

+ (x)—=e ~/ x™+I/2+(—'+m+ia, 1+2m'x)

~
1—

XF —s,s+1, 1+ikg; (3.28b)

(3.24)

In deriving the Sommerfeld factors, the Wronskian rela-
tion is used:

W,. (x)V'; (x)—V; (x)W'; (x)=e

(3.25)

Although expressions of the Sommerfeld factors for
the potential Vio„s(z) [Eqs. (3.22)] have quite different
forms from those in the case of Vi,„s(z) [Eqs. (3.15) and
(3.19)], the numerical results are almost the same for a
small value of A. In fact, the two results coincide with
each other in the 3 —+0 limit. Precisely speaking, the
Sommerfeld factor for an allowed (forbidden) transition is
slightly larger (smaller) than Eq. (3.15) [Eq. (3.19)] in the
case of A )0 because the electron-hole attractive poten-
tial is weaker for A )0 than for A =0.

B. Short-range interaction case

In solving the 1D Schrodinger equation with the
short-range potential V,h „(z) [Eq. (2.8c)], we employ a
new independent variable g—= tanh(z/g) and define a
wave number by k =&2pE /fi. When the wave function
pk(z) is substituted by pk(g) as pk=(1 —g') '"~ 'pk(g),
the wave equation becomes a hypergeometric equation,
i.e.)

de
u (1—u) +(1—ikg)(1 —2u )

dg2 dQ

+(ikg+s)( ikg+s+—1)gk =0, (3.26)

where u =(1—g)/2. In the following the depth and
width of the potential are scaled by the effective Rydberg
and bulk Bohr radius as Vo= Vo/R* and g—:g/(tit, re-
spectively, and we measure the photon energy and band
gap as w =(Ac@ Es)/R * and Eg E—s/R *, respectivel——y,
as employed in the long-range case. In this scaling we

Similarly to Sec. IIIA, there are two types of parity
(gerade and ungerade) of the unbound wave functions.
As shown in Appendix A, the normalized wave functions
are given as

1 gk(0)fk(k) —fk(0)gk(k)

[lfk(o I'+lgk(o)l']'" '(z) =

1 gk(0)fk(k) —fk(0)gk(k)
4k(»=

&2~ [Ifk(0)l'+ lgk(0)l']'"

(3.29a)

(3.29b)

where C, is given in Eq. (3.13). Then the Sommerfeld
factor is calculated as

1 lgk(0)fk(0) —fk(0)gk«)l'

IfI (0)I'+ Is/(&) I'
(3.31)

Figure 4(a) shows optical-absorption spectra above Es
for various values of the potential depth Vo with a fixed
value of the potential width /=2. 0. Similarly, Fig. 5(a)
shows the absorption spectra for several values of g with
a fixed value of the potential depth Vo =2.0. From these

where a prime stands for the derivative with respect to g.
Here we note that there is another set of solutions of Eq.
(3.26) around u =1 (z~ —oo) in addition to Eqs. (3.28)
around u =0 (z —& ~). These are symmetric and antisym-
metric with respect to u =

—,
' (z =0) for gerade and

ungerade parities, respectively, and coincide with Eqs.
(3.28) at z =0 because of the symmetry of the potential.
Therefore, it is sufficient to consider only Eqs. (3.28) in
our discussion of absorption spectra.

a. Direct allowed transition. Taking account of the
short-range interaction between an electron and a hole,
the absorption intensity above the band edge is given as

w+Eg lgk(0)fk(0) —fk(0)gk(0) I'
I( short( ) 4C

If„'(o)I'+ lg„'(o) I'

(3.30)
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200 5
J

'P ~ ~ ~ g ~ 5 ~ ~ I I ~

figures we find that the absorption strength is smaller
than the free absorption K,' ' "' for any values of Vo and

g in the same way as in the long-range case. The deeper
the potential is (Vo~ ~ ), the weaker the absorption in-
tensity becomes. Thus the global characteristics of the
spectra are the same as in the long-range case. The Som-
merfeld factor also shows a similar behavior, i.e.,
S,'"' (co) (1 for all Ace&E, as shown in Figs. 4(b) and
5(b).

A major difference from the long-range case appears in
the behavior at the band edge (w =0). When the parame-
ter s is an even integer, s =2,4, 6, . . . , the absorption in-
tensity near the band edge diverges to infinity, while it be-
comes zero for other cases; that is,

, oo, s=2, 4, 6, . . .
lt short(g

0, otherwise . (3.32)

The mathematical origin of this divergence is shown in
Appendix B. In the case of short-range potential, the
number of the bound states becomes Pnite in contrast to
the long-range case. As will be discussed in the next sec-
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FIG. 4. (a) Absorption spectra due to a direct allowed transi-
tion in the case of short-range interaction are plotted by solid
curves as a function of the scaled photon energy
ie =(A~—E~ )/R * for several values of the potential depth, i.e.,
V0=0.4, 0.5, 1.5, 3.0, and 5.0 (from top to bottom) with a fixed
potential width /=2. 0. These correspond to s =0.86, 1.0, 2.0,
3.0, and 4.0, respectively. When s is an even integer, the absorp-
tion intensity diverges at the edge as shown by thin solid curves
for s =2 and 4. The thin-dashed curve indicates the free absorp-
tion spectrum. Absorption lines due to discrete exciton states
below Eg (m (0) are not shown here. (b) Sommerfeld factors for
the allowed transition for the same values of parameters as in
(a).

