
PHYSICAL REVIEW 8 VOLUME 44, NUMBER 15
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A method is described for the numerical calculations of the ballistic conductance in mesoscopic struc-
tures in magnetic fields within a lattice model. Examples of calculated results are given for the conduc-
tance across a single quantum point contact and a series of two quantum point contacts. The conduc-
tance is quantized even when the confinement is not adiabatic and interchannel scatterings are still ap-
preciable. The quantization becomes better in magnetic fields. In a series of two quantum point con-
tacts, the magnetic field dependence of the conductance is strongly dependent on the channel number of
both emitter and collector contacts.

I. INTRODUCTION

Recent developments in microfabrication technology
have made it possible to obtain quantum ballistic struc-
tures by introducing a confining potential in a two-
dimensional electron system, typically by lithography
techniques on modulation-doped GaAs/A1 Gai As
heterostructures. Various phenomena associated with
the ballistic conduction have been observed at low tem-
peratures. One of the most striking effects is the quanti-
zation of the conductance across a narrow constriction
(quantum point contact). ' Transport phenomena asso-
ciated with wire junctions have also been observed, such
as anomalies in the low-field Hall effect, a bend resis-
tance, and a negative resistance. The purpose of the
present paper is to describe a numerical method of calcu-
lating the conductance in the ballistic regime in magnetic
fields and present results for a single and a series of two
point contacts.

The conductance quantization has been observed at
point contacts made by a split-gate technique' and later
also at constrictions made by focused ion beam scan-
ning. Effects of magnetic fields have been studied and
shown to enhance the quantization. Effects observed in
combinations of several point contacts include nonaddi-
tivity of the conductance, ' ' zero-dimensional
states, ' ' and focusing effects. ' ' Quite recently, Oka-
da et al. ' measured the conductance across a series of
two point contacts as a function of magnetic field and
found an interesting dependence on the channel number
of the source contact. They have observed a single peak
as a function of the magnetic field for the case of a single
channel and splitting into two peaks when the channel
number is 2.

The quantization of the conductance into integer mul-
tiples of e /arri can be explained easily in an adiabatic,
i.e., slowly varying, geometry. However, the actual sys-
tems may not completely be in such a limit. Various esti-
mates of the corrections to the adiabatic limit have been
reported. ' Calculations have also been done based on

an exactly soluble model and numerically for model
constrictions abruptly connected to wide regions.
These calculations have demonstrated the sensitivity of
the conductance to the form of the confinement. Effects
of magnetic fields have not been studied in detail except
for some analytic considerations in the adiabatic case.

There are various ways of calculating conductance in
ballistic structures. Exact analytic solutions and their
combinations are possible in some cases but their appli-
cations are limited to special kinds of boundaries. A
direct numerical integration of the Schrodinger equation
is another candidate. The simplest way is to use a lattice
model, i.e., a discretization of space. It is particularly
convenient in the presence of a magnetic field which is in-
corporated simply in the form of a Peierls phase factor of
the transfer integral. Further, it can straightforwardly be
extended to the study of effects of scattering from impuri-
ties. It has been used, for example, in calculating ballistic
transport associated with junctions of quantum wires.

In this paper, we introduce a confining potential in a
square lattice and calculate the conductance across a sin-
gle point contact and a series of two point contacts in
magnetic fields. In Sec. II, the procedure to calculate the
conductance of ballistic structures in the lattice model is
brieAy described. Although the method itself is well es-
tablished in the absence of a magnetic field, there are
some nontrivial aspects especially with respect to scatter-
ing problems in magnetic fields. This method is based on
three essential ingredients: Landauer's conductance for-
mula, the relation of transmission coeKcients to the
Green function, and a recursive calculation of the Green
function. In Sec. III the conductance is explicitly calcu-
lated in a model quantum point contact in magnetic fields
both in the absence and presence of scatterers. In Sec. IV
numerical calculations are performed on a series of two
point contacts. It will be demonstrated that the
magnetic-field dependence of the conductivity is strongly
modified by the channel number of the emitter and col-
lector point contacts, i.e., the channel wave functions are
directly reAected in the conductance. The summary and
conclusion are given in Sec. V.
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II. CONDUCTANCE CALCULATION
IN A LATTICE MODEL

A. Hamiltonian

cell consisting of M sites and P is an M XM matrix con-
sisting of phase factors:

We consider a square lattice with lattice constant a and
an isotropic nearest-neighbor transfer integral —t. The
lattice point is specified as (1,j). A magnetic field H is in-
cluded in terms of a Peierls phase factor of the transfer
integral. We choose the gauge such that

u& +4t
u2+4t

0

Pi&
=e xp(2m iH1 )5& I, ( 1,1

' = 1, . . . , M ) .

