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In the framework of the well-known k-p Kane band theory, accurate analytical approximations of
conduction- and valence-band dispersion of direct-band-gap zinc-blende-structure semiconductors are
derived when the spin-orbit-splitting energy does not exceed the band-gap energy. These approxima-
tions include the interactions with the remote bands. The expressions of the eigenfunctions are also ob-
tained. The present analysis elucidates and unifies previous analytical band descriptions.

I. INTRODUCTION

The Kane k-p perturbation model® is widely used as a
convenient way to describe the band structure of III-V
semiconductor compounds. However the diagonalization
of the k-p Hamiltonian leads to the resolution of a cubic
equation, which does not yield simple expressions of the
roots. Therefore, in the past, simple analytical band
descriptions were derived, either around the zone center, !
possibly accounting for the band nonparabolicity,? or at
large wave-vector limits.> Empirical formulations of the
conduction-band dispersion have also been given*> and
an alternative model, with convenient analytical solu-
tions, has been developed but at the sacrifice of accura-
cy.® These approximations were used in transport calcu-
lations,*> in the study of electron-spin relaxation or to
analyze electron-spin polarization under optical pumping
conditions. »%~® More recently, Rode’s expressions* have
been rediscovered to discuss ‘‘universal” conduction-
band-structure effects.’ In the present paper, we analyti-
cally derive simple algebraic expressions of the
conduction- and valence-band dispersions in the frame-
work of the Kane model. These approximate solutions
are accurate when the spin-orbit-splitting energy A does
not exceed the band gap energy E;. Our treatment also
relates the above-mentioned approaches to the Kane
theory.

II. THE KANE MODEL

In the k-p Kane theory! the k-p perturbation and the
spin-orbit interaction are exactly diagonalized in the
quasidegenerate band subset formed by the first conduc-
tion band, the heavy-hole band, the light-hole band, and
the spin-orbit-split band, hereafter referred to as I'¢, 'y,
I'g;, and T'; bands. The energy origin is taken at the top
of the valence band. The four double roots of the result-
ing secular equation are given by

=0, (1)
(e'—Eg)e'(e'+A)—(kP)*(e'+2A/3)=0 . 2)

In these expressions, k is the wave vector, 7 is a real ma-
trix element related to the momentum matrix element be-
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tween conduction and valence states at the zone center,
and &' =e—(#2k2/2m,) where € is the electron energy
and mg the free-electron mass.

At large wave-vector limit, the asymptotic behavior of
the Iy, T'y;, and ', bands can be deduced from Eq. (2):3

es=[(Eg—A/3)/2]+kP ,
e,=[(Eg—A/3)/2]— kP, 3)
8’81= —2A/3.

For small k values, the solutions of Egs. (1) and (2) de-
scribe four parabolic bands. They yield the expressions
of the effective masses s7z¢, 7724, 7724;, 7727 (respectively, of
the T, gy, Iy, and I'; bands) when the remote-band in-
teraction is not taken into account (,7z4 is defined as an
electron mass and sregy,, s2g;, 724 are defined as hole
masses):

my/mg=1+PHEg;+2A/3)/Eg(Eg+A),
my/rmeg,=—1,
mo/mg=—[1—(2P%/3E;)],
mo/my=—{1—[P*/3(Eg+A)]},

where P2=(2m, /#*) P°. The values of 7z, s724;, and s7e,
are not very different from the measured effective masses.
In contrast, the experimental heavy-hole mass is deter-
mined by the remote-band interaction.

The expressions of the wave functions can be simply
written in the basis chosen by Kane using the real
coefficients a;, b; and c; defined by

a;=kP(e,+2A/3)/N; ,
b;=V2(A/3)(e;—Eg)/N; , (5)
c;=(g;—Eg)(ej+2A/3)/N; ,

where the index i refers to the bands I'g, I'y;, and Ty, €; is
the relevant root of Eq. (2), and N; is a normalizing factor
defined by a?+b2+c?=1.