0
0.5 1.5

Photon energy (R')

FIG. 5. (a) Absorption spectra due to a direct allowed transi-
tion in the case of short-range interaction are plotted by solid
curves for several values of the potential width, i.e., (=&10,
&3, &6, 2.0, and 1.0 (from top to bottom) with a fixed potential
depth Vo=2.0. These correspond to s=4.0, 2.0, 3.0, 2.37, and
1.0, respectively. When s is an even integer, the absorption in-
tensity diverges at the edge as shown by thin solid curves for
s=2 and 4. (b) Sommerfeld factors for the allowed transition
for the same values of parameters as in (a).
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tion, the number is given as N = [s], where [ ] is Gauss'
symbol. Therefore, there is no quasicontinuum region in
the absorption spectra just below the band edge. That is,
there exists an "energy gap" between the band edge (the
bottom of the conduction band) and the highest-energy
bound state unless s is an integer. Thus the absorption
line is discontinuous near the band edge, resulting in the
zero absorption at the edge. When s=2, 4, 6, . . . , h w-
ever, the corresponding highest bound state
(n=2 4 6, . . .&, which is direct allowed, is degenerate to
the band edge. Then the absorption spectra show a
divergence there. Correspondingly, S,'"'"(firo=Es ) at the
band. edge is not always zero, i.e.,

for s=0.86, 2.0, 2.37, and 4.0 are 47.5, 4.00, 6.58, and
7.11, respectively.

In summary, global characteristics of the interband ab-
sorption spectra are the same as in the 1e ong-range case;
namely, the Sommerfeld factor for allowed (forbidden)
transition is smaller (larger) than unity for any photon
energy A'co) Eg Thus these features can be considered as
universal in the 10 system.

IV. BOUND STATES
AND THEIR OSCILLATOR STRENGTH

In the preceding section, we clarified the interband ab-
sorption above the band edge associated with creation of

Sshort(g
)0 s=2

Co —E )
7 7 47 67 ~ ~ ~

=0, otherwise . (3.33)
0.3 ~ ~ ~

/ }
~ ~ ~ ~ i ~ ~ ~ ~ i ~ I ~ ~

~ shor~( )
fC

g &w (w+E )

Igk(0)fk(0) —fk(0)gk(0) I'

lfk «) I'+ Igk«) I'

lg„(0)f„(0)—f„(0)g'(0)l'
I fk(0) I

+ Igk(0) I'
S.h-t( )f

2g 2w

(3.34)

(3.35)

The analytical expressions of S'"'"(fico=E ) for
s=24 6, . . . are so complicated that they are not shown

CO g

here. The numerical values of S,'"'"(Rro=Eg) for s=2
and 4 are 0.250 and 0.141, respectively.

b Direc.t forbidden transition In th. e case of forbidden
transition, on the other hand, the absorption coefficient
and corresponding Sommerfeld factor are evaluated as

.U

O
U

.0
Q.
C)

1

0.08

0.06

0.04

0.02

0 a

-0.5

g /a *=20
~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ I

0.5 1 1.5
Photon energy (R')

where C& is given in Eq. (3.18). The results are illustrated
in Figs. 6 and 7 for several values of the width g and
depth Vo of the electron-hole attractive potential. The
absorption intensity becomes stronger than the free ab-

sorption due to the forbidden transition becomes strong.
The Sommerfeld factor is always larger than unity, i.e.,
&"'"(ro)) 1 for all iiico)E . Thus global features are

similar to those in the long-range case. However, there is
a difference in the behaviors near the edge. When the pa-
rameter s is an odd integer, s=1,3, 5, . . . , he corre-
sponding highest bound state (n=1, 3, 5, . . .), which is
direct forbidden, is degenerate to the band edge. As a re-
sult, the absorption intensity near the band edge diverges
to infinity for s =1 3 5=1,3, 5, . . . , while it becomes zero for

~ ~

other cases; that is,

~short(g E )
s=135

0, otherwise . (3.36)

Sshort(g
s=1 3

Ci)= ) otherwise . (3.37)

In Figs. 6 and 7, the numerical values of S&""'(Aco=E )

Correspondingly, the Sommerfeld factor at the band edge
becomes

10

(Q

E 4
O

(Q

0 ~ ~ ~ ~ I ~

0 0.5
~ I 5 ~ ~ I I

1.5
Photon energy (R)

FIG. 6.. 6. (a) Absorption spectra due to a direct forbidden tran-
sition in the case of short-range interaction are plotted by solid
curves for several values of the potential de th, i.e., V =0.4,

.5, 3.0, and 5.0 (from bottom to top) with a fixed potential
width (=2.0. These correspond to s=0.86, 1.0, 2.0, 3.0, an
. , respectively. When s is an odd integer, the absorption in-

tensity diverges at the edge as shown by thin solid curves for
s =1 and 3. (b) Sommerfeld factors for the forbidden transition
for the same values of parameters as in (a).



OPTICAL ABSORPTION AND SOMMERFELD FACTORS OF. . . 8147

A. Long-range interaction case

It is convenient for the study of bound states to use an
energy scaling and a new independent variable, i.e.,

0.1

se (a)

0.08-

2.4
g) 0.06 - (g''3
.Q

2.0

0.04-
.D

0.02

the unbound excitons. In this section the optical absorp-

T
tion due to the exciton bound states will be exami d

he main purpose is twofold: (i) to clarify the oscillator
strength of the bound states in relation to the interband
absorption discussed in Sec. III and (ii) to understand
comprehensively optical properties of the 1D excitonic
bound state for both cases of the long- and short-range
attractive potentials.