The Hamiltonian &o is an M XM matrix given by

(2.7)

(1j ~&~1+ 1j )= t—exp(2miHj ) (1j ~&~lj +1)= t, —

(2.1)

0 v +4t3 (2.8)

where H=4/4o with @=Ha being the magnetic Aux

passing through a unit cell and No=eh /e being the mag-
netic Aux quantum. The diagonal element of the Hamil-
tonian is chosen to be

0 0 0 uM+4t

with uI being the local potential energy at the site l.
To obtain linearly independent solutions for Eq. (2.6)

we first set

(1j ~&~1j )=4t+u(l,j ), (2.2) (2.9)

where the first term on the right-hand side shifts the ener-

gy origin to the bottom of the band and the second term
represents the potential energy including that of the
confinement.

In the following, we measure almost all quantities in
units of corresponding quantities in two dimensions, i.e.,
energy is measured in units of the Fermi energy EF and
length in units of the Fermi wavelength A,F. The reso-
nance energy appearing in the lattice model is obtained as

Substituting this into Eq. (2.6) we have

A,Ci = t 'P(&O E)CJ. P—CJ—
which combined with

AC i=C.

C

leads to the following eigenvalue problem:
r

CJ t 'P(&O E) P— —

(2.10)

(2.11)

(2.3)
0 C 1

(2.12)

The wave number k is related to the eigenvalue A, through
The magnetic field is given by exp[ika+imH(M+1)]=A, . (2.13)

a 2 %CO aH=
R,AF EF AF

2

(2.4)

I /2
6A,F

era A
(2.5)

with m, =eH /mc the cyclotron frequency and
E., = uF /co, the classical cyclotron radius, where uF is the
Fermi velocity.

EA'ects of scattering are introduced through randorn-
ness of site energy u(l j ) distributed uniformly with
width W [u(l j )~u(l j )+w(l,j ) with —W/2(w(l, j)(W/2]. The model corresponds to a system containing
a high concentration of scatterers with 6 potential. In
terms of the mean free path A in two dimensions, we
have

This equation has 2M eigenvalues and 2M eigenvectors,
which are classified into M right- and left-going waves.
The M right-going solutions consist of traveling waves
with velocity in the positive x direction and evanescent
waves decaying exponentially in the positive x direction.
Similarly, the M left-going solutions consist of traveling
waves with velocity in the negative x direction and
evanescent waves decaying exponentially in the negative
x direction. In general, any solutions of Eq. (2.6) can be
represented by a linear combination of these eigensolu-
tions.

Let u, (
—), . . . , uM( —

) be Co of the left-going solu-
tions corresponding to ki( —), . . . , A~( —) and
u, (+), . . . , uM(+) be Co of the right-going solutions
corresponding to A, ,(+ ), . . . , A,M(+ ). Define

8. Ideal wire

U(+)=(ui(+) u~(+)) (2.14)

(E—&O)CJ. + tPCJ, + tP*Ci+, =0, (2.6)

First we shall consider a wire infinitely long in the x
direction and consisting of M lattice sites in the y direc-
tion. For a «A, F, this simulates a continuum system
with width (M + 1)a. The equation of motion can be
written as

(2.15)

Any left- and right-going waves are written, at j=0, for
example, as

where C is a vector describing the amplitudes of the jth Co(+)= U(+)C(+), (2.16)
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C (+)= U(+)A(+)JC(+),
which leads to the relation

(2.17)

where C(+ ) is an appropriate vector consisting of expan-
sion coefficients. For general j we have

~ + &

=&~+, —tP F( + ) (2.27)

(2.28)

Note that &&+,=&0 and that &&+, is not Hermitian.
Define the Green function G as

CJ(+)=F(+)' 'CJ(+),
with

Note that U(+ ) is in general not a unitary matrix.

