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Surface states of a semi-infinite superlattice
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The surface states of a semi-infinite superlattice with a step discontinuity in the potential at the inter-
face has been calculated within the framework of the Kronig-Penney model. An explicit solution is ob-
tained for the eigenenergy of the surface state. Surface states are shown to exist only for certain values
of the barrier widths and/or heights of the semi-infinite superlattice and of the potential step discon-
tinuity at the interface. Approximate, but very accurate, formulas are derived for the surface-state ener-

gy and its respective characteristic decay length, allowing one to readily determine the conditions for the
existence of surface states.

I. INTRODUCTION

There has been a substantial research effort in the
physics of quantum-well structures stemming from the
recent developments in the crystal-growth techniques
exemplified by molecular-beam epitaxy (MBE) and
metalorganochemical vapor deposition (MGCVD). With
these precise crystal-growth methods, one can now grow
high-quality structures with tailored band-gap profiles
and with a multitude of layers with thicknesses ranging
from a single monolayer to hundreds of angstroms.
Structures and phenomena, involving quantum
confinement, reduced dimensionality, and superlattices,
have been predicted and experimentally observed. Re-
cently, there has been interest in the surface states of a
semi-infinite superlattice with a step discontinuity at the
interface. These type structures are easily grown by
MBE or MOCVD and provide an excellent experimental
vehicle to study the early predictions of Tamm, ' Shock-
ley, Bardeen, and others concerning the theoretical
foundation of surface states. An infinite superlattice
separates the free-electron continuum into allowed bands
of extended states and forbidden bands as a result of the
periodicity of the lattice. However, if this periodicity is
broken by the addition of an interface, as in the case of a
semi-infinite superlattice, then the existence of surface
states localized at the interface becomes possible. Ohno
et al. experimentally observed Tamm surface states in
these structures using a combination of photolumines-
cence, photoluminescence excitation, and photocurrent
spectroscopies. They also performed numerical calcula-
tions on a nine-well Alo 2Gao 8As/GaAs superlattice as a
function of interface potential and obtained excellent
agreement with their experimental results, verifying the
existence of localized surface states. Huang did theoreti-
cal modeling of these surface states within the Kronig-
Penney' (KP) model and also performed tunneling reso-
nance calculations for a finite number of quantum wells.
He also showed the possibility of mini-stop-gap mode for
two coupled semi-infinite superlattices. "

In this work we investigate the surface states of a
semi-infinite superlattice with a finite step discontinuity

in the potential at the interface within the framework of
the KP model with finite barrier heights and widths for
the superlattice. This is distinct from Tamm, who used
the 5 function KP model in his classic work on surface
states. The 5-function limit is inappropriate for typical
III-V semiconductor superlattices grown by MBE or
MOCVD. For well and barrier thicknesses greater than
20 A, the KP model is a reasonable approximation to the
band structure of superlattices. In this work we derive an
exact equation for the surface-state energy for the arbi-
trary KP model which reduces to the Tamm surface state
in the appropriate limit. In addition, we develop very ac-
curate approximations for the surface-state energy and
decay length which allows one to readily determine the
conditions for the existence of the physically acceptable
surface states. We apply these results in a detailed
analysis of the surface states of two different semi-infinite
superlattices as a function of varying barrier width and
interface barrier height. As the barrier width decreases,
the minibandwidths increase, and the surface state be-
comes unphysical. By the appropriate design of the
semi-infinite superlattice, one can construct a surface
state which has a large extension into the superlattice.
These surface states may exhibit large Stark shifts and
enhanced absorption, making them ideal candidates for
optical modulators and detectors.