(2)
& ]/2 X

2ZQ

vag
=0 for odd, (4.2a)

W,r2(x), =0 for even .
dx x =2z, yva~

(4.2b)

E—= —R'/v and x—=2(~z~+zo)/(va~). Here x is real
and v (v) 0) is a real parameter to be determined. The
1D Schrodinger equation then becomes a Whittaker
equation, which is given by Eq. (3.1), with a substitution
of ia by —v. A solution bounded for ~z ~

~ ae is given as

P (z) =N W', Ir~(x)

=N,xe "r I (1+v)[F(1—v, 2;x)—G(1—v, 2;x)],
(4.1)

where N is a normalization constant and F(a, y;z) and
G(a, y;z) have been defined in Eqs. (3.5). In fact, Eq.
(4.1) has an asymptotic form of Ne—""~x~'e
which approaches zero for ~x ~

—+ ac.
Because of the symmetry of the potential with respect

to the origin (z =0), the parity of a wave function for a
bound state should be either odd or even. The odd and
even parities impose the following relations on the wave
function, respectively:

0 I ~ ~

-0.5

10

~ ~ ~ ~ I ~ ~ ~ ~ I

0 0.5
Photon energy (R")

V /R* =20
~ l s a a

From these relations the parameter v and energy of
bound states are determined. Although Eqs. (4.2) cannot
be solved analytically, they are approximately solved by
Loudon in the small cutofF case (zo/ae « 1) as

2Zpv'„=n+ for odd statesa*8
even 1

vn =n — for even states,
ln(2zo/na~ )

(4.3)

O

E
O

V)

respectively, for n =1,2, 3, . . . . These correspond to the
excited bound states of exciton. Substituting these v„
into E„=—R '/v„, the eigenenergy of the bound states is
obtained. The lowest bound state has special characteris-
tics. For this state, vp satisfies

0 I I

2Zp
ln

vpag
+ =0.1 =

2Vp
(4.4)

0 0.5 1.5
Photon energy (R )

FIG. 7. (a) Absorption spectra due to a direct forbidden tran-
sition in the case of short-range interaction are plotted by solid
curves for several values of the potential width, i.e., g=v'10,
v'3 2.0 &6, and 1.0 (from bottom to top) with a Axed potential
depth V0=2.0. These correspond to s=4.0 2.0 2.37 3.0 d
1.0 res

~
&

~ 7 ~ y ~ y an
. , respectively. When s is an odd integer, the absorption in-

tensity diverges at the edge as shown by thin solid curves for
s =1 and 3. (b) Sommerfeld factors for the forbidden transition
for the same values of parameters as in (a).

/odd(z) = 2

(a~ ) n (n!) n
na~ naz

(4.5a)

As the cutofF decreases (zo~0), vo approaches zero, re-
sulting in a very large binding energy.

In the limit of zp —+0, the odd- and even-parity wave
functions for the bound states except the lowest state are
characterized by v' =v'"'" —— = 1 2 3n n = ~, , . . . , an are
given as
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' 1/2

y even(

(ai'i) n (n!) naz naz

(4.5b)

where L„'(x) is the associated Laguerre polynomial. Here
we note that not only the odd-parity wave function but
also the even-parity one vanishes at the origin to cancel
t e singularity of the potential. The eigenenergies of
these bound states are doubly degenerate, i.e.,

exp( —
~z~ /v, a ')

o(z)= lim
' ' =eg(z),

a e )1/2
(4.7)

0 (4.8)

showing the Balmer energy series. This system violates
the well-known "nondegeneracy theorem" for bound
states in the 1D system, resulting from a singularity of
the potential at the origin. For the lowest bound state,
on the other hand, the wave function and its eigenenergy
are given as

Eodd Eeven
n n

0 e

'k

U)
Q)

Bs

0
6

0

Q) -8

n=1, 2, 3, . . . ,
n

(4.6) respectively.
In tubs case of long-range interaction, there exist

infinitely many bound states below the band edge.
Among them, only the lowest-energy state shows anoma-
ous behavior as the cutoff' decreases. Figure 8(a) shows

the energy of the first three bound states (correspo despon ing

the ener of
—0 and 1) as a function of the cutoF A

e energy of the lowest state become negatively infinite,
indicating the divergence of the binding energy. This is a
peculiar feature of the 1D exciton. Other bound states
become doubly degenerate for odd and
finite energies —R*/n (n =1,2, 3, . . .).

The oscillator strength of the bound state with an even
or odd parity, which is one-photon allowed or forbidden,
respectively, is defined as

-10
0.2

z/a*
0 B

0.4
2m ocof„'= [&c/e r/U)/'/y'"'"(0)/'

odd ()f.=
@nod dz

(4.9a)

(4.9b)

100

80

6Q

4Q
O
lg

Q
20-

0.1 0.2

zo/a "

~ ~ ~ I ~ ~ i ~ ~ ~

0.3 0.4

for n=1, 2, 3, . . . . We plot fo and f; in Fig. 8(b) as a
function of the cutofF' zo to illustrate the anomalously
strong concentration of the oscillator strength on the
lowest-energy bound state. The oscillator strength of oth-
er bound states with an even parity vanishes completely
in the limit of zo —+0, resulting from their vanishing wave
function at z=0 [see Eq. (4.5b)]. For the odd-parity
states, there occurs no concentration of the oscillator

distinct contrast to fo, which shows a divergence.
In the case of the potential V„„(z),the wave function

for bound states is given by P (z) =N„W, (x), where m
and W', have been defined in Eqs. (3.21) and (3.23a), re-
spectively. Properties of bound states are almost the
same as in the Vi,„(z)case. For details, refer to Ref. 5.

