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A theoretical study is made of excitons and holes bound to a single tellurium (Te) impurity in

bulk ZnSe and centered in ZnSe-Zn1 Mn Se strained quantum wells. We use an effective-bond-
orbital model for the holes in order to account for the complicated valence-band structure, and the
spherical effective-mass approximation to describe the electron. The mutual Coulomb interaction
is included, and solutions for the two-body system are obtained using the varia'tional method in

an iterative scheme. The strong lattice-relaxation effects present in the binding of the hole to the
Te impurity are absorbed in the value for the localized hole-attractive potential at the site of the
impurity. This value is determined by fitting the experilnental value for the binding energy of the
bound exciton. The oscillator strengt, hs, the extension of the bound-exciton wave functions, and the
energies of bound holes are then predicted. We observe a discrepancy between the fitted value for
the localized impurity potential for the bulk case and the quantum-well case. An experiment to test
our explanation for the discrepancy is proposed.

I. INTRC)DUCTIQN

An isoelectronic impurity is an impurity which has
the same valence-electron structure, but diA'erent core-
electron structure, from the atom it substitutes. Trap-
ping of excitons by isoelectronic impurities is a phe-
nomenon which often must be taken into account when
explaining optical spectra from semiconductor samples.
One of the most studied cases is gallium phosphide doped
with nitrogen (GaP:N). The N impurity is attractive for
electrons, and the binding of the exciton is commonly vi-
sualized as follows: An electron is trapped in the short-
range isoelectronic potential of the impurity, and a hole
is bound in the Coulomb field resulting from the elec-
tron. This description suggests that an exciton cannot be
bound by the impurity unless the electron itself is bound.
The situation turns out to be more complicated however
(see Ref. 2 and references therein). While for GaP:N the
bound exciton has a binding energy of 28 meV, which is
considerably larger than the free-exciton binding energy
of 20 meV, a detailed theoretical study found the electron
to be barely bound with a binding energy of less than 1
meV. ~ This suggests that systems may occur which dis-
play bound excitons even if the electron does not bind by
itself.

Another system which has attracted considerable inter-
est is tellurium-doped zinc selenide (ZnSe:Te) where Te
acts as an isoelectronic impurity attractive for holes.
Depending on the Te concentration this system exhibits
diferent trapping mechanisms. For large impurity con-
centrations no distinct gap between localized and delo-
calized excitons is observed, and the localized exciton

states seem to be best described in terms of binding
to a random potential due to large-scale compositional
fluctuations. 3 For small Te concentrations photolumines-
cence spectra reveal isolated peaks which are best under-
stood in terms of localization of excitons at small clusters
of Te atoms. 5 In a recent experimental study Lee et
aL performed photoluminescence measurements on sin-
gle crystal ZnTe Sei with z 0.01, for a set of differ-
ent temperatures. Two broad peaks, red-shifted by more
than 100 meV compared to the free-exciton peak, dom-
inated the spectra. The peaks were explained as result-
ing from recombination of excitons bound to single and
neighboring pairs of Te atoms, respectively. Later, Fu
et al sextende. d the study to ZnSe-Zni Mn Se strained
quantum wells with Te impurities in the middle and, in
addition to confirming previous findings in Ref. 7, demon-
strated that the hole wave function is strongly localized
around the Te sites. The peak assigned to excitons bound
to single Te atoms was also observed in earlier photolumi-
nescence studies by Naumov et al. and Reznitsky et al.
The interpretations of the peaks differ, however. Citing
cathodoluminescence work by Akimova et al. , Reznit-
sky et al. assigned the same peak to recombination of
excitons bound to a cluster of three Te atoms. Further-
more, a small spectral feature at the high-energy side was
assigned to excitons bound to pairs of Te atoms. A gen-
erally accepted understanding of the physical situation
thus seems lacking.

The qualitative picture that has emerged for bound
excitons in ZnSe:Te is a hole strongly bound to a short-
range isoelectronic potential with an electron bound in a
larger orbit in the Coulomb field from the hole. The exci-
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ton trapping involves electron-phonon interactions which
induce a locally distorted lattice around the Te impurity.

A determination of the shape and strength of the short-
range isoelectronic potential from microscopic consider-
ations is very dif5cult and has prohibited accurate first-
principle calculations of the exciton binding energy. The
most elaborate calculations on isoelectronic traps so far
were performed on GaP:N. Masselink and Chang cal-
culated the exciton binding energy of this system taking
into account the band structures for both electron and
hole and their mutual Coulomb interaction. The short-
range potential was fitted to give the experimentally ob-
served exciton binding energy, and the electron binding
energy could thus be predicted. The method was later
extended to include bound-exciton molecules.

In this paper we present results of a theoretical study
of excitons and holes bound to a single Te impurity
in bulk ZnSe and a single Te impurity centered in a
ZnSe-Znp 79Mnp giSe strained quantum well. We use the
eff'ective-bond-orbital model9 (EBOM) for the holes in
order to account properly for the complicated valence-
band structure. The electron is described by the spheri-
cal eff'ective-mass approximation. The mutual Coulomb
interaction is included, and solutions for the two-body
system are obtained using the variational method in an
iterative scheme. The strong lattice-relaxation eA'ects are
absorbed into the value for the localized potential at the
site of the isoelectronic impurity. This value is deter-
mined by fitting the experimental value for the bind-
ing energy of the bound exciton. Other quantities, such
as the binding energy for a bound hole, the oscillator
strength, and the extension of the bound-exciton wave
function, are then predicted.

In Sec. II we describe our method. In Secs. III and IV
we present results for bound excitons and holes trapped
by Te impurities in bulk ZnSe and ZnSe-Zni Mn Se
quantum wells, respectively, and compare with available
experimental data. Discussion and some concluding re-
marks are given in Sec. V.

The bound-exciton energy F is found by minimizing

& @('., »)IHI@(r. , rh) &= «@(i., »)l@(i'., ») &

(2)

using a self-consistent Hartree scheme ignoring the
electron-hole exchange interaction. ~ ~ The two-particle
wave function is assumed separable, i.e. , @(r„r~)
@,(r, )@g(rg). This approximation is best for situations
where the hole is strongly localized at the impurity. For
GaP:N the error introduced by assuming separability was
estimated for a simpler model by comparing results us-
ing a separable wave function with results using a more
complicated (nonseparable) trial wave function which ex-
hibits the correct limiting form for very shallow impurity
potentials (free-exciton wave function). For situations
where an isolated electron is bound by the isoelectronic
N trap, the error introduced was found to be less than
6%.