C. Scattering problem

(2.18)

(2.19)

with

—tP

0

tP 0 e ~ e

~ ~ ~

tP—2

0

0

(2.29)

CO=CO(+)+Co( —) . (2.20)

Using Eq. (2.19), the amplitude at cell —1 is written as

Now let us consider the scattering problem for the wire
with length N (from cell 1 to cell N) to both sides of
which an ideal wire is attached. First, we separate the
amplitude Co at cell 0 into the right-going (incident) and
left-going (reilected) solutions:

0 0 00''' tP

where & =& for j=1,2, . . . , N. Immediately, we can
derive

C~+ |(+) —C~+ i

C i=F '(+ )Co(+ )+F '( —)Co( —) . (2.21) = —t(N+ 1
I
GIO)P[F '(+ ) F'( —)]Co—(+ )

This gives

C i=F '( —)Co+ [F '(+) F'( —)]—Co(+ ) . (2.22)

Therefore, the equation of motion at cell 0 becomes

(E—&0)CO+ tP*C,
= —tP [F '(+ ) —F '( —) ]Co(+ ), (2.23)

with

5'0=%'0 tPF '( —) . — (2.24)

Note that gfois not Hermitian.
'

On the other hand, only right-going (out-going) waves
can exist at cell N+ 1. Therefore, we have

and

(2.30)

Co( —) =Co —Co(+ )

=
[
—t(OI GIO)P[F '(+ ) F'( —)]——1]C (+ ) .

(2.31)

From these equations we can obtain the transmission
coefficient t„ for the incident channel v with velocity U

and out-going channel p with velocity U„as
1/2

[
—tU '(+)(N+ llGIO)

++2= ( )Cx+i i

which gives the equation of motion at cell N+ 1

(F.—&~+, )Cx+, + tPCN =0,
with

(2.25)

(2.26)

&&P[F (+)—F '( —)]U'(+)I „
(2.32)

and the reflection coefficient r„ for incident channel v
and out-going channel p as

PV
UV

(gI '( —)[ —t(OIGIO)P[F '(+)—F '( —)]—lI U(+))„.. (2.33)

In the absence of a magnetic field, these formulas reduce
to the simpler expressions widely used in various nu-
merical studies. In terms of the transmission coefficient
t„, the conductance G is given by the multichannel ver-
sion of Landauer's formula: (jIG"'Io) '= [jl(E—~"') 'lol,

(2.35)

To calculate the Green function, we define the diagonal
and off-diagonal Green functions by

PV

(2.34) where &'J' is the total Hamiltonian for the strip compris-
ing the 0 to j cells excluding the intercell Hamiltonian
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=(j +1IG"+"jI+1)~,+~,, (jlG"'10)

with the initial condition (OIG' 'IO)=(E —jjo) '. Note
that —t 'F '( —)P and —t 'F(+ )P are the diagonal
Green function under the boundary condition of left- and
right-going waves, respectively. "

III. SINGLE POINT CONTACT

A. Model

We consider a wire with length L„and width L
( L /2—(x (L, /2 and L /2(—y (L /2) and intro-
duce the following potential which confines electron
motion in the y direction in the vicinity of the center of
the wire.

V(x,y) =—1+cosV 27TX

2 L
2

y —y+(x)
e(y —y+ (x)'), (3.1)

,;,+i and %,+, , Then, the Green function for strips
with any length can be obtained by a set of recursive for-
mulas, "-4'

(j+ llG"+"Ij+1)
=F.—&, , —%. ..(j I

G"'Ij )~,;, +&

(2.36)

where 8(t) is a step function, defined by g= 1 for r & 0
and 0=0 otherwise, and

L
y+(x) =+ 1 —cos

2&X

4 L„
(3.2)

B. Numerical results

Figure 2 gives examples of the calculated conductance
across the point contact for L /A, F=4, 8, and 16. The
other parameters are the same as in Fig. 1. For
L /A, F =4 the potential variation is far from being adia-
batic and the conductance is not quantized. With the in-
crease of the magnetic field, however, it becomes well
quantized. This is because the magnetic field creates edge

The parameter 6/A, F characterizes the width of the chan-
nel of the point contact and V represents the maximum
bottom energy at x=y=0. For a fixed width L, the
wire length L„determines the length scale over which the
potential varies. The adiabatic limit corresponds to
L /XF»1.