FIG. 8. (a) Ei( ) Eigenenergy of the lowest exciton state (n =0) in
the case of 1of long-range interaction is plotted by a thick solid
curve as a function of the cutoff z / * Th dda&. e o d- and even-
parity states of the n = 1 exciton are shown by dashed and thin
so i curves, respectively. In the limit f 0 h
t e owest state diverges and the energies of the pair of n =1
states are degenerate at E= —R (b) Th e osc&11ator strength of
the lowest exciton state and the n =1e n = even-parity exciton state
is plotted by thick and thin solid curves, respectively, as a func-
ion o t e cutoff. Strong concentration of the 11e oscar ator

g on e lowest exciton state is clearly seen. The oscilla-
tor strength of other eveven-parity exciton states is very small.

B. Short-range interaction case

The eigenenergy of a bound state (E (0) is measured
y a dimensionless parameter, i.e., rt= g& 2pE /fi. — —

After a substitution of $=(1—g' )"~ P(g ), the wave equa-
tion for P(g') becomes a hypergeometric equation given
by Eq. (3.26) with a substitution of ikg by —i). A solu-
tion, which is finite as z~+ oo (u 0+), '—+, 1s given y a
hypergeometric function, i.e., P(u) ~ F(ri—s, i)+s
+ l, i'd+ I;u ), where u =(1—g)/2. Here g=tanh(z/g)
and s has been defined in Eq. (3.27). The wave functions
of the bound states are further required to be bounded
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XF( n,—2s +1 n—,s+1 n—;u ), (4.10)

also as z~ —~ (u~1). Therefore, s —I) should be a
non-negative integer, i.e., g =s —n with14

n:—0, 1,2, 3. . . . This integer n is an index of the bound
states. As a result, the wave function P„(z) and eigenen-
ergy E„ofthe bound state are given as

(s —n) /2
Z

P„(z)=N„ 1 —tanh

Z
tanh

R*
(s —1)

„ [&ciMiu&i' E,—
m(, (atI ) R*

(s —1)/2

P (z)=N 1 —tanhi i (4.15a)

(4.15b)

' —1~2
1

2

(4.15c)

E„=— [(1+4Vog )'~ —(2n + 1)]
R*
4 2

R*
(s —n) (4.11)

where X1 is a normalization constant given by

where X„ is a normalization constant given by

4s —n~
u 1 —u

2 0

X[F( n, 2—s+1 n, s—+1 n;u)] du —.

(4.12)

Because of a condition s —n & 0, the index n is bounded
as n =0, 1,2, . . . , [s]. Therefore, the nth bound state'
can exist only when s &n. Then the number of bound
states becomes finite in distinct contrast to the case of
long-range interaction.

The oscillator strength of the bound state is calculated
for one-photon allowed (n =0,2, 4, . . . ) and forbidden
(n =1,3, 5, . . . ) cases as

2moRf„'=, ~&c~a.r~u &~'(Es+w„)N„'

-1
'k

2

'8 30)

-40
o -5

e -6

-7

8 ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ J a ~ ~

0 1 2 3 4 5 6 7 8
V /R*

X [F( n, 2s+1 n—,s+1 n;——,')]—(4.13a)

ff=, ~&c~M~U &~'(E, +w„) ' y„(0)
moR dz

(4.13b)

respectively, where w„=E„/R *= —(s n) /g —. We
shall list the wave functions, the eigenenergies, and their
oscillator strength for the first three bound states. (i) The
lowest-energy state (n =0) always exists for arbitrary
values of s, whose wave function, eigenenergy, and oscil-
lator strength are given as

s/2

-0.5

0)
Q -).5
o

-2

-2.5

Po(z) = 1 1 2 z
1 —tanh2' ' &2'(s, s)

(4.14a)
3

0 2 3

$2
2

(4.14b)

2

Aa *
g
' 2" 'gB(s, s)

L

(4.14c)

where B(x,y) is the beta function. (ii) Only when s) 1

(i.e., Vog )2), does the first excited state exist which is
one-photon forbidden. The results are

FIG. 9. (a) Eigenenergies of the exciton states in the case of
short-range interaction are plotted by thick solid curves for the
n =0 state (with an even parity), dashed curves for n =1 state
(odd parity), and thin solid curves for n =2 state (even parity),
respectively, as a function of the potential depth for fixed values
of the potential width, /=5. 0, 2.0, and 1.4 (from bottom to top).
(b) The eigenenergies as a function of the potential width for
fixed values of the potential depth, VO=3.0, 2.0, and 1.0 (from
bottom to top). The meaning of the thick and thin solid curves
and the dashed curves is the same as in (a).