With a separable wave function (2) simplifies to

& AIH. +vIA &

&AID &
+

& A@elvl@.A &
@ (3)

& @.IA && @.I@. &

The bound-exciton energy is found iteratively by con-
secutively minimizing, by solving secular equations for
appropriate sets of basis functions,

& @"„IHp, + V+ V~I@„"&

& @P, l&h. &

where

VA= Vh(») —=

with I@", ) fixed, and

II. THEORY

In the present work we calculate properties of bound
excitons in bulk and in quantum wells. Since bulk can be
regarded as a special case of a quantum well, it sufFices
to consider excitons and holes bound to a Te impurity
centered in a quantum well. The model Hamiltonian we
use for an exciton bound t,o an isoelectronic impurity in
a quantum well is

H = Hg(V'h, , rh) + V(rh) + H, (V'„r,)
+v(l» —r. l),

where Hg (H, ) is the Hamiltonian for a hole (electron)
seeing the quantum-well potential only, and V(rg) is a
short-range attractive potential for the hole due to the
Te impurity at the center of the well. The analogous re-
pulsive potential for the electron is ignored in the present
calculations. P The last term in Eq. (I), v(lrh, —r, l), ac-
counts for the attractive Coulomb interaction between
electron and hole.

where

V.n. = Var(r. ) = & @i, lvl@h. &

with lych & fixed until the values for Eh, and E, have
converged. Here Ig," & (I@i, )) is the electron (hole)
wave function after the nth iteration, and V,~ (V~&) is the
so-called Hartree potential felt by the hole (electron) due
to the electron (hole) charge density. After convergence
the exciton binding energy is given by

The binding energy for the hole alone is found by solv-
ing Eq. (4) without the term due to the electron-hole
interaction.

The rest of the theory section is organized in four sub-
sections. In IEA the evaluation of the matrix elements
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involving III, + V in Eq. (4), which corresponds to solv-
ing the pure hole problem, is described. The formal-
ism involved in describing the electron is outlined in II B
while the incorporation of the electron-hole interaction
is given in IIC. The separate pieces from Secs. IIA—IIC
are joined together in IID to give a procedure for calcu-
lating exciton binding energies. Our study also includes
calculations of oscillator strengths and average hole and
electron distances from the impurity, and a brief descrip-
tion of how to extract these quantities is also included in
II D.

A. Holes

We first discuss how a hole interacting with a single
isoelectronic impurity centered in a quantum well is de-
scribed within the EBOM formalism. The EBOM has
previously been used to calculate binding energies of ac-
ceptors centered in quantum wells, and this treatment
is readily extended to the present application. In the pre-
sentation below we will briefly mention the idea behind
the EBOM and review the formulas needed in the present
calculation. For more details we refer to Refs. 9 and 12.

The EBOM is a tight-binding-like model with the in-
teraction parameters determined by requiring the model
to predict the experimentally observed bulk band struc-
ture close to band edges. The model, which may be re-
garded as a discretized version of effective-mass theory, is
particularly useful for describing electronic states in semi-
conductor heterostructures. Both ZnSe and Zn Mnq ~Se
(for the values of z encountered here) have a zinc-blende
structure»3 with a basis containing two atoms located at
the sites of the face-centered-cubic lattice. In a large-
gap material like ZnSe [Ey 2.8 eV (Ref. 13)] a bond-
orbital model which includes valence bands only, is suf-
ficient. In this context a bond orbital is defined as
the proper linear combination of atomic orbitals which
best describes the states near the center of the Bril-
louin zone. We use the notation ~R., n ) for an n-like
(n = z, y, z) bond orbital located at a site R, in the fcc
lattice. The bond orbitals are assumed orthonormal, i.e. ,( R,', n'~R, n )= be ~lb I, and sufficiently localized so
that only nearest-neighbor interactions have to be taken
into account. The general form of the nearest-neighbor
(and on-site) interactions ares

& R, , ~nH ~R.', n')= E„b„„b + ) b«, (E.y7- 7- (1 —b )+ [E..7-'+ E„(l—~')]b, }, (9)

where E ~I is the interaction between an o,-like or-
bital and an o. -like orbital located at the origin and
at (1,1,0)a/2, respectively Ez, .E, E y, and E„are
four independent interaction parameters, and the sum
over v covers the 12 nearest-neighbor position vectors.
7~ denotes the n component of ~ in units of a/2. The
independent interaction parameters are determined by
expanding the tight-binding Hamiltonian, H(k), based
on Eq. (9), to second order in k and requiring equiva-
lence with multiband efFective-mass theory. This scheme
is thoroughly discussed in Ref. 9, and we merely quote
t, he results. In terms of the Luttinger parameters p», y2,
and p3 the interaction parameters are found to be

E2:y —6/3+0~ Ezz (71 + 4 f2)+0~

E„=(yy —8y2)'Rp) Ep ——E„—12py'Rp.

Here Rp = h /(2ma2) and E„denotes the band edge of
the heavy-hole and light-hole valence bands. Since the
Luttinger parameters are material dependent, the inter-
action parameters are in principle difFerent in the well
and barrier materials. In the present application, how-
ever, the Luttinger parameters p», p2, and y~ for the bar-
rier material Zn Mnq Se are not known, and we assume
the ZnSe values for these. In an unstrained quantum well
the confining well potential comes in only through the
position dependence of E„ in the last equation in (10).

The short-range hole-attractive potential from the iso-

electronic trap is assumed to be nonzero only at the im-
purity site which is chosen as the origin, i.e. ,

( R, , n ~V(rg)~R, , n )— Vp b~ pb~ pb

where Vo is an unknown parameter. Hole-attractive im-
purities correspond to negative values of Uo. Vo is deter-
mined by fitting experimental data for the bound-exciton
binding energy. All lattice relaxation efFects are thus in-
corporated in the value of the single parameter Uo.

The large spin-orbit coupling of ZnSe, 4 = 0.45 eV, ~5

is exploited to reduce the size of the problem. The
quantum well has the symmetry of the point group D2~,
and a Te impurity in the center does not alter this. In
Dgg the p-like valence orbitals transform according to
the I'4 and I'5 representations, while the electron spin
(s = 2) transforms as rs. According to group theory
(r.+r.) x r. = r.+'r, +'r, . The p-like bond orbitals
and the electron spin thus combine to a I'6-like and two
difFerent I'7-like pairs of spin-orbit, -coupled bond orbitals
(SOBO's). The I'7-like pairs can, however, be decom-
posed into two pairs of SOHO's where one of which is
lifted with the energy 4 compared to the other. As an
approximation we only include the energetically favored
pair in our calculations, and this corresponds to neglect-
ing the coupling to the split-ofF band. Using the Koster-
Dimmock-Wheeler-Statz convention» we have the fol-
lowing SOHO's:
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r 2 1 16
IR ui/2 &= IR z & p '1/2+ IR y & p '1/2

2 2

r 2 1 r,
1/2 ) IR'& + & &&t& 1/2 IR& y»&t&1/2&

2 2

2
IR, , u

/
)=—

6

IR, , y & p '1/2 + i IR, , z ) $1/2,—1 2

2

6

IR, , y & y" + i IR .& y"

AVR = 2(ai + a2)(1 —C12/Cll)t~~ (14)

D = b(2C12/Cii + 1)qi.