Then the remote-band interaction is added as a pertur-
bation through the matrix elements A, B, €, D, F, §
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defined in Ref. 1, which can be estimated from the experi-
mental values of the effective masses, the band-gap ener-
gy, the spin-orbit splitting energy, and the momentum
matrix element P. For instance, along the [100] direction
of the Brillouin zone we have

moy/mg=my/rmgt+F ,
(mo/mg,)=(mgy/rreg,)—(C+D), ©
(my/mg)=(my/rreg))—[(C+D)/3]—[2(A+B)/3],
(my/my)=(mg/smeq)—[2(C+D)/3]—[(A+B)/3],

where mg, myg,, mg;, and m, are the experimental values
of effective masses and A4, B, C, D, F are related to A, B,
@, D, F through formulas of the type 4 =(2m,/#*)A.
The energy corrections involve these matrix elements as
well as the coefficients a?, b?, and c?.

III. SIMPLE ANALYTICAL DESCRIPTIONS
OF THE CONDUCTION AND VALENCE BANDS

A. Principle

Our method consists in reducing Eq. (2) to a quadratic
equation (i.e., in removing the coupling between one of
the bands and the two others) and is based on the follow-
ing considerations.

We start from a general cubic equation in the form

P(x)=(x—a)x—b)x—c)
=x3—3x2+ox—I1=0. (7)

We take an arbitrary constant ¢ and form the cubic equa-
tion which has the roots «, 4, and c such as a+£+¢=23
and a4c=1II. We obtain

p(x)=x3—3x2+[0—P(a)/a]lx —11=0 . (8)

We now choose « as a root of the equation
P(x)+f(x)=0, where f(x) is an arbitrary function.
Then « is a root of the equation

p(x)=x3—32x2+[0+ f(a)/a]lx —T1=0 . 9)

We now assume that f(«)/« is small enough so that
a=a+8a, £=b+8b, and ¢=c + 8¢, where 8a, 6b, and &c
are small compared to a, b, and c, respectively. Because
the sum and the product of the roots of Egs. (7) and (9)
are identical, this implies

8a +8b+8¢c=0, (10)
and to first order

da/a—+8b/b—+8c/c=0. (11)

From the comparison of the coefficients of the linear
terms in Egs. (7) and (8) we also deduce

(b+c)ba+(a+c)db+(a+b)dc=f(a)/a . (12)

Then, from Eqgs. (9)-(11), we get, for instance,

da/a=—f(a)/[ala—b)a—c)]. (13)
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Consequently, « is a good approximation of the root a
of Eq. (7) if f(a)/a is small with respect to the product
of the separations between a and the two other roots of
Eq. (7). Also, the accuracy of different approximations of
the roots can be compared simply through the functions
f(x) they are associated with. To estimate the error nu-
merically, it can be convenient to make use of the relation

(a~b)(a—c)=3a2~22a+a=[dP(x)/dx]a (14)
and to note that
[dP(x)/dx],=(3a*—23a+0)
X{1—(28a /a)[a/(a—b)+a/(a—c)]} .
(15)
Thus, at the lowest order

8a/a=—f(a)/al[dP(x)/dx], . (16)

B. Analytical band expressions for A< Eg

1. Precise band approximations

We now come back to the Kane model and remark
that Eq. (2) can be written

P(e)=(e'+2A/3)[(e'—Eg)e+A/3)— (kP)?]
—(2A?/9)(e'—Eg)=0 (17
when using the relation
(e'+2A/3)e' +A/3)—2A%/9=¢'('+A) .

We form the equation P(e')+f(g')=0 where f(g')
=(2A%/9)(¢' — E¢) and obtain the two equations

e'+2A/3=0, (18)
e?—e'(Eg—A/3)—EgA/3—(kP)?=0, (19)
which yield
es=[(Eg—A/3)/2]1+6,,

e=[(Eg—A/3)/2]— 6, , (20)
8’81: —2A/3 N
where

E,={(kPP+[(Eg+A/3) /2112 .