8150 TETSUO OGA%'A AND TOSHIHIDE TAKAGAHARA

=2 ' g[B(s —I,s —1)—4B(s,s —1)

+4B(s+ l, s —1)] . (4.16)

2mpR (s —2f;=, )(cia.riu))' E —'
fiat

N2

4(s —1 )

(iii) The second bound state which is one-photon allowed
appears when s )2 (i.e., Vog )6) as

s/2 —1

Z
Pz(z) =%2 1 —tanh 1 ——+—tanh

4 4
where

(4.17c)

(s —2)

(4.17a)

(4.17b)

2(2s —1)c=
s

=2 '
g [B(s—2,s —2) —2cB(s —l, s —2)

(4.18a)

80 ~ ~ ~ ~ I ~ ~ I ~ ~ ~ I ~ ~ ~~ i ~ + s ~ ~ ~ ~ s a ~ ~ e s ~ ~ ~

60

40
tI)

0
20

Q

0 1 2 3 4 5 6 7 8

V /R

+c(c+2)B(s,s —2) —2c B(s+1,s —2)

+c B(s+2,s —2)] . (4.18b)

The eigenenergies of the bound states are plotted in Figs.
9(a) and 9(b) as a function of the potential depth Vo and
width g, respectively. The binding energy increases with
increasing Vo for a fixed value of g. In the limit of
g~ ~, the binding energy approaches Vo since E„/R *

has an asymptotic value of —Vo. Figures 10(a) and 10(b)
show the oscillator strength as a function of Vo and g, re-
spectively. From these it is seen that fo increases accord-
ing to fo o- Vo as Vo~ oo for a fixed value of g. In the
limit of g~~ with a fixed value of Vo, on the other
hand, fo approaches zero as fo ~ g

'~ . Also, in another
limit of $~0, fo vanishes. Therefore, there is an optimal
potential width to make the oscillator strength maximum
for a fixed value of Vo.

V. DISCUSSION

Q ~ ~ ~ ~
g

r a i ~ ~7

60

50

4Q

o) 30
0

20
Q

0
10

3 4

gZa *

FIG. 10. (a) Oscillator strength of the even-parity exciton
states in the case of short-range interaction is plotted by thick
solid curves for the n =0 state and by thin solid curves for the
n =2 state, respectively, as a function of the potential depth for
several values of the potential width, /=5. 0, 2.0, 1.4, and 1.0
(from bottom to top for thick curves, from left to right for thin
curves). {b) The oscillator strength as a function of the potential
width for several values of the potential depth, Vo =3.0, 2.0, 1.0,
and 0.5 (from top to bottom). The meaning of the thick and
thin solid curves is the same as in (a).

A. Comparison with three- and two-dimensional cases

To facilitate the following discussion, results of the
three- and two-dimensional cases are briefly reviewed
here. In the isotropic bulk (3D) system, " the Sommer-
feld factors for allowed and forbidden transitions were
obtained as

ma3

5,
7TCX3e

sinh(ira& )

7TA3
7TCX3e

S =(1+a )
sinh(eras)

(5.1a)

(5.1b)

7TCX2

g2D
cosh( n ai)

'TTA2

S =(1+4a )—
cosh(ira2)

(5.2a)

(5.2b)

are larger than unity. Here a2=(R*)' (fico E)—
This is why the Sommerfeld factor has also been called

respectively, where a =(R")'~ (Ace E"'") ' Th—ese
are always larger than unity, indicating that the Coulomb
attraction between an electron and a hole enhances the
optical absorption for both allowed and forbidden transi-
tions. This also holds for the two-dimensional system, '

where the Sommerfeld factors given by
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the "Coulomb enhancement factor. " In these two cases,
there is no divergence dif5culty even if the attraction be-
tween an electron and a hole is given by the bare
Coulomb interaction.

On the other hand, the bare Coulomb attraction in-
duces some anomalous features in the 1D case. As seen
in Fig. 2, the Coulomb interaction between an electron
and a hole suppresses the allowed interband absorption in-
tensity. Moreover, the allowed interband absorption van-
ishes completely in the case of the bare Coulomb attrac-
tion which corresponds to the zero cutoff, i.e., zo=0.
These anomalous results can be understood qualitatively
by considering the absorption due to discrete exciton
states below E . As pointed out in Sec. IV, for the case
of long-range interaction between an electron and a hole,
the oscillator strength of the lowest exciton state becomes
very large and almost the entire oscillator strength con-
centrates on this bound state. Then, as a consequence of
the f-sum rule, the oscillator strength of the interband
transition becomes very weak. ' This is a remarkable
feature of the purely one-dimensional system, in striking
contrast to the 3D and 2D systems. The same situation
holds also for the case of short-range interaction. More-
over, as can be seen in Fig. 1, a small amplitude of the
unbound gerade-parity wave function at the origin, which
results in the suppressed interband absorption for the
case of an allowed transition, is accompanied by a large
derivative of the ungerade-parity wave function at the
origin. Therefore, the interband absorption for the for-
bidden transition becomes stronger in the opposite way as
the absorption intensity for the allowed transition de-
creases. Thus the Sommerfeld factor Sf for the forbidden
transition increases as the electron-hole attraction be-
comes stronger. This also holds for the case of short-
range interaction.