Here C11 and C12 are elastic constants while ai, a2, and b

are deformation potentials. The biaxial strain is given by

e~~
—(a, —a„)/a„where a„ is the unstrained lattice con-

stant (bulk) and a, is the lattice constant in the plane of
the heterointerface after accommodation of strain. The
well material ZnSe has a smaller lattice constant in bulk
than the barrier material Zn Mni ~Se, and e~~ is thus
positive in the well. Since the deformation potential b is
a negative quantity (and Cii and C12 are positive), D
will be negative. Thus the light-hole-like valence states
in the well will be higher in energy compared to the
heavy-hole-like valence states. This splitting is reflected
in results from photoluminescence experiments on certain
ZnSe-Zn Mni Se superlattices where the light-hole free
exciton is observed to be lower in energy than the corre-
sponding heavy-hole exciton. The influence of AVJI is
merely to shift the energy gap and barrier height. The
valence-band offsets for the present system are not accu-
rately known, but they seem to be small and dominated

where P"s denotes the electron spinor. The Is (I'7)
SOBO's are equivalent to heavy-hole (light-hole) SOHO's
in bulk (see, e.g. , Ref. 17) and are thus said to be heavy-
hole-like (light-hole-like) .

Optical studies of undoped ZnSe-Zn Mni Se quan-
tum wells have revealed that the system is highly
strained. 3 The effect of strain is readily incorpo-
rated in our EBOM formalism by adding a strain Hamil-
tonian H, t, ,„, and the EBOM has already been used in
band-structure calculations for strained Ini Ga As-InP
quantum wells. From deformation potential theory we
have the following:

( R', u"', IH„,.;„Ia,u"' )= (—avH + D)ERR b~ ~,
(»)

& R.', u", IH, „,.;„IR., u„"," &= (—aVR —D)6, .b„,,

where

by contributions from the lattice mismatch strain. We
will return to our choices for AVH and D in Sec. IV.

The SOBO's in Eq. (12) could now in principle be
used as basis functions in a variational calculation, but
by further exploitation of symmetry a large reduction of
the size of the computation can be achieved. According
to group theory the localized hole states split into two
symmetry types: 17-like (light hole) and I's-like (heavy
hole). States of different symmetries are decoupled and
can be treated independently. An appropriate set of an-

gular functions to use as basis functions for I'7 -like
states with even-parity envelopes is

lg;/ (R) &,= IR, , u ',
/

Z' ——,'(X'+ Y2)
IR., u"",/, ),

~3 X' —Y'
—1/2

iXY
R IR., u ', /, ),

r, 1 iYZ+ XZ
I@ ', /2(R) &,=, IR, u, /, & .

2

I&"'1/2(R)»=

I@"'1/2(R) & =

Here the z direction is de6ned as the growth direction,
i.e. , normal to material interfaces, X, Y, and Z are the
components of R, , and R = IR, I

= X + Y + Z . In
Ref. 12 an additional angular basis function was included
in the basis set, but in the present application this basis
function turns out to be superfiuous. Similarly, the nec-

essary angular functions for I'6 -like states are found to
be

I@,/ (R) &,= IR., u, /2 ),
Z2 1 (X2 + Y2)

IR, , u, /2 &,

~3X2 Y z',
I@,"/2(R) & =

2 ~2 IR "ij.&

l@1/2(R)»=

r, iXY
I&,/2(R) &.= —~2- IR, u, j2»

1 iYZ —XZ r,
I@",/2(R) & =

g2

(17)

—n, +A s+Ys+i&, zs I@I'

where 2Z, l„,t„and Rcl„,t„are the height and radius of
the cluster, respectively, and the slowly varying cosine
factors are included to tame an artificial discontinuity in
the hole wave function at the cluster boundary. The sum

(For definiteness we focus on the I'7 and I's states—x/a z/a

of the Kramers-degenerate I' s-like and I 7-like pairs. )
In the calculations we use a cylindrical cluster of sites

in the fcc lattice with the cylinder axis set in the growth
direction. The angular functions in Eqs. (16) and (17) are
combined with radial exponentials to give basis functions
of the form

/' Z 5 t QX2+ Y21
cos cos

g 2 Zcluster P E
2 Rcluster j
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over R does not include the impurity site. The impurity-
site bond orbital with the proper symmetry is included
separately in the set of basis functions. Seven appropri-
ately chosen n's and anisotropy parameters p are used in
the calculations to give a total of 36 basis functions. The
interested reader is referred to Ref. 12 for information
about how the calculation of the hole matrix elements is
eKciently implemented on a computer.

B. Electrons

The conduction band of ZnSe has its minimum at the
zone center, and a simple spherical efFective-mass approx-
imation including a quantum-well potential gives an ad-
equate description. We thus use the Hamiltonian

Avc = 2ci(1 —Ci2/Cii)e~~, (21)

i)i',"(r) = —
(—,) e ~'" i' Yi(8, , )id,, (22)

where ci is a, deformation potential, Cii and Ci~ are elas-
tic constants, and e~~ is defined in the previous subsection.
The strain will thus modify the barrier height from the
"unstrained" value with the difFerence between the bar-
rier and well value of Avc. We shall return in Sec. IV to
the choice of V&+~ in our calculations.

For analytical convenience we use as basis functions
in the variational calculations spherical harmonics Yj
multiplied with Gaussians, i.e. ,

II, = — —V2+ Vqw(z),2m.

where I,, is the spherical effective mass and

0 for lzl ( I/2
v~ f., l, l

& I./2. (2o)

Since the effective mass m, for the barrier alloy is un-
known, we assume for simplicity the well value through-
out the heterostructure.

The quantum-well potential Vqw(z) includes both off-
set due to difFerences in band gap for unstrained materi-
als and ofFset due to strain. The efFect of strain on the
conduction-band states is given in standard deformat, ion
potential theory as

where a* is the efFective Bohr radius for the electron.
We are interested in the ground state where the contri-
bution from the s-like spherical harmonic YQQ is domj-
nant. The present model has inversion symmetry around
the impurity site in the middle of the well, and parity
is thus a good quantum number. Therefore only even-
parity spherical harmonics couple to YQQ. To ease the
numerical calculation we restrict ourselves to s (I = 0)
and d (I = 2) spherical harmonics in the basis. The
kinetic term in Eq. (19) does not couple diff'erent spheri-
cal harmonics, and the only spherical harmonic of d-type
which is coupled to YQQ via the quantum-well potential is
Y2Q. Thus only two spherical harmonics, YQQ and Y2Q,
are included in the set of basis functions. The evaluation
of the matrix elements

+ ~qw(z) l @.' '
'2m~

p$3 —Pjf' /Q Y Q2 + V Pg /

e

and overlaps to be typically 0—2 go which is accurate enough for the
present applicati. on.

x.-&~+~ &"'/ "Y, ,Y, , (24)

needed in the variational calulations is straightforward
but tedious, and we refer the reader to Appendix A for
the resulting expressions. Seven different P's are used in
the calculations to give a total of 2 x 7 = 14 electron
basis functions.