These expressions describe mirror I'g and I'; bands, as
Egs. (3) already did. This simply expresses a two-band
coupling between the I'g and I'; bands which quickly be-
comes dominant away from the zone center. It is readily
verified from Eq. (13) that the approximation is extremely
accurate for the conduction band when A <E;.!1° At the
zone center, the conduction effective mass deduced from
Egs. (20) only differs from the effective mass deduced
from the Kane expansion at small k [see Egs. (4)] by the
factor 1—2A%/9EZ2 (at second order) and, whatever the
ratio A/Eg, the correct asymptotic behavior given by
Egs. (3) is predicted for the three bands. For the I'y; and
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I', bands the approximation only holds when EgA /(kP)?
is notably smaller than unity. In Figs. 1-3, the errors on
the I'g, I';, and I'y; bands are plotted for different A/Eg
ratios. They have been estimated from Eq. (13).

We choose the precise I'¢ band approximation given by
Egs. (20) and form the related p(e’). According to Eq.
(9), we deduce the quadratic equation which determines
approximations of the I'g; and I'; band dispersions:

e?+e'[6,—(Eg—5A/3)/2]1+(2A/3)(kP)?
X[6,+(Eg—A/3)/2]7'=0. (1)

Equation (21) provides very accurate but somewhat more
complicated expressions of €5, and €5:

G’SI:_(Eé—EG+A)/2+€2 N (23)
where

6,={[(e —Eg+A)/2]?
—[(2A/3)(eg—Eg)Neg+A/3) e}V

here we have made use of the relation (kP)?

=(eg— Eg)(eg+A/3).

The approximate solutions of Eq. (2), €¢ given by Egs.
(20), €,' and &g,;" given by Egs. (22) and (23), are the solu-
tions of P(g')+f(e')=0, where f(&')=¢'(2A2/9)(e
— Eg)/gg; here we remark that

X[6,+(Eg—A/3)/2]7" .
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FIG. 1. Relative error on the approximate electron energy in
the I's band given by Egs. (20). The error has been estimated
using Eq. (14), starting from Eq. (2) with f(e')=(24%/
9)(e’—Eg). The set of curves is drawn as a function of the elec-
tron kinetic energy normalized to the band-gap energy, for
different values of the ratio A/Eg.
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Using Eq. (13), the relative errors on the dispersions of
the I'; and I'y; bands can be straightforwardly estimated.
They are plotted in Figs. 2 and 3, respectively.

2. Simpler expressions of the valence bands

To obtain a simple description of the I'y;; band, we
need simple expressions of the I'g and I'; bands which are
equivalent to £k P at large k and have the correct limits
at k=0. The first condition provides the correct limit at
large k of the I'g; band and the second ensures the correct
effective mass and limit at the zone center of the light-hole
band because roots of Eq. (2) are related through the
equation

eresey =(2A/3)(kP)* . 24)
We obtain the following convenient expressions:
ee=[(Eg—A)/2]+ 65, (25)
e=[(Eg—A)/2]—6,, (26)
where

E3={(kPY+[(Eg+A)/2]14)1%,

by choosing f(e')=(2A/3)(kP)>.
(24)-(26), we get

Then using Egs.