Another remarkable feature of the 1D system appears
in the eigenenergy series' of the bound states. The ener-
gies of the bound states with the s-wave symmetry in the
3D and 2D cases are exactly evaluated as

E3D
(n +1) (5.3a)

E2D
(n+ —,

'
)

(5.3b)

where n=0, 1,2, . . . and n=0 stands for the lowest-
energy exciton state. Thus the binding energy of the
lowest exciton is finite for both 3D and 2D cases even if
the electron-hole attractive potential is the bare Coulomb
potential. On the other hand, in the case of the 1D bare
Coulomb potential, the binding energy of the lowest exci-
ton state is infinitely large as shown in Sec. IV. These
features suggest that the attractive force between an elec-
tron and a hole in the 1D system is more effective than in
the 3D and 2D systems. Intuitively speaking, in the 3D
and 2D systems, a particle can move around the origin of
the Coulomb potential without directly touching the ori-
gin. On the other hand, in the 1D system, a particle is al-
ways moving through the origin because the spatial direc-
tion of motion is restricted to one dimension. Thus the
particle motion in the 1D system is affected by the

infinitely deep potential at the origin more strongly than
in the 3D and 2D systems. In mathematical terms this
situation can be understood as follows. The spatial phase
volume around the origin is given as 4~r dr, 2~rdr, and
2dr for 3D, 2D, and 1D systems, respectively, where
spherical, circular, and linear shell regions from r to
r+dr are considered. Then the 1/r singularity of the
Coulomb potential is removed upon integration around
the origin for the 3D and 2D cases, whereas a logarith-
mic singularity remains for the 1D case. Thus the energy
and wave function of the excitonic state in the 1D system
are sensitively dependent on the potential profile near the
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FIG. 11. (a) Several attractive potentials are compared. The
bare Coulomb potential corresponds to the thin dotted curve,
the cutoff Coulomb potential given by Eq. (2.8a) to the thick
solid curve, and the short-range potential given by Eq. (2.8c) to
the thick dashed curve. The parameters employed are
zo/a~ =0.19, g/as =0.22, and Vo/R*=9. 55. Open circles de-
scribe the effective 1D Coulomb potential without the dielectric
effect for L =L~ =a&. (b) The effective 1D Coulomb potentials
given by Eq. (5.7), which include the dielectric effect are plotted
for a wire having the lateral size of L„=L„=2a& and for

6~/6&= 1.0, 2.0, 3.0, and 4.0 from top to bottom. The thin dot-
ted curve represents the bare Coulomb potential for e&/e&= 1.0.



origin. This feature explains also the qualitatively similar
behaviors of the Sommerfeld factors in the 1D system for
both cases of the long- and short-range interactions, be-
cause the major difference between these two potentials
appears only in the long-distance region.

B. Feasibility of the model potentials

f (x y)= 2

L„L
&X

cos cos
X

(5.4)

Now we shall discuss the feasibility of the modified
Coulomb potential with a cusp-type cutoff given in Eq.
(2.8a). Several types of cutoff have been introduced, ini-
tially only to avoid the difficulty of divergence and to
make the problem analytically solvable. Among
them, the potential of Eq. (2.8a) is the most efFective and
useful one in discussing the optical properties of a semi-
conductor wire. The reason will be given in this subsec-
tion.

The effective 1D Coulomb potential between an elec-
tron and a hole was derived in Sec. II, taking into ac-
count the subband quantization in the lateral directions.
In the strong confinement regime, this effective potential
is given by Eq. (2.7). The effective 1D Coulomb potential
was estimated in a similar way for cylindrical and square
semiconductor wires. ' A more general expression of the
effective potential including a dielectric efFect is given in
the next subsection [Eq. (5.7)]. When an electron and a
hole are confined in a square wire whose lateral size is
specified by L and L, the lowest subband function is
given Rs

for )x ~

~ ,'L—„and ~y~
~ 2L». The effective 1D potential

calculated by Eq. (2.7) using Eq. (5.4) is shown in Fig.
11(a) for the case of L„=L =as. The results plotted by
open circles can be fitted very well by Eq. (2.8a), which is
shown by a solid curve. The cutofF zo is found to be pro-
portional to the lateral size of the wire. Thus the cusp-
type Coulomb potentia1 has the simplest form enabling
analytical solutions and also describes rather we11 the ac-
tual potential in the quantum-wire structures.

Our formulation is concerned only with the linear opti-
cal properties under weak excitation. In the strong exci-
tation regime, on the other hand, several many-body
effects would appear and induce interesting optical non-
linearities. Among them, the screening effect on the
electron-hole attractive interaction in the 1D system is
not yet clarified satisfactorily. Although the shape of the
screened potential in the 1D system is not known precise-
ly, the model potential Eq. (2.8c) can be expected to de-
scribe the screening effect qualitatively.

C. Dielectric efFect

In determining the effective 1D Coulomb potential be-
tween an electron and a hole, we have averaged the bare
3D Coulomb potential, taking into account the motion of
the particles in the confining directions (x and y). Here
we shall include also the dielectric effect arising from the
difference in the dielectric constant between the quantum
wire and the surrounding material.