To check the fiexibility of the present set of basis func-
tions, we applied the set in a variational calculation on
donor states in a quantum well. The resulting energies
were compared wit, h results from a study involving dif-
ferent trial wave functions by Oliveira for parameters
which resemble the current quantum-well system. The
deviations in the predicted binding energies were found

C. Electron-bole interaction

The mutual electron-hole interaction is modeled as a
statically screened Coulomb interaction, namely,

2

~(l» -r. l) =-
~0 I» —r. I

'

where eQ is the static dielectric constant.
With the electron wave function given, the evaluation

of U,& in Eq. (5) is in principle straightforward. The elec-
tron wave function is represented by a linear combination
of basis functions, i.e. , @, = Q, C;@',~', where g,"" is of
the form shown in Eq. (22). The set of C, 's is output from
the previous solution of the electron equation [Eq. (6)] in
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the iteration scheme. With a normalized electron wave
function as input, one has from Eqs. (5), (22), and (25)

we find

v,'„(») = & q, (r, ) l~(lr, —r, I) ly, (r, )

) c,'c; v,,(..),
~ ~

(26)

-lr, —R,
l

The matrix elements to be used in the electron equation
are then found to be

where

a*)—= (0'." (, ,
~

0!'")
X'e —&h

-(p;+p, )u'

I
— /

IA &= ).D'l0,"&, (20)

where lg~ & is either of the form shown in Eq. (18) or a
single bond orbital located at the impurity site. The set
of D s is output from the previous solution of the hole
equation [Eq. (4)]. This wave function may be written as
a sum over individual SOBO's,

In order to obtain numerically tractable expressions for
Vz(rl, ), the factor lu —rg/a'I ~ is expanded in a sum of
spherical harmonics. For details about the evaluation of
(27) we refer to Appendix B. With V,fr(rg) given and by
applying the following simplification

& R., alVfr(rg)IR', n' )= Vfr(R)b~ R 6, (28)

the matrix elements for the Coulomb interaction in
Eq. (4) can be calculated. For the approximations in-
volved in Eq. (28) to be valid, V;&(rh, ) should be slowly
varying on the scale of the lattice constant. This is pre-
sumably well fulfilled for the relatively extended electron
wave functions encountered in the present calculation
(a' 29 A. in ZnSe).

The analogous expression for V,fr(r, ) to use in the elec-
tron equation [Eq. (6)] is obtained in a similar way. The
hole wave function is given as a linear combination of
basis functions,

2

& 4." Iv.~(")14!"&= —...) F(R)v (R)

where the sum naturally includes all sites in the cluster.
In the evaluation of V~& we treat a hole in a bond orbital
centered at R, as a point charge there. Also this approx-
imation is justified by the reasonably large extension of
the electron wave function.

Note that the presence of the electron-hole interaction,
as it is included in the present calculational scheme, does
not break the symmetry which underlies the symmetry-
induced simplifications of the variational calculational
scheme. Since F(R) has quantum-well symmetry, ~s the
only spherical harmonic coupled to Ypp via V~& is Y2p.
Vice versa, with only Ypp and Y2p included in the electron
basis, V,&(r~) has quantum-well symmetry and does not
reduce the symmetry of the pure hole Hamiltonian.

D. Bound-exci ton calculations

Sections II A—II C contain recipes for calculations of all
matrix elements needed to pursue the iterative scheme
outlined in the beginning of the theory section. In prac-
tice the scheme is initiated by minimizing FI, in (4) in
the absence of an electron, i.e. , V,& ——0. Afterwards,
the resulting hole wave function is used as input in the
electron equation (6), whose output in turn is used as
input for a new execution of the hole part. This loop is
then repeated until the predictions for the energies have
converged to within a preset tolerance. Typically four or
five repetitions are sufIicient.

In addition to predicting energies, we use the resulting
(normalized) wave functions to calculate expectation val-
ues for the electron and hole distances from the impurity,

I@h &= ) G, (R,)IR, u"~ &,
R,j

(30)
l.e. s

& I»l &= ).F(R)IRI (36)
where I'z is I's or 17 and mz ——+z. This gives the
following expression for the normalization constant:

& @l, l@1, &= ) IG, (R)l' = ) F(R,) .

F(R) describes the probability for the hole to be at site
R. A natural approximation for the probability density
P(rg) is thus

d'r. l@.(r.)l' Ir. l
.

Our study also includes calculation of oscillator
strengths for the bound exciton. The oscillator strength
of a radiative transition for light with polarization e,
say, is

P(rh) = ) F(R.)b(R. —rI, ) . (32) f. =
@ l&fle pl~&l',

mEp
(38)

With a normalized hole wave function, i.e. ,

dard P(rg) = ) F(R) = 1, (33)

where Ep is the energy of the transition, p is the mo-
mentum operator, and ~i ) and

If & represent the initial
and final states, respectively. Within the eA'ective-mass
formalism the oscillator strength for the bound exciton
has the form27
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dsr @,(r)@'„(r)

(39)

when a separable wave function for the bound exciton,
1.e. )

@(r~ ») =
I ) .0h, (»)"Sp(rh) l~~(r~)"«(r~) ~ (4o)

where V~ is the volume of the primitive cell. The quan-
t&ty

I
& u, plp~lu~p )

I
is given in terms of the Kane

matrix element E~. Examination of the symmetry of
the Bloch functions u~p shows that

I & u, pip lump )
I

equals ~~mElc for light holes (I'7) and 4mE~ for heavy
holes (I's), respectively. 2s The final expression for the os-
cillator strength for light polarized in the z direction is
thus

is assumed. Here u, o is the I'-point conduction-band
Bloch function in bulk, u~o denotes a I'-point valence-
band Bloch function with the same symmetry as the
SOBO IR, u ',. ), and @, and @~& are envelope functions.
Since we use EBOM to describe the holes, Eq. (39) must
be modified correspondingly. In Appendix C it is shown
that the appropriate expression for the oscillator strength
for a j-like (I's or I'7) bound exciton is

2

I «pip lu!p & I'I'~ ) Gg(R)@ (R)IEO

light-hole states). The four ground-state wave functions
are not identical, however, and the heavy-hole and light-
hole states have different spatial distributions of the hole
density. Even within our present calculational scheme
in which the electron-hole exchange interaction is omit-
ted, the different hole densities couple differently with
the electron to give an energy splitting between heavy-
hole-like and light-hole-like bound excitons in bulk. This
energy splitting is observed to be very small, however,
and within the accuracy of our calculational scheme we
find the heavy-h. ole-like and light-hole-like bound exci-
tons to have the same energy.

The d-like members of the electron basis functions are
found to be essentially decoupled from the dominant a-
like part and can, as a good approximation, be left out
of the basis in the bulk case.

