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Magnetic interactions and dynamics of holes in CuOz planes of high-T, superconducfing materials
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Starting from the two-band Hubbard Hamiltonian a systematic derivation of the spin-dependent
interactions within the CuO& planes of the perovskite high-T, superconductors is presented, taking
the remarkably strong Cu-0 hybridization of these materials into account. We show that in the
case of hole doping the kinetic energy of the holes plays a dominant role leading to a ferromagnetic
ordering in the surrounding of an additional hole (ferron state). In addition we show that any
reduction of the two-band model to a one-band model clearly underestimates the inhuence of the ki-
netic energy of the holes.

I. INTRODUCTION HT=T . g (d p, +H. c. ) .
(m, m'), cr

(2c)

It is generally accepted that models with strong on-site
Coulomb interactions in a partially filled 3d 2 2 Cux —y
band can be used for the description of the electronic
states of Cu02 planes in the high-T, superconducting
copper oxides. ' In one such model, the so-called two-
band Hubbard model, both the d 2 2 band of the Cux —y
ions and the po. bands of the oxygen ions are incorporat-
ed. The corresponding electronic on-site energies of the
localized orbitals are given by cd and c. , respectively. In
the case of a half-filled Cu band, each of the d 2 2 Cux —y
orbitals is occupied by one electron, only the spin of
which is responsible for the magnetic behavior of the Cu
ion. The overlap of the orbitals between nearest-
neighboring Cu and 0 ions is described by the exchange
integral T. The Coulomb repulsion probed by a second
electron added to the Cu orbital is included via the Cu
on-site (Hubbard) repulsion potential U. The parameters
of the model are taken within the range (see, e.g. , Ref. 3)
U —8 —10 eV, T-1.3 eV, and E= ~E~

—ed ~

—1.5 —5.3 eV,
where the Coulomb repulsion on oxygen is incorporated
by Hartree-Fock approximation. In Ref. 3, the best fit to
experiments was given by c-1.5 eV. In most of the pa-
pers the hole representation is used instead of the elec-
tron one. The two representations can easily be connect-
ed: the Hubbard parameter U remains unchanged, the
hopping integral T changes sign, while the difference of
the one-electron energies c should be replaced by
c&=U —c.

The two-band Hubbard Hamiltonian can be written in
the form

n,
" and n~ are the electronic occupation numbers of

the d &, and po. orbitals, respectively, d (d) and p (p)
are electronic creation (annihilation) operators in the cor-
responding Cu and 0 orbitals obeying Fermi statistics.
m, m' denote the lattice sites occupied by Cu and 0 ions,
(m, m') represents the summation over nearest neighbors
only. The spin index o indicates the spin directions
(o.= 1, 1, ). Ho is the sum over all single-particle states,
HU describes the Coulomb repulsion for two electrons on
the same Cu site with opposite spins and HT is the
transfer term (hybridization) between Cu ions and the
four nearest 0 ions responsible for the mobility of the
particles. We do not consider the 0-0 transfer propor-
tional to the exchange integral t, because t is remarkably
smaller than T; the effect of the 0-0 transfer has been
studied intensively in Ref. 4.

The large value of the Hubbard energy U leads to
strong electron-electron correlation effects in these sys-
tems. For totally filled po. bands and a half-filled d 2x —y
band (corresponding to La2Cu04 or YBa2Cu306), these
effects result in the appearance of the energy gap above
the highest occupied state and in a strong spin-spin in-
teraction causing antiferromagnetic ordering of the Cu +

ions.
To estimate this Cu + spin-spin interaction in the ma-

terials under consideration, the theory of superexchange
is used commonly. According to this theory, the cou-
pling constant J of the spin-spin interaction equals (see,
e.g. , Ref. 6)

H =Ho+HU+HT, J=2T +
(U —E) U(U —E)

(3)

where

HO=ed g n" +E g nt',
m, o

HU=(U/2) g n" n
m, cr

(2a)

(2b)

Expression (3) is usually derived via the Schrieffer-
Wolff transformation, which leads to an expansion in or-
ders of T/( U —s) and T/c. For the half-filled . case (un-
doped situation), the terms proportional T/@cancel, as,
can be seen from Eq. (3). For arbitrary band fillings,
however, the convergence of this expansion is only
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guaranteed if the conditions U —c. )& T and ~E~ ))T are
satisfied. This corresponds to materials with strong Cu
on-site Hubbard interaction and weak hybridization of
nearest Cu and 0 ions. In the superconducting oxides,
however, the Cu and 0 orbitals strongly hybridize and,
therefore, the last condition is not satisfied.