Extending the image-charge method developed for the
case of quantum wells, ' the interaction between an elec-
tron at a position r, =(x„y„z,) and a hole at
r~ =(xl, yh, zh) in a wi«(lx I

——,'L lyl ——,'L ) including
the dielectric efFect is derived as

with

oo oo &I~[+~.~

m2 «z 2 i»2[(xI, —x, ) +(y& —y,") +(zh —z, ) ]
(5.5)

E'25=
6)+E2

(5.6)

where e, (e2) is the dielectric constant of the quantum wire (surrounding medium), x, =mL„+ (
—1 ) x„and

y,"=nL +( —1)"y,. After averaging over x„y„xi„and y& with a weight
~f, (x„y, )

~ ~ fl, (x&,yI, )
~

associated with the
lowest subband state given in Eq. (5.4), we have

V'„(/z, —z„/) =— I dk„r dk F(k„)F(k») exp —m. ~z, —zh ~L L o

k

Ly

2 1/2 2 k 2 —1 /2

+
Ly

(5.7)

where the overbar means the scaling by the effective Bohr radius az and

1 —5 +25(1 5)cos(irk—
)

1 —25 cos(2mk)+5
(5.8)

Here 6 (k) is given using the spherical Bessel function of the zeroth-order jo(x)=sinx /x as
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G (k) =jzo —k +jii (—k —2) jo —k +jo —(k+2) jo —k

T

+—j —(k —2) +—j —(k +2) +—j —(k —2) j —(k +2)1 .2 1 .2 1. 7T

4 2 4 2 2 0 (5.9)

Numerical results are plotted in Fig. 11(b) for various
values of e, / ze~ 1. In this case also, the potential can be
well fitted by Eq. (2.8a), although in the limit of ~z~ —+ ~,
the potential approaches the Coulomb potential given by—(e, /e2)e /~z~. As the ratio e, /e2 increases, the attrac-
tive potential becomes more long ranged and is enhanced
for all regions of z over the bare Coulomb potential
—e /e, ~z~ depicted by a dashed curve. Therefore, the
peculiar features of the Sommerfeld factor described in
Sec. III would be more pronounced by the dielectric
effect.

D. Experimental observability

We would like to comment on the possibility of experi-
mental observation of the peculiar features of the Som-
merfeld factor. A primary requirement for observation is
that the intersubband spacing is much larger than the ex-
citon binding energy so that the continuum exciton states
associated with the lowest subband do not overlap with
the discrete exciton states associated with the higher sub-
bands. Assuming a square-wire structure and the com-
plete confinement of carriers, we can estimate the energy
separation between the lowest subband and higher one as
8m. (ae) /L in units of R*. This separation should be
much larger than the exciton binding energy to justify the
1D treatment of the wire. Roughly speaking, only when

the lateral size of the mire is smaller than the bulk exciton
Bohr radius, not only does the center-of-mass motion
show a one-dimensional nature, but also the electron-hole
relative motion of the exciton in the wire. For example,
L and L should be less than 100 A for GaAs to justify
the 1D treatment. Otherwise, the confinement in the la-
teral directions becomes weak and the electron-hole rela-
tive motion is not necessarily one dimensional even
though the center-of-mass motion shows a 1D character,
so that the peculiar features due to the 1D nature of the
electron-hole relative motion would not be clearly seen in
optical spectra.

Another feature to be considered in observing the
peculiar characteristics of the Somxnerfeld factor is the
finiteness of the potential barrier height, which weakens
the one dimensionality of the electron-hole relative
motion and obscures the spectral features. It is also im-

portant to consider various line-broadening effects due to
scattering by the interface roughness and phonons which
also smear the spectral characteristics. However, we did
not go into details of these problems and leave them for
future study.

For an allowed transition, the weak interband absorp-

tion and the absence of the van Hove singularity are re-
markable results in this paper. However, these lead to
difIiculty in identifying the band edge in the absorption
spectra. In order to determine the band edge, the two-
photon absorption and electro absorption experiments
would be useful because the selection rules in these exper-
iments are complementary to those in the one-photon ab-
sorption and the information about the exciton states
which are not accessible by the linear absorption can be
obtained. Combining the knowledge on the energy posi-
tions of exciton states of the even and odd parities and
analyzing the data by an appropriate theoretical model,
we can eventually determine the band edge.

For observing the peculiar features of the 1D system in
optical-absorption spectra clarified in this paper, not only
inorganic semiconductor wires, but also organic semicon-
ducting chains, which can be called "natural quantum
wires, " e.g. , organo polysilanes (Si polymers), and polydi-
acetylenes are good candidates. In fact, both exhibit very
strong exciton absorption below the band edge and weak
interband absorption. In their absorption spectra, the
van Hove singularity of the 1D system is completely ab-
sent. These results seem to coincide with our results. In
addition, only a few absorption lines due to 1D excitons
are observed. This may suggest that the electron-hole in-
teraction in this system is short range because the num-
ber of bound states is finite in the case of short-range in-
teraction as shown in Sec. IV. However, it is too prema-
ture to conclude that our theory can successfully explain
the experimental results because the electron-lattice cou-
pling in the organic low-dimensional system is thought to
be stronger than in the inorganic systems. Interchain in-
teractions are also to be investigated which might have
an effect on the cutoff zo through the 3D character of the
wave function. Comprehensive understanding is left for
future studies.

Finally, we would like to suggest a very interesting op-
tical nonlinearity arising from the suppressed interband
absorption in the 1D system. There is a possibility of
realizing an "increasing absorption" in the pump-probe
measurement of semiconductor wires with a direct al-
lowed transition. When the excitation is rather strong,
the attractive interaction between an electron and a hole
becomes weaker because of the screening effect. Then the
absorption intensity of the discrete exciton states de-
creases and consequently the interband absorption in-
creases. Therefore, the absorption intensity above the
band edge just after pumping is larger than that before
pumping. The remarkable feature of this system is that
the increasing absorption can be realized by an intrinsic
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mechanism in contrast to self-electro-optic-effect de-
vices ' in which an external electric field is used.