In Fig. 1 we show the ground-state energies for a bound
exciton and a bound hole, respectively, as functions of the
depth of the isoelectronic potential Vo. The dominating
peak in the photoluminescence spectra for bulk ZnSe:Te
has its maximum located 120 meV below the free-exciton
peak. s" Given that the interpretation in Refs. 7 and 8 is
correct, namely, that the peak is due to recombination
of excitons bound to single Te impurities, the value of Vp

corresponding to this physical situation is Vp: —2640
meV. For this value of Vo, marked with a vertical dotted
line in Fig. 1, a bound hole alone has 27.7 meV higher en-

ergy than the bound exciton. Since the lattice relaxation
energy involved in the self.-trapping of the hole presum-
ably is not much affected by the presence or absence of
the electron, one can assume the same value of Vo for the
bound hole as for the bound exciton. With a free exciton
binding energy of 20 meV, a bound-hole level at —112
meV is thus predicted in ZnSe:Te. As we mentioned in

f~ = c~ — V~ ) G~(R,)@,(R,)
R

(42)

where c&
——3 for light-hale bound excitons and c&

—1

for heavy-hole bound excitons. -40-

III. BOUND EXCITONS IN BUI K'ZnSe

In this section we focus on bound excitons in bulk
O

ZnSe. For the material parameters we use a = 5.67 A
for the lattice constant, t o = 8.66 for the static dielec-
tric constant, m, = 0.16m, o for the electron effective
mass, and y~

—3.77, y2 ——1.24, and p3 ——1.67 for
the Luttinger parameters. This parameter choice gives
a bulk exciton binding energy of 20 meV, in good
agreement with experimental values. To avoid finite-
size effects on the hole wave function clusters involving
up to 1.3x10 sites are used in the calculations. A small
finite-size effect, however, will mainly affect the absolute
values of the energies and not the energy difference be-
tween a bound exciton and a bound hole. Since Vo is
fitted to predict the experimentally observed energy for
the bound exciton, the predicted value for the bound hole
is rather insensitive to a small finite-size effect.

In zinc-blende structures the bulk ground state of the
hole bound to a localized potential has I'8 symmetry
with fourfold degeneracy (two heavy-hole states and two

I)
E -80-

t+ -~20-
bJ

-160—

-200— -2200 -2400 -2600
Vo (me V)

-2800

FIG. 1. Ground-state energies of a. bound exciton (solid
line) and a bound hole + a free electron (dashed line) local-
ized at a single Te impurity in. bulk ZnSe as functions of the
depth of the isoelectronic impurity potential Vo. The zero of
energy corresponds to a hole at the valence-band edge and
an electron at the conduction-band edge in bulk ZnSe. The
horizontal dotted line indicates the energy of the free exciton
in ZnSe while the vertical dotted line at V0 ———2640 meV
represents the position of the dominant bound exciton peak
in the photoluminescence spectra, of dilute ZnSe: Te.
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strength for the heavy-hole-like bound exciton, f~', is a
factor of 3 higher. For the Inane matrix element we use
E~ ——24.2 meV. We observe a decrease in the oscilla-
tor strength with the increase of ~Vp~ (and thus increase
of the hole binding). This is expected since the oscilla-
tor strength reflects the overlap between the electron and
hole wave functions, which decreases when the difference
in scale between the electron and hole wave functions
increases.

IV. BOUND EXCITONS IN STRAINED
QUANTUM WELLS

In this section we extend our study to strained ZnSe-
Zni Mn Se quantum wells with single Te impurities
centered in the well. The main motivation for this is
the recent experimental study of this system by Fu et
al. s They performed optical measurements on 44-A.-wide
ZnSe-Zni Mn Se (z 0.21) quantum wells with a
monolayer sheet of Te impurities incorporated in the cen-
ter of the well. The monolayer of ZnTe is subject to both
interdiffusion and strain. The lattice mismatch between
ZnTe and ZnSe is very large, approximately 7%, but
a defect-free epitaxial structure is still expected. Two
peaks, interpreted as due to recombination of bound exci-
tons located at single Te atoms and pairs of Te atoms, re-
spectively, were observed in the photoluminescence spec-
tra. The dominance of these two peaks was explained by
interdiffusion of Te atoms to make singles and pairs the
most frequently occurring cluster species in the distribu-
tion of Te clusters. From magneto-optical measurements
Fu et al. concluded that the bound-exciton hole wave
function is strongly localized around the Te impurities
while the electron is bound to the hole in a donorlike
fashion. The strong localization of the hole around the
Te impurities and the assignment of the two peaks to
exciton localization at single and pairs of Te impurities,
respectively, indicate that the single impurity case, as
a first approximation, can be modeled by assuming one
single Te impurity located at the center of the quantum
well.

The band oA'sets and the energy splitting between
light-hole-like and heavy-hole-like valence-band states are
not precisely known for this system. Optical studies
of Znp 77Mnp 2sSe and ZnSe single-crystal films have re-
vealed a total band-gap diIII'erence of 110 meV for the
unstrained heterojunction for z = 0.23, and we use
this value for our structure with x = 0.21. A large strain
modifies this value substantially and also causes a split-
ting of the light-hole and heavy-hole valence-band edges.
The lattice constant for single-crystal Zn~ Mn Se has
been measured by Yoder-Short, Debska, and Furdyna.
For z = 0.21 they predict the lattice constant to be 0.85%
larger than in the well material ZnSe. The barrier ma-
terial thus imposes on the well material a tensile strain
parallel to the interface and a compressive strain normal
to the interface, and

e~~
is thus positive in the well. Since

values for deformation potentials and elastic constants
are known only for the well material ZnSe, we assume
these values for the barrier material also. For the ratio
between the elastic constants we use Ciq/Cii ——0.605.

For the deformation potential b we use the experimental
value —1.2 eV. The deformation potentials ai, ag, and
ci are not known individually, but the sum (ai+ a2+ ci),
often called the hydrostatic deformation potential, is ex-
perimentally found to be —5.4 eV. Therefore we can-
not calculate LVt- and AV~ independently, only their
sum. Since the well is much narrower than the barri-
ers, which are typically 500 A. wide or more, ss we fur-
ther assume that all strain is accorrirnodated in the well
material. This means that the common in-plane lattice
constant in the quantum-well structure is identical to the
bulk lattice constant of the barrier material. (We shall
come back to this point later. ) With the present choice
of material parameters we then have D = —22 meV and
AV~+ LU~ ———36 meV in the well and zero in the bar-
rier. Inspection of Eq. (13) shows that the light-hole-like
band edge in the well is raised in energy in the presence
of the strain. Thus the light-hole-like valence states be-
come energetically favorable relative to the heavy-hole-
like states in the well. Moreover, the band gap will be
reduced. To specify the heterostructure completely we

must choose a value for the light-hole-like valence band
ofFset. Fu e.t al. suggested AEgH 30 meV, based on
previous optical studies of ZnSe-Zni Mn Se quantum
wells of similar layer thicknesses and Mn concentrations
and found this value to be compatible with their own
magneto-optical studies. The efI'ect of strain can be in-
corporated in "eA'ective" band edges for light holes and
heavy holes, and with the choice of Fu et al. for AELH
these eA'ective band edges are

Ewell P Ebarrier 30 meVLH —
s IH

(43)
ll 44 meV Ebarrier 30 meHH HH

The conduction-band oA'set follows from subtract;ing
AEgH from the sum of the "unstrained" band gap,
~AVc + AVH [, and [D~, and we find Vc w

——138 meV.
One notices that the system is predicted to be type II
for the heavy holes. The band lineup is schematically
illustrated in Fig. 5.