II. THEORY

In this paper we calculate the energy and condition for
the existence of surface states for a semi-infinite superlat-
tice with a finite step discontinuity within the KP model.
The semi-infinite superlattice has a periodicity of length
a, well width L, barrier width Lb, and barrier height Vo
as depicted in Fig. 1. At the interface there exists a step
discontinuity in the potential, Vo. Vo can be greater or
less than Vo. In this work we are interested in surface
states whose wave functions are localized at the interface
(x =0) and decay exponentially to zero on both sides of
the interface. To find the surface states, we must solve
the Schrodinger equation with ihe appropriate boundary
conditions of continuity of the wave function and its
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The eft'ective electron mass for a GaAs/Al Ga& As su-
perlattice is 0.067 times the bare electron mass and is as-
sumed to be the same in the GaAs and AlGaAs regions
in the following analysis. This condition can easily be re-
laxed by applying the appropriate boundary condition of
continuity of the inverse e6'ective mass times the deriva-
tive of the wave function at each interface. Applying the
boundary conditions at x =a for cell n gives

FIG. 1. Semi-infinite superlattice of quantum wells with
periodicity a, well width I, barrier width I.I„and barrier
height Vo. The interface at x =0 has a barrier height of Vo.

Jn+Ln =Mn ie '+2V'„ ie

ikJn —ikI „=EM„.&e
'—EX, &e

and at x =L„,

(8)

derivative across every interface,

d + V(x) %(x)=e4(x),
dx

where m is the electron effective mass, V(x) is the
conduction-band profile, and c the eigenenergy of the sur-
face state. The potential energy for the conduction band
is taken to be (see Fig. 1)

0 for 0&x &L
V(x)= '

Vo for L &x &a,
and is repeated periodically for x )0. For x & 0,

V(x) = Vo

%„(x)= '

where n labels the well-barrier unit cell starting from cell
0 at the interface and within the cell %„(x) is defined for
x measured from 0 at the origin of the unit cell to a at the
end. For x & 0 the wave function decays exponentially as

Solving Schrodinger s equation in each region for the
wave function gives

J„e' +L„e '"" for 0(x &L, (2)

M„e +X„e for L (x (a, (3)

cos(ka ) =cosh(KLb )cos(kL„)

k+————sinh(KL )sin(kL ), (12)

where k is the Bloch wave vector defined over the first
Brillouin zone ( —rr/a &k(m/a). In order to find the
surface states of the semi-infinite superlattice, we make
the ansatz of a decaying wave function away from the
surface at x =0 into the superlattice (%„=e
which implies that

e
—PnaJ L —PnaLn= O~ n e 0 ~

(13)
naM ~ e

—Pna
n 0& n 0

where p is the characteristic decay wave vector into the
superlattice. Applying the boundary conditions at x =0
results in the additional equations

ikL —ikL EL —EL
ikJ„e —ikI n e =EM„e "—EX„e

If we assume a completely periodic superlattice (not
semi-infinite), then the application of the Bloch condition
(0'„=e'""'%'„)to Eqs. (8)—(11) results in four equations,
the determinant of which equal to zero, results in the
well-known equation for the allowed bands and forbidden
gaps in the KP model,

%(x)=Fe

where
F =Jo+Lo,
E'F =IkJ, —ikL, .

(14)

A E
Vo —c

2m

A E -=Vo —c, .
2m

(6)

Setting Lo =cJ0, we solve the above equations:

E =lk' '. (16)1+c
In order to find c, we solve Eqs. (8)—(11) with the ansatz
equation (13). After some amount of mathematics, we
find the following equation for c:

Substituting c into Eq. (16) and solving for x =ei",
1

[cosh(KLb)cos(kL )+(K'/K)sinh(KL&)cos(kL ) —(k/K)sinh(KLb)sin(kL )+(K'/k)cosh(KLi, )sin(kL )]
(18)
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Also, solving Eqs. (8)—(11) with the ansatz equation (13)
(by setting the determinant of the set of equations equal
to zero) gives

1 1
cosh(pa ) =—x +—=cosh(KL )cos( kL )

2 x b w

k+————sinh(kL )sin(kL ) .b w

ka cot(ka) = Vo

Vo

a
Lb

' 1/2
Vo —c,

where E is a reduced energy defined to be E =A' /2ma .
Applying the condition for a physically acceptable state,
x & 1 or x & —1, one can show that Eq. (18) within the
5-function limit results in the identical condition found
by Tamm for an acceptable surface state:

' 1/2
2m Vo —kf 2

mVoLb ) (22)

By plotting Eq. (20) as a function of k, one finds that a
surface state exists below the first energy band only if the
left-hand side of Eq. (20) times L„ is less than unity since
the limit of kL cot(kL ) is 1 as k approaches zero and
the left-hand side is a monotonically increasing function

Equation (19) is the analog of Eq. (12) for the allowed KP
bands with k being replaced by ip for a decaying solution.
Equations (18) and (19) completely specify the surface
state and must be solved simultaneously. These equa-
tions can be solved numerically, albeit with a fair amount
of computational effort. Here, after some amount of
mathematics, we find that these two equations can be re-
duced to a simple equation for the surface-state eigenen-
ergy:

K (k +K )
—K'(k +K )tanh(KLb ) =k cot(kL ) . (20)

(K —K )tanh(KLi, )

The above equation for the eigenenergy still must be
solved numerically or graphically, but is readily solvable

by most nonlinear equation-solver programs. It general-
izes the Tamm surface-state solution to the case of an ar-
bitrary superlattice. To our knowledge this is the first
time that a simple equation for the surface states of the
general KP model has been derived. After obtaining k
from Eq. (20) and the corresponding surface-state energy
from Eq. (5), the solution is substituted back into Eq. (18)
in order to verify that it is a valid solution (decays ex-
ponentially). Only solutions with x & 1 or x & —1 are
physically acceptable. x (—1 corresponds to a decaying
wave function that changes sign every lattice constant
(that is, pa is equal to a real number plus im).

Before proceeding further, we investigate Eq. (20) for
the surface-state energy in the limit of the 5-function
Kronig-Penney model. This limit is obtained by letting
Vo go to infinity and Lb go to zero in such a way that the
product VoLb remains constant. After taking this limit,
Eq. (20) reduces to the Tamm condition for the energy of
the surface state:

of k. In the 5-function limit, this leads to the condition,
for an acceptable solution,

Vo
1&

Vo

a
Lb

1/2
Vo

(23)

which is again in exact agreement to that found by Tamm
for the 5-function KP model.

In the general case for the arbitrary KP model, one
must solve Eq. (20) for the surface-state energy and sub-
stitute the answer into Eq. (18) for x in order to test for a
physically acceptable solution. This is carried out in the
analysis section below for two different superlattices.
However, we now derive simple approximate equations
for the surface-state energy and for x within a tight-
binding-type approximation that allows us to determine
easily the surface-state energy and its region of existence.
This analysis is based on taking the large-ELb limit. We
begin by expanding Eq. (20) for the surface-state energy—2KLb
in the parameter y =e '. This leads to the following
equation for the surface-state energy:

f (s) =2g (s)y =0,
where

(24)

h(s)=(k —K )sin(kL )
—2kKcos(kL ) . (27)

We note that the equation for f (E) [Eq. (25)], set equal to
zero (corresponding to infinite Lb), gives the eigenener-
gies for the states of an asymmetric quantum mell with
barriers Vo and Vo (the well at the interface; see Fig. 1).
The function h(E) [which is simply f (E) with K'=K],
when set equal to zero, gives the eigenenergies of a sym-
metric quantum well with barriers Vo (this gives the
centers of the allowed bands for the semi-in6nite super-
lattice in this limit. Since y is assumed small in Eq. (24),
it is natural to expand about the solution of f (e), which
we denote as Fo, the eigenenergy of the isolated asym-
metric quantum well. Expanding Eq (24) ab.out Eo, re-
sults in the following equation for c.:

—2KLb
s —=so+ 2g (s)e (28)

Similarly, we can expand Eq. (18) for x in y, then expand
x about Eo, and use Eq. (24) to obtain

e '(K —K')
(k +KK'/k)sin(kL )+(K —K')cos(kL ) E=r,

(29)

These approximate equations above for c, and x give very
accurate results for most practical superlattices in the re-
gions where physically acceptable solutions exist. This

f (e)=(k KK')sin(—kL )
—k (K+K')cos(kL„), (25)