Indeed, taking into account that each Cu ion is sur-
rounded by four nearest 0 ions one finds that the
strength of the hybridization is determined by the param-
eter 4T/~E~. For 4T&& ~s~, the hybridization has to be
considered as weak, whereas in the case of 4T& ~s, one
is in the strong hybridization region. For the high-T,
materials the latter relation holds true, corresponding to
a strong Cu-0 hybridization. Therefore, in order to de-
scribe the transport behavior and the interactions in these
materials, we have to use a treatment adequate for the pa-
rameter range U))E, T and 4T&E=~E~ —Ez~. (In the
case U, E )&T and 4T )

~
U —c, ~, and analogous treatment

can be used by simply replacing c by U —c,, leading to
similar results. )

We will see that, only for the undoped systems, the
spin-spin interaction resulting from our calculation and
the one described by formula (3) coincide (up to terms
—T /[ U( U —E) }« 1). For the doped situation, more
general expressions have to be used.

It was suggested by Anderson that the properties of
the low-energetic excitations of the two-band Hubbard
model are close to those of the one-band Hubbard model
or even to those of the simpler t-J model. In the case of
~E~ ))T, this statement was proved by Zhang and Rice
and its validity was discussed by many other authors. ' '"
Although we will show that the considerations of Ref. 6
do not hold for the actual case ~E~

—T, the idea itself is
interesting and we will discuss it in the last section. The
calculations in Ref. 6 are based on including the lowest-
lying energy states in every Cu04 plaquette only and
neglecting the four other states totally. In the given pa-
rameter range ~E~

—T && U, the validity of this approxi-
mation has to be studied carefully when one wants to
map the two-band Hubbard model onto the t-J model. In
this communication we propose an approach which al-
lows us to find answers to these questions.

II. FIRST UNITARY TRANSFORMATION

Hr2=T g n (dt p, +H. c. )
(m, m'), a.

(5b)

In contrast to the calculations usually performed when
deriving the spin-spin interaction (3), we make use of the
smallness of the parameters T/U and c, /U only, but not
of the parameter T/c. To do so we separate the Hamil-
tonian Hz into two terms

H~ =H~i+H~2,

where the first term

Mz. , =T g (1—n )(dt p +H c )
(m, m'), a

does not change the number of the double-occupied Cu
sites, while the second one

Hi =Ho+H~i+H~+H2+H3+H4 .

H~ coincides with H~ if U is replaced by U2 = U
+8T /U, . H2, H3, and H4 describe the second-, third-,
and fourth-order effects.

The second-order Hamiltonian reads

H =H"'+H'"+H"'+H"'+H"
2 2 2 2 2 pJ

Here

a'"= y 'x2T'
2 m m

m

(8)

describes the induced correlation interaction between Cu
electrons and electrons on nearest oxygen sites.
N =g P P, where

1

+ma =
p g pm'a

(m')

is the totally symmetric oxygen electron operator of a
Cu04 plaquette. (m') denotes the sum over four oxygen
sites which are nearest to the mth Cu site. The Hamil-
tonian

(i) (1 n" )(d d —+Hc )
(m, mi ), 0

changes this number, creating or annihilating double-
occupied Cu sites (an analogous separation was used for
transforming the one-band Hubbard model to the t-J
model' ). In the case of totally filled po. bands and a
half-filled d 2 2 band, the first term, Hz-i, vanishes sincex —y
there are no doubly or zero-occupied Cu sites. The
second one, H&2, contributes to the energy of the system
by mixing Cu states with single and double occupancy.
Due to the large energetic difference —U between the
states involved, one can calculate the contribution of H~2
by a perturbational approach with T/U as the expansion
parameter. For the general case of arbitrary band fillings,
a more convenient realization of the calculations can be
found using the method of unitary transformations (see,
e.g. , Ref. 8).