VI. CONCLUSIONS

Modeling a semiconductor quantum wire as a purely
1D system and employing some model potentials between
an electron and a hole, which describe a modified
Coulomb interaction and a short-range interaction, we
have calculated analytically the wave function, eigenener-
gy, and oscillator strength of the bound and unbound ex-
citon states in the 1D system. Using these results, the
linear optical-absorption spectra of the 1D system have
been obtained analytically for both allowed and forbidden
direct transitions. The Sommerfeld factor is smaller than
unity for an allowed interband transition, in striking con-
trast to the 3D and 2D cases. This peculiar feature can
be understood in terms of the anomalously strong con-
centration of the oscillator strength on the lowest-energy
exciton state. On the other hand, for the direct forbidde~
transition, the Sommerfeld factor is larger than unity and
behaves similarly to the 3D and 2D cases. These proper-
ties hold irrespective of the interaction range of the
electron-hole attractive potential. Finally, the Coulomb
potential with a cusp-type cutoff describes fairly well an
effective 1D potential in an actual semiconductor wire
with a 6nite cross section. This correspondence would be
valid only when the lateral size of the wire is smaller than
the exciton Bohr radius. The dielectric effect in the wire
was also investigated and found to lead to the enhance-
ment of the peculiar features of the 1D system.

Although our models do not include all the actual de-
tails, e.g. , the electron-lattice interaction and line-
broadening effect, we believe that these new findings hold
quite universally in a 1D system and will be of great
significance in the interpretation of experimental results.
In this sense, as far as inorganic semiconductor wires are
concerned, our model calculations may serve as a stan-
dard model for the linear optical properties of the quan-
turn wire.

Pk(z) =N„""g[W() 'W"'(x) —Wo" W' '(x)], (A lb)

respectively, where Ng"" and N„"" are normalization
constants to be determined. The asymptotic form of the
wave function can be obtained with the use of

W" I~ (~,(x)- lxl' exp( —a8+ —,
' Ixle'e),

=e a/2e [2k(lzl+zo)]iaeiklzl

,~, (x)-—e Ixl
' exp(ae —

—,
' Ix le'),

(A2a)

where pk (pk ) is a right- (left-) travelling component of
an unbound wave function. This is evaluated in the
asymptotic region of lzl ~ ~ as

Ijp I

=.g Ak

p

I.g
I

A'k

tM

Ij+ I= Ak

(N(o"g)2e

(N'~"g) e

(Nlong)2 naI w(2) I2—
p

Ij" I= (N""')'e -I W.("I'.
p

(A4a)

(A4b)

(A4c)

(A4d)

The k-scale normalization can be done with the aid of the
relation'

Ij+ I+ Ij (A5)

Then the normalization constants are determined as

= —e -"e ' "[2k(lzl+z, )]-' e-'"l l

(A2b)

where g=argx=m/2 and a=(agk) '. The probability
current is defined as
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APPENDIX A: CALCULATION
OF NORMALIZATION CONSTANTS

OF THE UNBOUND WAVE FUNCTIONS

In the case of long-range interaction, the gerade and
ungerade wave functions have the forms of

Pf(z)=N""g[D iW'"(x) —D" W' '(x)] (Ala)
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for gerade and ungerade parities, respectively. Using the
relation Eq. (A5) and asymptotic expressions in the limit
of z ~~ (g~ 1) given as

2
—ikpe ikz

2
—ikge —ikz

(ASa)

we can determine the normalization constants in a simi-
lar manner to the long-range case as

On the other hand, the wave functions in the case of
short-range interaction can be written as
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short —
[[f (Q) ~2+ ~g (Q) ~2]

—1/21
g ~2 k k
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[ ~f (0)~2+ ~g (0)~2]

—/21
u ~2 k k

(A9a)

(A9b)

APPENDIX 8: DIVERGENCE
OF SPECTRA NEAR THE BAND EDGE

IN THE CASE OF SHORT-RANGE INTERACTION

Igk(0)fk(0) —fk(0)gk(0) I

-p(s)k, (B2)

(B3a)

2

the absorption coefBcient, and the Sommerfeld factors
near the band edge are asymptotically given as

2

(g E )
P (s)k p 2 s p 3+s

s (s+1) 2

The mathematical origin of the divergence of the ab-
sorption spectra in the case of the short-range interaction
is briefly shown in this appendix. Near the band edge,
i.e., k —&0 the hypergeometric functions fk(0) and gk(0)
defined in Eq. (3.28) have the following forms:

p (s)k I- 2 —s 1. 3+s
s (s+1) 2

(B3b)

1 —s 2+sf (0)=g (0)=&a I I' (Bla)
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&
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2
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(B3d)

(Blb)

resulting in ~gk (0)fk (0)—fk (0)gk (0)
~
~0 as k —+0.

When we expand ~gk(0)fk(0) —fk(0)gk(0)~ around k =0

Then E,'"'" (Kf'""') diverges for s =2, 4, 6, . . .
(s = 1,3, 5, . . .) through the divergence of the I function
whose argument is a negative integer. The exact expres-
sion of p(s) is rather complicated and is not shown here.
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