K'(k +K )sin(kL )+k(K —K )cos(kL )

(K —K')

(26)

and we de6ne
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—KLb K —K'
2e E (30)

Vp

will be discussed further in the next section. We now an-
alyze Eq. (29) for solutions where lxl ) 1. We obtain the
condition for a physically acceptable solution:

' 1/2
0

tight-binding energy band is given by

a=so+2t cos(ka ), (34)

where u is the periodicity of the superlattice. For the
semi-infinite superlattice at site 0, we find

E=E+te (35)
This is the generalization of the Tamm condition ex-
pressed by Eq. (22) to the arbitrary KP model. When Eq.
(30) is an equality, this gives an accurate approximate
solution for the parameters when the surface state no
longer exists. Also, in analogy to the 5-function model,
the solution to Eq. (20) for the surface state below the
first miniband exists only when the left-hand side of the
equation is less than unity (in the limit that k approaches
0) as discussed previously. In the small-y limit, this
reduces to the following condition for a valid solution:

1— (31)
Vp )
Vp k=0

where Vp & Vp. This is a generalization of the Tamm
condition expressed in Eq. (23). In the superlattice struc-
tures that we have investigated, Eq. (30) is violated well
before Eq. (31).

Before going into a detailed analysis of the above
theoretical results to actual superlattices, we present a
relatively simple model that contains much of the per-
tinent physics for the surface states of semiconductor su-
perlattices. Although this model is not useful for accu-
rate calculations, it does add insight to the previous re-
sults. This is the crystal-orbital method or tight-binding
model. ' In this model the physics of the semi-infinite su-
perlattice is expressed in the following Hamiltonian,
where E; is the energy of the quantum eigenstate at site i
and t;. is the overlap integral between the wave functions
on site i and j, respectively:

H =g e, ctc, + g t, ,c; c, , (32)

where

Ep for i =0,
for i&0,

Fc; = c,;c; +g t; cj . .

J
(33)

For a completely periodic superlattice and applying the
Bloch condition (c =e'J"'co), it is easily shown that the

t; =t forall j.
This is only an approximate Hamiltonian for our situa-
tion since it treats the overlap integral between wells 0
and 1 as identical to that between wells i and j. Although
this assumption can be relaxed, it is not the situation
here. However, it does treat the case where the quantum
well at the interface has a different energy than the quan-
tum wells in the superlattice, which, aside for the
difference in the overlap integrals, is essentially the phys-
ics we do have here. The equation of motion in the
Heisenberg picture is

At any other site,

s =so+ t (ei"+ e i"
) .

From Eq. (35) we solve for x:

(36)

x =e~'= (37)

Substituting x into Eq. (36) and solving for the surface-
state energy, we find

t'
E =Ep+

Cp Ep

Substituting this into Eq. (37) gives, for x,

(38)

Ep Ep
(39)

The condition that x ) 1 or x (—1 leads to

leo col ) ltl . (40)

III. ANALYSIS AND RESULTS

In this section we apply the above theoretical results
for the surface states of a semi-infinite superlattice to two
different GaAsAl Ga& As superlattices. In both super-
lattices the barrier height Vp is fixed at 240 meV ap-
propriate to an x concentration of approximately 0.3.
For the first superlattice, the quantum-well width is fixed
at 40 A, but the barrier width is allowed to vary. The
second superlattice we consider has a quantum-well
width fixed at 80 A. For the 40-A quantum well, there is
only one confined state in the quantum well and, conse-
quently, only one energy band below Vp, whereas for the
80-A quantum well there are two confined energy states