To check the correctness of this set of parameters, we

138meV

44meV 3QmeV

FIG. 5. Schematic illustration of the band lineup (in the
electron convention) for the present quantum well structure
according to (43). The dashed and dotted lines correspond to
the light-hole and heavy-hole "effective" band edges, respec-
tively, after accomodation of strain. The filled dot symbolizes
the hole-attractive Te impurity.
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investigated the implications on the energetical positions
of the light-hole and heavy-hole free excitons and com-
pared with experiments. The splitting between the type-I
light-hole and type-II heavy-hole exciton was calculated
using an extension of the multiband effective-mass for-
malism of Sanders and Changs4 as modified by Wu and
Nurmikko. We discuss our method in Appendix D. We
obtain 29.5 and 12.3 meV for the light-hole and heavy-
hole exciton binding energies. Since the structure is type
II for heavy holes, the electrons and holes are spatially
confined in different regions. This significantly reduces
the binding from the mutually attractive Coulomb poten-
tial. Even though the lowest heavy-hole single-particle
state (—30 meV) is only 10 meV lower in energy than
the lowest light-hole subband edge (—19.6 meV), the ex-
citon splitting is found to be 27.6 meV with the parame-
ter values above. This seems to be consistent with what
is experimentally observed by Fu et al. In their photo-
luminescence excitation spectra a small and broad peak
is observed at the high-energy side of the dominant exci-
ton peak. Its size and shape support the interpretation
that the peak is due to type-II heavy-hole excitons. In
type-I structures the heavy-hole peaks are usually larger
than the light-hole peak, but when the structure is type
II for the heavy holes, the reduced electron and hole over-
lap may change this completely. Optical transitions in-
volving spatially separated states also tends to have a
smoothing effect on the spectra, and the identification of
the onset energy for the transition is not always clear.
A rough value for the experimentally observed splitting
between the light-hole and heavy-hole exciton is 30—50
meV, somewhat higher than our theoretical value of 27.6
meV.

Competition between the strain-induced reduction of
the light-hole energy gap and the confining well potential
decides whether the light-hale free exciton is red-shifted
or blue-shifted compared to free excitons in bulk ZnSe.
The photoluminescence spectra at 6.5 K for a ZnSe epi-
layer exhibits a dominant free-exciton peak at 2800
meV. With a bulk exciton binding energy of 20 meV
(Ref. 15) this gives at fundamental band gap, E&, of 2820
meV in bulk ZnSe. To give an estimate of the position of
the light-hole free-exciton peak in the present quantum-
well structure, the electron and light-hole subband edges
are needed. These energies follow from solving the stan-
dard "particle in a potential well" problem which gives
45.3 meV for the electrons and 19.6 meV for the light
holes [mr, H/mo = (pi+2pg) j for the present 44-A-wide
quantum well. Using the scheme for calculating exciton
energies described in Appendix D, a binding energy of
29.5 meV is predicted. With the previously listed values
for D and LVI, + AV„ this adds up to a light-hole ex-
citon at 2797 meV. In the photoluminescence excitation
spectra of Fu et al. , measured at 2 K, the lowest peak,
presumably due to the light-hole exciton, is located at

2818 meV.
The 20-meV discrepancy may be due in part to uncer-

tainty in the deformation potentials. The discrepancy be-
tween the theoretical and experimentally observed value
for the predicted blue-shift of the free light-hole exciton
can also to some extent be accounted for by assuming a

smaller strain in the ZnSe well material, i.e. , 70—80% of
the full strain. This would raise the strained ZnSe gap
and thus the energy of the light-hole free exciton. As-
suming the same in-plane lattice constant in the strained
well and barrier materials, reduced tensile strain in the
well will imply compressive strain in the barrier mate-
rial. This will lower the predicted energy splitting be-
tween light-hole and heavy-hole excitons and make the
agreement with experiment less good in this respect. At
first glance it may seem that this can be remedied by
assuming a larger value for AELH. The problem is that
this would make the structure "less" type II for the heavy
holes. This implies an increase of the heavy-hole exciton
binding energy and thus a reduction of the predicted ex-
citon splitting. However, if we assume the presence of
nonuniform strain in the barrier or some free-carrier dis-
tribution (due to unintentional doping), then the result-
ing band bending may be su%cient to localize the heavy

/

hole far away from the interface. Thus the exciton asso-
ciated with the highest heavy-hole subband may become
unobservable, and the observed high-energy exciton peak
in Ref. 8 may be attributed to excitons stemming from
unconfined heavy-hole subbands (which would be more
localized in the ZnSe layer). Evidence for such "uncon-
fined" excitons has been observed previously. ss We sus-
pect that the unidentified structure observed in Ref. 19
(the rightmost bump in the PLE spectrum of Fig. 1 of
Ref. 19) is also due to excitons stemming from unconfined
heavy-hole states. Despite the uncertainties mentioned
here, our results for the bound excitons and the compar-
ison with experiment would not be significantly altered
by assuming a slightly different strain distribution.

In Fig. 6 we show energies of the light hole like
bound-exciton ground states for a 43-A.-wide ZnSe-
Zno rsMno siSe quantum well with a centered Te impu-
rity as function of Vo. This well width corresponds to 15
atomic layers in the well. The energy gap in (strained)
ZnSe is chosen as the zero of energy. For comparison
we also plot the energy of the corresponding bound hole
plus the energy of a free electron at the lowest subband
edge. The difference between this energy and the bound-
exciton energy corresponds to the energy gained when
an electron binds to an impurity-bound hole. To com-
pare our results for the bound exciton with experiment,
the energy of the light-hole exciton is needed. Using the
scheme in Appendix D an energy of 37 meV is found,
and this energy is also marked in Fig. 6. The dominating
bound-exciton peak in bulk spectra with an energy 120
meV less than the free-exciton peak, is seen in Ref. 8 to
be 100 meV below the free-exciton peak in the spectra
for the present quantum well. This bound-exciton peak
must be due to recombination of the light-hole-like bound
exciton, and corresponds to Vo ——2530 meV in Fig. 6.
This value should be compared with Vo ——2640 meV
predicted by the bulk calculations. We will comment on
possible reasons for this discrepancy in the next section.

For completeness we mention that the smaller feature
observed 25 meV below the free-exciton peak in photo-
luminescence on bulk samples, 4 is seen to be 45 meV
below the free exciton in the quantum-well spectra. This
corresponds to Vo ———2315 meV in Fig. 6, in good agree-
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2 meV due to the accompanying lowering of the well
potential seen by the electron (from 138 to 124 meV).

We also calculated for Uo ———2530 meV the energies of
the heavy-hole-like (1's) bound hole and bound exciton
and found the binding to be reduced with 22 meV com-
pared to the corresponding light-hole-like states. This
difference is only one half of the difference between the
light-hole and heavy-hole effective band edges in the well
material (44 meV). This illustrates the substantial mix-
ing of heavy-hole and light-hole SOHO's in the bound-
hole and bound-exciton wave functions.