ey =—(2A/3)/[1+EGA/(kP)*] . 27)
10
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FIG. 2. Relative error on the approximations of the electron
energy in the T'; band given by Eqgs. (20) (crosses), and Eq. (23)
(solid lines). The errors have been estimated using Eq. (14),
starting from Eq. (2) with f(e')=(2A%/9)(¢'— E) in the case of
the first approximation [Egs. (20); M indicates qualitatively the
domain of validity of this approximation as it corresponds to
EgA/(kPP=1}] and fle)=¢€'(2A%/9)(es—Eg) /€6 in the case
of the second approximation [Eq. (23)]. The sets of curves are
drawn as a function of the electron kinetic energy normalized to
the band-gap energy, for different values (q, b, ¢, d, and e) of the
ratio A/Eg.
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FIG. 3. Relative error on the approximations of electron en-
ergy in the I'y; band given by Egs. (20) (dotted lines), and Eq.
(22) (solid lines). The errors have been estimated using Eq. (14),
starting from Eq. (2) with f(g')=(2A%/9)(e’'— Eg) in the case of
the first approximation [Egs. (20)], and f(g')=g'(2A%/9)(eg
—Eg)/¢eg in the case of the second approximation [Eq. (23)].
The sets of curves are drawn as a function of the electron kinetic
energy normalized to the band-gap energy, for different values
of the ratio A/Es. In each case, the calculation has been per-
formed until (¢;+A)/Egz=—1. The error on the approxima-
tion given by Eq. (20) is small only at large k and little sensitive
to the ratio A/Eg.

Equation (27) provides a correct qualitative description of
the I'g; band. For instance, in the case of InP, this ex-
pression is accurate within a maximum error of about 10
meV.

From Egs. (25) and (27), and because g¢+eg +e7
=Eg—A, we can also deduce a simple and accurate ex-
pression of &5:

e7=[(Eg—A)/2]— 63+ {(2A/3)[1+EGA/(kP)*]} .

(28)

This expression has the right limit in k =0, the correct
asymptotic behavior, and yields a split-off effective mass
which differs from Kane’s [given by Egs. (4)] by a factor
1—2A/Eg.

A simple approximation of & giving the right spin-
orbit effective mass can be, of course, obtained by apply-
ing the method that we describe in Sec. III A. Taking
the origin of energy at the top of the spin-orbit split band
and choosing f(¢')= —2¢'2(E;+2A/3), the solutions of
Eq. (9) are given by

=4P2my—6, ,

(29)
e?—¢(Eg+2A—g))—

(A/3e5)(kP)*=0

where s25/mo=3(Eg+A)/P? is the T'; band effective
mass calculated in the Kane model when the remote-
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band interaction is not added and neglecting the free-
electron contribution [see Eqs. (4)] and &,=[(kP)?
+(725P?/2m)*]'/2. The expression of €} given by Egs.
(29) is accurate around k =0 but becomes very quickly a
poor approximation away from the zone center, as indi-
cated by the rapid divergence of f(&’).

It is not surprising that a somewhat more complicated
expression is needed to describe precisely the I'; band
dispersion because the I'; is mainly coupled to the Iy,
band near the zone center and to the I'g band away from
the zone center. These two “coupling regimes” are, for
instance, revealed in Eq. (28).

C. The remote-band interaction and the wave functions

The procedure followed in the Kane model, to calcu-
late the expressions of the wave functions and the interac-
tion with the remote bands, is recalled in Sec. II. For
both calculatlons, only the expressmns of the Kane
coefficients a, , b,z, and c remain to be determined.

For the I'y and I', bands, we start from the approxi-
mate solutions of the secular equation given by Egs. (20)
and we make use of the relation

(kP)? =[61—(Eg+A/3)/2][6,+H(Eg+A/3)/2] . (30)

We straightforwardly obtain the very simple expressions
of the Kane coefficients:

a}=A4}/(1+B}),
b}=B}/(1+B}), 31)
¢;=C}/(1+B}),

where
A}=Xe;+A/3)/[e,—(Eg—A/3)/2] ,
Ci=4ej—Eg)/ej—(Eg—A/3)/2], (32)
B?=[(24%/9)/(ej+2A/3)*]C} .