This condition states that the difference in energy be-
tween the quantum-well energies Ep, for the states in the
superlattice, and Ep for the quantum well at site 0 must be
greater than one-quarter of the bandwidth in order to
have a well-defined decaying surface state [from Eq. (34)
the bandwidth is 4t]. Basically, this defines the condition
where the surface-state energy intersects the extended
Bloch states of the superlattice and ceases to exist. Equa-
tions (38)—(40) provide a qualitative answer to the energy
and condition for the existence of surface states. The
essential physics of surface-state formation relevant to
III-V semiconductor superlattices is embodied in this
simple tight-binding model. However, in most cases for
direct experimental comparisons, one would want to rely
on either the exact solution given by Eqs. (18) and (20) or
the approximate but accurate equations given by Eqs.
(28) and (29). In the next section, we apply these results
to two different superlattices.
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FICx. 2. (a) Plot of the surface-state energy vs barrier width
for L =40 A, Vo=240 meV, and VO=180 meV and (b) for
V() =300 meV.

and two energy bands. The surface state is calculated nu-
merically from Eq. (20) and also from the approximate
relation [Eq. (28)]. Likewise, x is calculated from the ex-
act relation [Eq. (18)] and from the approximate equation
[Eq. (29)]. The condition for the validity of a surface
state [Eq. (30)] is also investigated.

In Fig. 2 we plot the surface-state energy (solid line) as
a function of barrier width for the superlattice with
L„=40 A and Vo =240 meV from the solution of the ex-
act equation (20). In Fig. 2(a) the interface barrier is 180
rneV (lower than Vo) and in Fig. 2(b) is 300 meV (higher
than Vo). For large barrier width, the surface-state ener-

gy approaches 95.86 meV for the 180-meV barrier and
109.44 meV for the 300-meV barrier. These are just the
eigenenergies for an asymmetric quantum well deter-
mined by setting Eq. (25) to zero. The dotted lines in the
figure depict the edges of the KP band for the infinite su-
perlattice. The center of the band for large Lb is given by
the zero of Eq. (27) and is 103.81 meV. For the lower
(higher) barrier case (Fig. 2(a) [2(b)]), as the barrier
width is reduced, the surface state interacts with the ex-
tended states of the superlattice and its energy is pushed
downward (upward) as the band becomes wider. Eventu-
ally, the surface-state energy intersects the superlattice
band and is no longer a physically acceptable solution.
This is shown in Figs. 3(a) and 3(b), where we plot x
versus the barrier width derived from the exact equation
(18) for the superlattices of Figs. 2(a) and 2(b), respective-
ly. For large Lb, x is large, implying a rapidly decaying

25"

20-

X 15-

10-

40 60 80 100 120

X

-10

-12

40 60 80

Lb (A)

100 120

FIG. 3. (a) Plot of x for the superlattice of Fig. 2(a) and (b)
for Fig. 2(b).

wave function. In Fig. 3(b), corresponding to the higher
barrier, x is negative and the wave function changes sign
from each adjacent quantum well. As Lb gets smaller, x
decays in magnitude for both Figs. 3(a) and 3(b), eventu-
ally approaching a magnitude of unity. For an absolute
value of x less than unity, the solution is unphysical. For
the 180-meV interface, the critical barrier width below
which the solution is unphysical is 40.27 A; for the 300-
meV barrier the critical Lb is 49.74 A. As we get close to
the critical barrier thickness, x is close to unity and the
wave function extends a substantial distance into the in-
terface. In particular, the number of lattice spacings over
which the surface state extends into the superlattice is
n =1/ln(x) (this is the condition when e ~"'=0.368).
For x =1.2 the surface state extends over 5.5 lattice
spacings from the interface; for x =1.1 it extends 10.5
lattice spacings. In both Figs. 2 and 3, the solid dots in
the figures are the results of the approximate equations
(28) and (29), which are seen to give extremely accurate
results. We have also calculated the surface-state ener-
gies and the corresponding x values by using the qualita-
tive equations derived from the tight-binding approxima-
tion [Eqs. (38) and (39)]. In this case we take the band-
width (4t) to be equal to that derived from the KP model.
These equations provide reasonable results for energies
much less than Vo and for bandwidths that are not too

0
wide. For example, for Lb =50 A, we obtain a surface-
state energy of 92.34 meV and x value of 1.50 for
VO=180 and 114.40 meV and —1.06 for VO=300 meV.
The exact values are 93.29 meV and 1.67 for VO=180
meV and 115.55 meV and —1.01 for Vo =300 meV.