At x =0 the confining potential is parabolic. With in-
creasing distance from x =0, the bottom energy decreases
and at the same time the efFective width becomes larger.
This model is expected to simulate the potential variation
in the vicinity of actual quantum point contacts for ap-
propriate values of the parameters. The potential profile
for D, IA,~=1, L»IA.~=4, and V/EF=0. 5 is given in Fig.
l.
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FIG. 1. An example of the potential profile at a quantum
point contact for V/EF =0.5, 5/A, F = 1, and Ly /A, ~ =4. The
solid lines represent the potential at x /L„=O, +1/6, +1/4, and
+1/3 as a function of y. The horizontal dashed lines represent
the bottom of the one-dimensional subbands at the contact, i.e.,
for the parabolic potential at x =0.

0.0 0.2 0.4 0.6 0.8
Bottom Energy (units of EF )

1.0

FIG. 2. Examples of the calculated conductance across a
quantum point contact as a function of the bottom energy V in
magnetic fields. The thin straight lines represent the channel
number at the contact. %'hen the confinement potential varies
more slowly, the conductance quantization becomes better.
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states and reduces backseat tering considerably. For
J /g =16/ +=16 we can see a well-developed conductance
quantization even in the absence of a magnetic field.

Figure 3 gives the current distribution 6 for the out-
going or incoming channels, defined by
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FIG. 4. Examples of the calculated conductance across a
quantum point contact as a function of the bottom energy V in

the presence of short-range randomness characterized by the
mean free path A. The thin straight lines represent the channel
number at the contact.
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FIG. 3. Examples of the calculated current distribution

among out-going channels as a function of the bottom energy V

when the conductance is weH quantized. Most of the current is

carried by the out-going channel identical to that at the point
contact because of the adiabatic nature of the potential, but
contributions of other channels are stiH noticeable. (a)

L /A, F=16 and %co, /E~=O, (b) L /A. F=8 and A~, /EF=0. 25.

I
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FIG. 5. A schematic illustration of a series of two quantum
point contacts. Electrons are injected from the emitter point
contact on the left-hand side and collected by the collector con-
tact on the right-hand side. In the central region, both top and
bottom edges are connected to an ideal and infinitely long wire.
We define L„as the width of the wire in the y direction (width
of the region without confinement potential), L+ as the 1ength
over which the confining potential varies in the emitter and col-
lector contacts, and L~ as the width of the opening. At the
point contacts, the bottom of the parabolic confinement poten-
tial V+ can be raised in order to control the channel number.
The parameters characterizing the confinement potential at the
point contacts are @~=2, 6+/1=1, L+/k~-=5, L /A, +=10,
and Ly /A, F = 10.
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for the two cases where the conductance is well quantized
[(a) L /A, +=16 at A'co, /E+=0 and (b) L /A, ~=8 at
A'co, /E~=0. 25]. It should be noted that an appreciable
part of the current is carried by channels different from
those at the point contact although the total conductance
is well quantized. In Fig. 3(a), for example, about 90% of
the current is carried by channel 1 and the remaining
—10% is carried by channel 3 having the same symmetry
for 0.6~ V!EF&0.8. Such symmetry is destroyed by

magnetic fields. Figure 3(b) shows that about 95% of the
current is carried by the lowest channel and the remain-
ing -5% is carried by the erst excited channel for
0.5 5 V/Ez ~0.7. Interchannel as well as intrachannel
scatterings due to nonadiabaticity of the con6ning poten-
tial have been shown to be exponentially small in the
slowly varying case. ' ' Therefore, the present result
shows that the conductance is quantized even when the
potential is far from being in the adiabatic limit.
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FICr. 6. Examples of the calculated conductance across a series of two quantum point contacts as a function of the magnetic fie
when the channel number of the collector contact is 3. The parameters are L~/A, ~=10,p+ =2, and 5+/A, =1. (a) L„/ELF=10 and
L+/A, +=5, (b) L„/X+=15 and L+/A, +=5, (c) L„/A,F=10 and L+/A, +=7.5.
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Examples showing the effects of disorder are given in
Fig. 4 for L„/A,+=8. Scattering modifies the quantiza-
tion even when the mean free path is more than one order
of magnitude larger than the length of the region where
the confining potential is appreciable (A/A, ~ =200).
%'hen A and L become comparable, the quantization is
completely destroyed and the conductance exhibits Quc-
tuations (a precursor of the universal conductance fiuc-
tuations). The randomness often gives rise to a sharp
structure due to resonant tunneling through virtual
bound states.