In the above expressions the index j refers to the I'g or I';
bands. Note that the coefficients 47, B}, and C} can also
be written

A;=Ci=1[1+(Ez+A/3)/26,],

Ci=A3=1[1—(Ez+A/3)/28,],
B:={(2A%/9)/[6,+(Ez+A)/2*}C2 |
B3={(242/9)/[6,—(Eg+A)/2]*}C>

(33)

For the I'y; band, when we use the asymptotic descrip-
tion given by Egs. (20), we simply have a2, =c3 =0,
b%,=1. Taking the better approximation of €g; given by
Eq. (27), we obtain more general and accurate expressions
of the Kane coefficients:

ag=A43/(1+43) ,
b3=B%/(1+ 4%) , (34)
C§1=C%1/(1+A§1) ,
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where
A5 =QA/Eg)[(u—1)/(u?+2)]
X{[1+(Q2A/3Eg) u—1)/ul?} !,
By =u?/(u?+2), (35)
Cy=2/(u*+2),
with
u=1+(kP)?/EGA .

When A is not too large compared to Eg, it is readily
checked that B% and B2 can be neglected with respect to
unity in the expressions of a%,, b%, c%, a%, b%, and c%. In
other respects, A%, is small compared to 1 in the k range
where the model holds, and can also be neglected in the
expression of a2;, b}, and c3,. Therefore, 47, B?, and
C? are generally very good approximations of the
coefficients a,-z, b,-z, and ciz. They can also be used to write
simple expressions of the eigenfunctions and of the
remote-band interaction.

We remark that we have also obtained ags~c; and
a;= —cg. This again results from the two-band coupling
between the I'¢ and I'; bands through the real matrix ele-
ment k7. Analogously, at the zone center, b;=cg and
bg; = —c, because of the two-band coupling between the
I's; and I'; bands.

IV. OTHER APPROACHES

A. Rode’s empirical model for conduction band

To study low-field transport in semiconductors, Rode
uses an analytical expression of the I'g band dispersion
deduced from a two-band model.* He treats the case
where A=0, and remarks that the approximation
remains satisfactory even for large A [when A=0, the ex-
pression of g given by Egs. (20) is equivalent to Rode’s
formula, Eq. (4) of Ref. 4, when the free-electron contri-
bution is not added]. Then, he fits empirically 7 to the
experimental conduction effective mass: this way the
remote-band interaction is somehow taken into account.
Fawcett and Ruch propose a similar model but add in the
expression of the I'g band dispersion a factor which takes
into account nonparabolicity higher-order effects:® the
expansion around k=0 of their formula is then
equivalent to the expansion at fourth order of Kane’s
solution. More recently, Rode’s approach has been used
by Johnson et al. in a slightly different way.’ These au-
thors first introduce the conduction effective mass de-
duced from the second-order expansion at small k of
Kane’s solution calculated when the remote-band interac-
tion and the free-electron contribution are not added (this
is equivalent to Rode’s model but in the more general
case where A¥0). Then, following Rode’s procedure,
they introduce the experimental effective mass through a
fit of 7. In fact, these approximate solutions of Kane’s
model for the conduction band can be simply obtained
and studied from the method described in Sec. II.

We rewrite Eq. (2) with the origin of energy at the bot-

tom of the conduction band and solve the equation
P(e')+f(e')=0, where f(e')=—e%(2A%/9)/(Eg
+2A/3). We obtain

e +Eg+2A/3=0. (36)
e2—e'Eg(Eg+A)/(Eg+2A/3)—(kP)?=0, (37)
which yield
gs=—msP?/2my+ 65,
gy=—rmsP?/2my— 65 , (38)
ey =—Egz—2A/3,
where
Es=[(kP)+(snsP?/2m)*]'/?
and
mg/my=EG(Eg+A)/(Eg+2A/3)P?

is the conduction effective mass calculated in the Kane
model when the remote-band interaction is not added and
neglecting the free-electron contribution [see Egs. (4)].
The expression of g4 given by Egs. (38) corresponds to
Rode’s formula [Eq. (4) of Ref. 4] when A0 and the
free-electron contribution is not added. Close to the zone
center, this approximation is somewhat more precise than
the one given by Egs. (20) and still holds at large A/Eg
ratios (the result of Fawcett and Ruch is even better as it
fits to the Kane expansion at fourth order but is more
complicated). Nevertheless, the improvement of the I'y
band description is not significant when A < E; because
the errors plotted in Fig. 1 are very small. At large k,
Rode’s approximation does not yield the exact asymptot-
ic behavior and is therefore not as good as Egs. (20) [the
asymptotic line being upshifted by A%/g(Eg+2A/3)].