As a first step we transcribe the system with the uni-
tary exponential transformation

H, =exp[S, }Hexp( —S, } .

S, is chosen to be

S, = g n" (d p ~
—Hc)= T

(m, m'), o.

and U& = U F U. This transformation eliminates the
term H&2 and replaces it by a series of new effective in-
teractions depending on the product of T and powers of
the small parameter T/Ui only. We expand the
transformed Hamiltonian up to the fourth order and keep
all terms up to T /Ui, but only those terms proportional
to T /U j whose mean values differ from zero for the
half-filled d band. This leads to
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describes the conditional hopping of electrons between
the nearest Cu ions [(mm

&
) indicates summation over the

nearest Cu sites] while

H(2)—
2

T2

(m, ml ),o.
(12)

takes into account the motion of electrons for a more
than half-filled d band.

T'
H~z '= —4 g (d d P P +H. c. ) (13)2 U mo m —o. mcr m —cr

III. SECOND UNITARY TRANSFORMATION

If one projects Hi onto the electronic subspace of
half-filled Cu d 2 2 orbitals and totally filled O p orbit-x —y
als, all terms except Ho H2 and H4 turn out to be zero.
The first two terms do not depend on Cu spins, whereas
the term H4 does. Consequently, H4 describes the Cu
spin-spin interaction, which is of the order T"/U, .

There is, however, an additional contribution to the Cu
spin-spin interaction resulting from the conditional hop-
ping term H2" in the second order. To prove that we
perform a second unitary transformation

is responsible for the two-particle motion and H =exp ISz IH, expI —S2 I, (20)

T
m

(14) where

TS2= n (dt d —H. c. ) .
U1U2 ( )

(21)
describes the Cu-0 spin-spin interaction. We introduced
spin operators according to

d l d d
mf mf p m+Szmdm t;dm $ S~m +lsym ~

P~ &P &

=
—,'X +s,+~sy

By this transformation the term H2" is totally removed.
Instead, a number of terms —T /U (and a series of
smaller, higher-order terms) are built up. Among them
the term

The third-order term equals

8T +H(1) +H(2) +H(3)
3 3U 2 3 3 3

1

where

(15)

8TH'" = — g (1+ ,'n" )P—P (d P +H.c. )
U2

4T
4 (22)

is the only one which has a nonzero mean value for the
half-filled d band.

The total Hamiltonian, which is obtained after the
second transformation and after excluding terms with
double-occupied Cu sites, takes the form

T3+
2 g (1+—', n" )n

U1 (, , ),

X(d P +H. c. ) (16)

H =Ho+HT1+H3+H'd +H„. (23)

The last term, H„, describing the Cu superexchange in-
teraction, is given by

describes the hybridization dependence of Cu and 0 ions
from their valences.

The equation

TH',"=, y (1+-,'n.'.)
U1( )

X(d d d P +H. c. )

H =H"'+H'" .se 4 4 (24)

H„=J g s s"
(m, m& )

where

(25)

For the undoped case, the Cu spin-spin interaction
takes the following form (up to an additional constant
which is of no relevance):

takes into account the hopping processes with flipping of
spins, and

2T4J= (1+2U, /U2)=6
1

(26)

is the interaction constant (see also Ref. 8 where this ex-
pression was presented without derivation). We want to
underline here that the only condition for the validity of
the formula (26) is ~E~, T«U. In this case, expression
(26) is equivalent to (3). This is due to the fact that, in the
undoped case, the term linear in T (5a) in the Hamiltoni-
an does not work and, therefore, that the expansion of
the SchriefII'er-Wolff transformation and our transforma-
tions (6) and (20) are identical.

(18)

contributes to the two-particle transport. The only
fourth-order term which has a nonzero mean value for
the half-filled d band is of the form

(3) TH~3'=3 g n (d d d P +H c)..
1 1

(0)—
U3

(19)
IV. SPIN-SPIN INTERACTION IN THE DOPED CASK

where m' numbers the oxygen site situated between the
mth and m1-th Cu site.