IV. SERIES OF TWO POINT CONTACTS

A. Model

To calculate the conductance for a series of two point
contacts corresponding to recent experiments, ' we shall
use the model schematically shown in Fig. 5. At the
boundaries y =+L~/2, an infinitely long wire with width
L is connected, i.e., we impose the boundary condition
that only out-going waves are present at y =+L /2. The
current is injected from the left (negative x direction) and
collected by the right (positive x direction) point contact.
The length of the region over which the confinement po-
tential varies is L for the left and L+ for the right con-
tact. The outer ends of these point contacts are connect-
ed to infinitely long wires.

We first separate the region into three parts: the cen-
tral region, the left emitter point-contact region, and the
right collector point-contact region. The Green function
is calculated from left to right in the emitter region and
from right to left in the collector region. The Green
function in the central part is calculated recursively from
that of a small system near the center in a manner similar
to that described by Eq. (2.36). This Green function is
connected to that of outgoing ones and those of the
emitter and collector point-contact regions at the out-
most boundaries. The resulting Green function between
the left and right edges can be used to calculate the cor-
responding transmission coefticients under the boundary
conditions that only out-going waves exist at y =+L~/2.
Because electrons How into the wires in the y direction
the conductance between the two point contacts becomes
smaller than e /~A especially in strong magnetic fields.

The confining potential at the point contact is simulat-
ed by the parabolic potential similar to that used in the
single point-contact case discussed in the previous sec-
tion. For example, the potential in the left point-contact
region is given by

L„
y+(x) =+ 1—

2
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X
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where the origin of x is chosen at the left edge. The simi-
lar potential is assumed in the collector region except

V(x,y) =
2

1+cos
L

with

y —X+(x)+SF' e(y' —y+(x)'),ax (4.1)
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FIG. 7. Examples of the calculated conductance across a
series of two quantum point contacts as a function of the mag-
netic field for I-„/X+ Ly/XF 10, I-~/A, F=5, @+=2, and
5+/A, = 1. (a) N+ =2 and (b) N+ = 1.
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that 6, V, L, , and p are replaced by 6+, V+, I.+,
and p+, respectively.

B. Numerical results

Figure 6 gives examples of the calculated results when
the channel number N+ at the collector point contact is
3. The channel number X of the emitter point contact
is varied by raising the bottom potential V at the left

edge. The axis of abscissa is the ratio of the distance
between the emitter and collector point contacts to the
classical cyclotron radius, i.e., D /A, with D
=L„+L++L . In Fig. 6(a), the width of the region
without confining potential is I. /A, F =10 and the length
of the emitter and collector regions is I.+/XF=5. The
flat region is wider in Fig. 6(b) and the point-contact re-
gion is wider in Fig. 6(c). In usual systems made on a
GaAs/Al Ga& . As single heterostructure, the Fermi
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FIG. 8. Examples of the calculated conductance across a series of two quantum point contacts as a function of the magnetic field
in the presence of scatterers with short-range potential. The parameters are L„/k+ Ly /Az 10 L+/XF 5 p+ 2 6+/k+ 1,
and N+ =3. (a) A/A, F = 100, (b) 20, and (c) 10.
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wavelength is typically kF-500 A. Therefore, we have
D —1 pm and I. -0.5 pm, which are very close to the
length scales of the point contacts used in the experi-
ments. '

Oscillatory structures appear due to complex interfer-
ences with waves reflected from different parts of the
boundaries. Apart from these structures the conduc-
tance is determined essentially by the number of emitter
channels. When there is a single channel in the emitter
(N =1), the conductance decays rapidly with increasing
magnetic field. When the first excited channel is occu-
pied, its contribution appears at higher magnetic fields.
The difference between the conductance for N =3 and 2
is large at weak magnetic fields, decreases, and then in-
creases again with the magnetic field. These features are
most clearly seen in Figs. 6(a) and 6(c). It can be con-
cluded that the magnetic-field dependence of the conduc-
tance is determined essentially by the spatial (current)
density distribution of the channels at the emitter point
contact. This explains the recent experiments' which
have shown that, for N+ =3, the conductance exhibits a
single peak at zero magnetic field for N =1 and a dou-
ble peak as a function of magnetic field for N =2. The
fluctuations due to interference effects have not clearly
been observed by the experiments, however.