-160-2000
I I I I I I I

-2200 -2400 -2600
v, (mevl

-2800 V. DISCUSSION AND CONCLUDING
REMARKS

FIG. 6. The ground-state energies of a light-hole-like
bound excitou (solid) aud a light-hole-like bound hole + a
free electron (dashed) localized at a single Te impurity cen-
tered in a 43-A-wide ZnSe-Zup ypMup 2iSe strained quantum
well, as functions of the depth of the isoelectronic impurity
potential V0. The zero of energy corresponds to a hole at the
light-hole bulk valence-band edge and an electron at the bulk
conduction-band edge in ZnSe after accomodation of strain
(as described in the main text). The horizontal dotted line
indicates the energy of the light-hole-like quantum-confined
free exciton in the quantum well. The vertical dotted line
at V0 ———2530 meV represents the position of the dominant
bound-exciton peak in the photoluminescence spectra of Fu
et al. (Ref. 8).

ment with the predicted value from the bulk calculations.
The bulk value for Vo (Vo ———2275 meV) corresponds to
a binding energy of 38 meV, i.e., 7 meV less than the
experimental value.

The average electron and hole distances from the im-

purity, & )r, [ ) and & ~rt, ( ), for the light-hole-like
bound exciton are plotted as functions of Vo in Fig. 2.
When comparing with the results for bulk, we observe
that & ~r, ~

) is substantially reduced by the confining
quantum-well potential which makes it energetically fa-
vorable for the electron to localize closer to the impurity
in the middle of the well. The strongly localized hole
wave function is much less affected by the presence of tlie
barrier. For Uo

———2530 meV, which is experimentally
relevant, we find & (r,

~

)= 29.6 A. and & (rt, (
)= 5.5 A. .

In Fig. 3 the probability of finding the hole in the light-
hole bound exciton at the impurity site, F(0), is shown
as function of Vu. We see that F(0) is slightly increased
when comparing with bulk results (for the same Vo), and
this is mainly due to confinement by the valence-band
well potential. The confinement of the electron by the
quantum-well potential is also refIected in the enhance-
ment of the oscillator strength as seen in Fig. 4.

A different choice for the light-hole valence-band offset
does not alter our results significantly. For Vo ———2530
meV less than 1% of the hole probability density is in the
barrier material. By choosing, for example, AELH ——44
meV instead of 30 meV for this value of Vo, the energy
of the bound light hole is shifted with 0.1 meV. The en-

ergy of the light-hole-like bound exciton is reduced with

In the present work we have calculated properties
of bound excitons in Te-doped bulk ZnSe and ZnSe-
Zni Mn Se strained quantum wells. The value of the
hole-attractive potential Uo, which includes self-trapping
effects, has been determined by fitting experimental val-
ues for the bound-exciton binding energy. A discrepancy
between the fitted values of Vo for the bulk case (Vp ——

—2640 meV) and the quantum-well case (Vo
———2530

meV) is observed, and possible reasons for this discrep-
ancy are discussed below.

In our calculation we have studied binding to a single
Te impurity in the middle of the quantum well, and not to
a plane containing numerous Te impurities which is the
experimental situation. Although the strong localization
of the hole wave function around the single impurity sug-
gests that these situations are not so different as far as
binding of bound excitons is concerned, we are inclined
to believe that this is the main reason for the observed
discrepancy. Since the lattice mismatch between ZnTe
and ZnSe is large, additional strain occurs in the region
around the impurity sheet. In addition to introducing
potential terms in the bound-exciton Hamiltonian, this
strain will also modify the self-trapping and the accom-
panying lattice relaxation and therefore change the ap-
propriate value to use for the impurity potential Vo.

Also the strain induced on the ZnSe well material by
the Zni Mn Se barriers may inQuence the hole self-

trapping and thus effectively change the appropriate
value to use for Vo. The results may also have been in-
fmuenced by the uncertainty connected to the choice of
material parameters, the accommodation of strain, and
the approximations involved in the solution of the bound-
exciton equations. However, since the bound exciton is
localized around the impurity, one generally expects the
confinement energy to be less for bound excitons than
free excitons in a quantum well. Thus for all reasonable
choices of confining potentials and deformation potentials
the bound-exciton binding energy, i.e. , the difference be-
tween the bound-exciton and free-exciton energy, will be
larger in the quantum-well case than in the bulk case.
Since the experimental results on the contrary show a
20-meV lower bound-exciton binding energy in the quan-
tum well compared to bulk, we do not believe that these
sources of inaccuracy account for a major part of the
observed discrepancy.

The electron-hole exchange interaction is presumably



EXCITONS BOUND TO ISOELEGTRONIC Tc TRAPS IN ZnSC. . . S079

larger in the quantum well than in bulk because of the
larger electron-hole overlap in the former case. 2 The ap-
proximation of neglecting exchange interactiom in the
present calculational scheme is thus an error source which

may account for some of the observed discrepancy in the
values of Vo.

The strain induced on the the ZnSe well material by
the Znq Mn Se barriers may also inffuence the hole
self-trapping and thus effectively change the appropriate
value to use for Vo. Likewise, the results may have been
inQuenced by the uncertainty connected to the choice of
material parameters, the accommodation of strain, and
the approximations involved in the solution of the bound-
exciton equations. However, we do not believe that these
effects can account for a substantial part of the observed
discrepancy.

The strong localization of the hole wave function
around the Te impurity for intermediate and large values
of 1Up1 may raise a question about the applicability of the
EBOM to this system. However, the previous success of
EBOM in the description of acceptor states with simi-
larly large binding energies and probabilities of finding
the hole on the impurity site as in the present case,
indicates that the EBOM offers a reasonably accurate
description.

To probe our conjecture for the reason for the observed
discrepancy, we suggest an experiment in which single Te
impurities in quantum wells can be studied unambigu-
ously. This can be achieved through dilute doping of Te
impurities in the central region of the quantum well so
that strain effects due to the Zn Te monolayer and interac-

tions between adjacent impurities are definitely avoided.
The calculated oscillator strengths in Fig. 4 will hope-

fully be used to calculate recombination lifetimes of the
bound exciton to compare with experimental lifetime
measurements, assuming that such will become available,
to shed further light on the physics of these interesting
systems.
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APPENDIX A

The form of the electron basis functions are shown in
Eq. (22) where

Ypp ——gl/4n,
(A 1)

Y2p —+5/16m. (3 cos 8 —1)
2z2 —(z2 + y2)

The kinetic-energy operator does not couple Ypp and Y2p,
and the matrix elements

2 2 h

2m, ) ' 2m,

are found to be

~~

h 9'2
[6P, I(2, P;+ P; ) —4P'I(4, P;+ P, )]

2m~

h 't72
= EA, P4P;I(6, P'+ P, ) 4P,'I(8, P; + P;—)],2m, )

where E~y —Ii /(2m, a*2) and

I(n, p) =—
OO 1 n+1

8Q tE
n -pu p-(n, +1)/2 I

1

+
)

(A4)

Here j. denotes the I' function.
Similarly the overlaps are found to be

& @*."14'." & = I(2+~'+~, , P. +P, )~i„i, .