With the above approximation, the remote-band in-
teraction can be easily calculated just as in Sec. IIIC
[Eqgs. (38) are very similar to Egs. (20)]. The added terms
involve the matrix element F which enters the experi-
mental conduction effective mass [see Eqgs. (6)] but also
other matrix elements like A and B. In contrast, as Egs.
(38) exhibit the conduction effective mass deduced from
the three-band model, Rode and other authors*>° intro-
duce the remote-band interaction by fitting empirically P
to the experimental conduction effective mass. With
respect to Kane’s theory, this procedure only involves the
matrix element F. The remote-band interaction is there-
fore not properly taken into account.

B. The D’yakonov-Perel’ model for the valence bands

To perform spin-polarization analysis, D’yakonov and
Perel’ have calculated analytical approximations of the
[y, and T, bands.® They start from Luttinger’s Hamil-
tonian'! and use symmetry considerations. Their treat-
ment leaves an uncoupled parabolic I'¢ band. They ob-
tain precise descriptions of the valence bands when the
kinetic energy and A are small compared to E;. Using
the Kane expressions of the effective masses when the
remote-band interaction and the free-electron contribu-
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tion are not added, their result can be written
gh=—[(kP)>?+EzA]/2Eg
—({[(kPP+EgA]/2Eg}2—(2A/3Eg X kP)))' /2,
(39)
ey = —[(kPP+EgA]1/2Eg
+({[(kP)+EGA1/2Eg}>—(2A/3Eg X kP2 .
(40)

In fact, this formulation can also be deduced from
Kane’s theory, following the method described in Sec. II
and choosing

fe)=—(kPP[(kP/Eg)X(e'+2A/3)—€'(A/3Eg)] .

Then, a parabolic conduction band is factorized and the
solutions of the resulting quadratic equation are exactly
Egs. (39) and (40). An alternative way consists in calcu-
lating the second-order expansion at small k of the I'g
band approximation given by Egs. (20). We obtain

e¢=Eg+(kPP/(Eg+A/3) . (41)

Carrying this expression into Egs. (22) and (23) we obtain
again Eqgs. (39) and (40).

The function f(€’) shows that this result is only precise
in the low-kinetic-energy range, as mentioned by
D’yakonov and Perel’. In particular, the I'y; band ap-
proximation is accurate in a wide k range while the I';
band approximation only holds around k =0. This is evi-
denced by Eq. (39) which describes a parabolic T'; band
away from the zone center and results again from the
two-band coupling between the I'; band and the I' band
which is parabolic in the present case.
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V. CONCLUSION

We have described in this paper a general method to
derive analytical approximations of the solutions of the
Kane band model and to estimate their accuracy. Vari-
ous algebraic band descriptions used in the past®®° have
been deduced here from Kane’s theory in the framework
of our procedure. This analysis brings out a clear insight
into these previous models. Moreover, we have obtained
approximations of the Kane solutions for the conduction
and valence bands which include the remote-band in-
teraction and are extremely accurate. The description of
the conduction band is particularly simple. This is in-
teresting as it should make easier transport calculations
throughout a wide energy range. We have also derived
expressions of the eigenfunctions which are very con-
venient and, therefore, useful for many applications as,
for instance, the interpretation of experiments involving
electron-spin properties: the spin splitting of the conduc-
tion band, which acts as a spin-precession vector, 13,67 ig
directly related to the product a¢bg and therefore can be
expressed in a form well suited for subsequent calcula-
tion. Finally, these approximations of the dispersion of
the conduction and valence bands can be successfully
used to analyze band-structure measurements and to
determine their sensitivity to various parameters. 2
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