The conductance depends also on the channel number
of the collector point contact. Examples are given in Fig.
7, where N+ =2 in 7(a) and 1 in 7(b). As is shown in Fig.
7(a), when N+ =2, the difference of the conductance for
N =1 and 2 is still appreciable but the conductance
remains essentially the same for N =2 and 3. The same
feature can be seen in Fig. 7(b). When N+ =1, the con-
ductances for different N+ are very close to each other
although there remain slight differences. This interesting
dependence on the collector channel has not been report-
ed yet.

Examples showing effects of scattering are given in Fig.
8 for the same system shown in Fig. 6(a). Scattering
modifies the conductance, particularly the interference
patterns, even if the mean free path is about an order of
magnitude larger than the distance D between the emitter
and collector contacts (A/A, ~ = 100) as shown in Fig. 8(a).
When the mean free path becomes comparable to the dis-
tance [Fig. 8(b)], the original interference fluctuations
disappear completely and new fluctuations appear due to
scatterings from impurities. When A(D [Fig. 8(c)], the
conductance exhibits universal conductance fluctuations.
These calculations show that the amplitude of the univer-
sal conductance fluctuations is larger than that due to
complex interferences of waves reflected at different
boundaries. It should be noted that the latter fluctua-
tions are continuously taken over by the universal con-
ductance fluctuations with the increase of the random-
ness.

At nonzero temperatures, we have to consider various
effects which destroy the phase coherence of electrons.
The first is averaging due to the broadening of the elec-
tron energy distribution. Examples of the results of such
energy averaging are shown in Fig. 9. With increasing
temperature the amplitude of the oscillatory structures
decreases gradually. At high enough temperatures the

interference fluctuations disappear completely and we
can clearly identify the features corresponding to the
channel wave functions. The energy broadening neces-
sary to quench the fluctuations is estimated as
hE/E~-2(A~/D ) from the condition b, kD -2m, w. hich
corresponds to the temperature of kz T /E~ —b.E /
2mE~-(1/m)(A, ~/D), in agreement with the numerical
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FIG. 9. Examples of the calculated conductance across a
series of two quantum point contacts as a function of the mag-
netic field at nonzero temperatures. The parameters are
L„/A, I- =L~/A, +=10, L~/A, +=5, p+ =2, 6+/k+=1, and
X+ =3. (a) ksT/Et; =0.002 [roughly corresponding to experi-
ments of Okada et al. (Ref. 18)] and (b) 0.02.
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result. Another important effect is the inelastic scatter-
ing due to electron-electron and electron-phonon interac-
tions. Calculations have been performed with the in-
clusion of a constant imaginary part in the site diagonal
element of the Hamiltonian and given results quite simi-
lar to those at nonzero temperatures. Such calculations
are certainly inappropriate because the imaginary part
violates the current conservation, but might be sufhcient
for a qualitative description of the effects of inelastic
scatterings on the interference fluctuations.

Numerical calculations have also been performed for
p+'s different from 2.0. The results show that the in-

terference fluctuations are quite sensitive to the value of
p+. However, the characteristic features determined by
the channel number of the emitter and collector point
contacts remain the same as long as p+ is not too
diff'erent from 2.0 (p+ ~ 4).

V. SUMMARY AND CQNCI. USION

point contact. The condition for the quantization is not
necessarily 6„=1or 0 as has frequently been discussed
based on the adiabatic limit. Effects of scattering from
impurities have been studied and shown to modify the
quantization strongly even if the mean free path is much
larger than the size of the point contact as expected.

The conductance across a series of two point contacts,
similar to the system used in the experiments of Okada
et al. ,

' has also been calculated. There appear Auctua-
tions due to complex interferences of waves reAected
from different boundaries. It has been shown that the
magnetic-field dependence of the conductance is mainly
determined by the density distribution of the narrow
channel at the emitter point contact but depends also on
the channel number of the collector point contact. The
interference Auctuations are modified even in the pres-
ence of weak scattering from impurities and are gradua11y
replaced by universal conductance fluctuations when
scattering becomes strong.

A method of calculating the conductance in ballistic
structures in magnetic fields has been discussed and ex-
amples of the numerical results have been presented. The
model consists of a square lattice with effects of a mag-
netic field being included in the form of a Peierls phase
factor. The conductance across a single point contact in
magnetic fields has been explicitly calculated. It has been
shown that the conductance becomes quantized even if
the potential is not completely adiabatic and that the
magnetic field tends to make the quantization better due
to a reduction in the strength of back scattering at the
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