Using Eq. (30) for the condition for a valid solution
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FIG. 7. (a) Plot of x for the lower-band surface state of Fig. 6
and (b) for the upper-band surface state.

FIG. 8. Plot of the surface-state energy for L =80 A and
0

Lb=50 A as a function of interface barrier height Vo for
Vo &240 meV.

0
there is a region of barrier widths between 34 and 40 A in
which only the upper-band surface state is allowed. Re-
sults for x are given in Fig. 5(a) (lower band) and Fig. 5(b)
(upper band). Note that the surface state associated with
the upper band has negative x.

In Fig. 6 we plot the surface-state energy for an inter-
face barrier of 300 meV. Now the surface states occur
above the bands. The critical barrier widths are
Lb =46.37 A (lower band) and Lb =54.44 A (upper
band), in agreement with the approximate results
Lb =47.02 and 51.97 A, respectively. For the higher in-
terface barrier, there is a region of barrier widths, be-
tween 40 and 54 A, in which only the lower-band surface
state exists. In Figs. 7(a) and 7(b) we plot x for the lower
and upper bands, respectively. Note that the surface
state associated with the lower band now has negative x
and that with the upper band has a positive x. This is
true in general. There is a slight inaccuracy in energy
and x for the upper surface state for the 300-meV barrier—KLb 0
superlattice since e '=0. 19 at Lb =50 A, which im-
plies that y is no longer small. The approximate results
based on y being small become less accurate as the energy
gets closer to Vo. For lower energies the approximate re-
sults are extremely accurate.

In Figs. 8-11 we investigate the superlattice with fixed
barrier width Lb =50 A, but as a function of varying in-
terface barrier height Vo. The dotted lines in Figs. 8 and
10 are the edges of the superlattice bands, and the solid
lines are the exact results for the surface-state energies.
In Fig. 8, for Vo & Vo, we find that the surface states in-
tersect the bands at Vo =202.37 meV for the lower band
and for Vo=202. 27 meV for the upper band. The ap-

120 140 160 180 200 220

-0.5
-1.0
-1.5

X -2.0
-2.5
-3.0
-3.5 (b)

120 140 160 180 200 220

Vo (meV)

FIG. 9. (a) Plot of x for the lower-band surface state of Fig. 8
and (b) for the upper-band surface state.

proximate equation (30) gives Vo =203.44 and 200.82
meV, respectively. For Vo larger than these values, the
surface states become unphysical. We also plot, in Figs.
9(a) and 9(b), x for the surface states associated with the
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FIG. 11. (a) Plot of x for the lower-band surface state of Fig.
10 and (b) for the upper-band surface state.

lower and upper bands, respectively. Figures 10 and 11
depict the same calculation, but for Vo higher than Vo.
Here the surface states intersect the band and become un-
physical at V0=287. 21 meV for the lower band and
VO=314.70 meV for the upper band with the approxi-
mate results Vo =288.93 and 305.60 meV. For Vo small-
er than these values, the states become unphysical.
Again, the approximate equations give accurate results
except for the surface state of the higher-energy band of—2KLb
Fig. 10 where e " is no longer sma11.

IV. CONCLUSION

In conclusion, we have derived an explicit formula for
the surface states of a semi-infinite superlattice within the
KP model. In addition, we have investigated the condi-

tions where valid surface states exist. Approximate equa-
tions were also derived, which give rather accurate re-
sults in most situations. A detailed analysis of two super-
lattices with diFerent quantum-well widths as a function
of barrier width was performed. We showed that there
are regions in parameter space (L,Lt, Vp Vp) where
surface states cannot exist. We also showed that the
semi-infinite superlattice can be designed so that x is
close to one corresponding to a large extension of the
surface-state wave function into the superlattice. Semi-
conductor superlattices structures grown by MBE and
MOCVD should prove extremely useful for surface-state
investigations.
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