The matrix elements from Uqw(z) are slightly more cumbersome to evaluate and are obtained as follows:
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1«."Ivqw(~)ly', ' & = I—(o, p, + p, )' du Vqw(ua*)e-«*+P l"'

«!'I&qw(~)l@!' & =
44~

~

du u Vqw (ua*)e «'+/ 'l"

/(P'+ P, )I(2, P'+ P, ) du Vqw(ua*)e-«+P l"'
(A6)

«"lv~w(&)l&l' & =
16 p;+p,

du u'Vqw(ua')e-~/'+/' l"'

—8 7r/(p; + p, )I(2, p, + p, ) du u'Vqw(ua*)e «+/-' l"'

+ 2 x;+ q
I 4, ;+ q +2I 2, ;+ du Vqw(ua') e «'+P'l"

where

du Vqw(ua*)e ~" = Vqv]/gx/P (1 —erf[I ~P/(2a*)]j,

-s/z
du u V (ua')e ~

V&ru ( ]1 — rf]1~elf/i2 )]) a+ . e (A7)

du u Vqw(ua*)e " = Vqw
4 p„. ~ 31//n. P-'/'

4

13
]1 —erf[lr/P/(2a')]) + ( +

2
erf(z) =—~

2
dtl e

APPENDIX 8

(A8)
I„(l,p, lB.l) =

I„(i,lm, q) =

u'
du ——u e1+1

dQ V;o Y( Y~o . (B4)

To obtain a numerically tractable expression for
Vl(R), defined in Eq. (27), we use the following stan-
dard expansion:

The integral I„ is given in terms of incomplete I' functions
which are available as standard functions in numerical
libraries. The integral I~ is given in terms of products of
3j symbols (see, for example, Ref. 41).

1 = 4x
lu —R/a'

l

) 1 8&
2l+ 1 ~'+~

m= —1

x Y (n )&I (&K). (B1)

APPENDIX C

In the effective-mass approximation the oscillator
strength for light polarized in the z direction is [see

Here u) = max(lul, l~l/a') and u& —min(lul, lal/a"),
respectively. Insertion into Eq. (27) gives

V;, (a.) = 4~), , I„(l,P, + P, , lR, l)
1

l=o "+'

Eq. (39)]

f = ~ ):l&uolp lu o&l~&o

d r @~ (r)@,(r)

where

1

x ) Y] (BR)Iri(i, lm, j), (B2) The quantities involved are defined after Eq. (39) in the
main text. The Bloch functions u o and u~ o(j = 1, 2, 3, 4)
are normalized according to
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d r~u(r)) = V~, (C2)
a j-like (I's or 17) bound exciton to use in our combined
EBOM and eA'ective-mass approach thus simplifies to

where V~ is the volume of the primitive cell. The link be-
tween the bond orbitals and the Bloch functions is given

by the identity

(C3)
x ) G~(R)@,(R) (C8)

valid for Wannier functions ta&.42 To get the proper nor-
malization of the Bloch functions we set

which is Eq. (41) in the main text.

u)~(r —R.) = QV~~R, u~ (C4)

Using Eqs. (C3) and (C4) we can transform the
EBQM hole wave function ~@h &= P; D, ~@;P. Gz(R)~R, u~ . & to the efFective-mass picture as fol-
lows:

~q/, & = ) Gy(R)~R, u~

) G, (R)
~,' d&n

= ) g'„(r) ) u), (r —R,)

p
I tl p F

= V~ ) G~(R)g, (R) (CG)

The expression for f thus turns into

Here @~&(r) is a smooth function which interpolates

Gz(R)/gV~ at all lattice points and corresponds to the
effective-mass envelope function. The overlap integral in

Eq. (Cl) can now be evaluated as

2 2

d'r @~(r)&.(r) = ) .V~&~(R)& (R)

APPENDIX D

The band offsets given in Eq. (43) imply that the ZnSe-
Znq Mn Se quantum well under consideration is weakly
type II for the heavy holes and weakly type I for the light
holes. Therefore, the single-particle states for the holes
may not provide a good basis for solving the Schrodinger
equation for the heavy-hole and light-hole excitons. In
this appendix we extend the formalism by Sanders and
Chang, s4 as modified by Wu and Nurmikko, ss to treat
weakly type-I and type-II excitons.

The Hamiltonian for the exciton is H = H, + Hg + e,
where H, and Hh are the efFective-mass Hamiltonians
for the electron and hole, including the strain-induced
changes in band offsets, and v is the Coulomb interac-
tion. The single-particle hole states are calculated with
a multiband effective-mass theory (k p), while the elec-
tron states are treated within the spherical effective-mass
approximation. The material parameters are given in the
main text. Because the heavy-hole single-particle states
are spatially extended due to the type-II character of the
band oA'set, they do not provide a useful basis for solving
the excitonic Hamiltonian. Similarly, although the light
hole is type I, the confinement is quite weak. However, in
the presence of the electron-hole interaction, the single-
particle hole states are better confined. We thus choose
for the hole basis the set of hole eigenstates of appropri-
ately chosen "artificial" quantum wells. This is done by
modifying the heavy-hole and light-hole "effective" band
edges by adding, in general, diA'erent potentials bVLH and
bVHH to the hole part of the Hamiltonian when solving
for the hole basis functions.

According to the standard method, we obtain the fol-
lowing Schrodinger equation for the exciton in a two-band
model, including one electron and one hole subband:

E~(bV, k

x ) G~ (R,)@,(R,) (C7)
+ ) V„~(b V, k(), k)() G~„,(kI() = E(b V)G„,„(k

For symmetry reasons only the basis functions labeled a
and b in Eqs. (16) and (17) will contribute to the sum in

Eq. (C7). This is because only these angular basis func-
tions belong to the same irreducible representations (for
the point group of the quantum well) as the electron basis
functions. The expression for the oscillator strength for

where bV symbolizes bVLH and bVHH. Here 'E(
~~)

kis
the single-electron energy, E" (bV, k~~) is the expectation
value of Hh, in the hole basis which is in general different
from the single-hole energy. V„„,(hV, k~~, k~~) is the corre-

sponding Coulomb matrix element, and G„„,(k~~) is the
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excitonic envelope function. G„(k~~) is expanded in a
set of 15 Gaussians with widths covering a broad physical
range:

G„(k~~) = ) C~' (2vrP~) 'l exp

bVHH and bVLH are varied to give minimum ground-state
energies for the light-hole and heavy-hole excitons. The
exciton binding energies are found by subtracting the ex-
citon energy from the sum of the single-particle electron
and hole energies at the zone center (k~~ = 0). (For the
type-II heavy holes the single-particle energy corresponds
to the barrier energy. )

The strain splits the heavy-hole and light-hole band

edges by 44 meV. Thus, the results of our calculation for
the light hole are close to those obtained by neglecting
the band mixing. Because of the presence of strain, the
heavy-hale states lie within the continuum of the light
hole when the additional band oA'set bVHH is included.
As a result, the heavy-hole single-particle states interact
with a continuum of light-hole states. This leads to ficti-
tious resonances for the heavy-hole states. Nevertheless,
because the heavy hole and the light hole are decoupled
at the center of the Brillouin zone, it is sensible to think
in terms of a heavy-hole subband, even though it lies
in the light-hole continuum. A proper treatment of the
band mixing with a continuum is beyond the scope of this
study. Therefore the heavy-hole exciton is calculated ne-
glecting the band mixing.
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