The situation changes drastically when one goes away
from half-filling. When adding a hole to the undoped sys-
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tern, it has two important consequences concerning the
magnetic interactions and the kinetic energy of the hole.

First, expression (25) describes the spin-spin interac-
tion of two nearest Cu + ions in that case only when an
0 ion is situated between them. If the charge of this 0
ion equals —1 (i.e., a hole is localized on it), another
much stronger Cu spin interaction starts to work, which
is due to the above-mentioned Cu-0 spin-spin interaction
H' —T /U (14). This interaction is only zero if
(s ~ ) =0, which corresponds to diamagnetic 0 or to
0 ions, but not to 0' ions. As a result, the 0' ion
causes an effective spin-spin interaction between the two
neighboring Cu ions, which is ferromagnetic (see also,
Ref. 13). In our model this interaction has the form

4TJ'= w,
Ui

(27)

where w is the probability of the appearance of the
configuration Cu + —O' —Cu +. The sign of this in-
teraction depends on the 0' spin.

Second, the presence of a hole in the antiferro-
magnetic- (AF) ordered CuOz plane causes an additional,
even more stronger interaction depending on the spin
orientation. This is due to the fact that, in contrast to
other treatments, the conditioned hopping term Hz& in
our theory remains unchanged throughout both transfor-
mations. Indeed, the corresponding kinetic energy of a
hole strongly depends on the spin orientation of the
nearest Cu ions. For example, when the surrounding of
the hole is ferromagnetically polarized, the hole can delo-
calize, which leads to a remarkable lowering of the kinet-
ic energy of the system. For one turned Cu spin this gain
of delocalization energy already equals 0.45 T (if
~s ~ 4T). For the assumed parameter range this energy
is much larger than the energy 8J one needs for turning
one spin. Therefore, for U))4T~ e~, a hole in the AF-
ordered CuOz planes will create a ferrornagnetically or-
dered cluster ' ' (ferron) (see also Refs. 4 and 17 where
magnetic and kinetic interactions are studied in detail nu-
merically). Experimental evidences for hole ferrons in
these materials have been found by magnetic' (and
dielectric' ) susceptibility measurements (see also Ref. 20,
and references therein). Evidences for the ferron forma-
tion are also indicated in optical measurements (see Refs.
18—22, and references therein).

+py, m m cr+py, m m cr)
x y x —

1 y
(28)

Here m„and m are x and y coordinates of the site m, in-
dices x and y describe the two oxygen states in the mth
unit cell. The operators P are normalized but not or-
thogonal to each other;' their anticommutator equals

[P,Pt ]+=5 (5 +6( )/4) . (29)

Following Zhang and Rice, we get rid of the nonortho-
gonality by expanding P via the Wannier operators
P'

P' =( I /N) g e '
P~

k

which are both normalized and orthogonal. Here,

(30)

modified transformation (6) to the Hamiltonian (1).
Another point of criticism is the introduction of local

singlet and triplet states. In Refs. 6 and 23 this local con-
sideration is motivated by the small effective transport
terms of the t-J model leading to a triplet energy much
higher than the singlet energy. On the other hand, Em-
ery et al. were able to show, for a special situation of
the t-J model, that, in the exact ground-state wave func-
tion, there is a remarkable admixture of triplet states.
Further on, the derivation of the t-J model does not de-
pend on the type of the magnetic ordering, which is phys-
ically not satisfactory since the hole transport depends
strongly on the spin orientation (see Nagaoka's theo-
rem ).

In the following we demonstrate an alternative way for
reducing the two-band model to a one-band model, tak-
ing into account from the very beginning the strong Cu-0
hybridization (4T ~

~
s~ ).

As we have shown, the kinetic energy of a hole origi-
nates from the interaction Hz.

&
(5a) which, in an AF-

ordered Cu02 plane, acts only within CuO4 units. This is
due to Pauli's exclusion principle. Because of the four-
fold symmetry axis of the Cu02 plane, the interaction
only involves a totally symmetric linear combination of
the oxygen operators in the Cu04 plaquettes,

Pm' Pm, m ox' y

'(p, „,-+p, „,2 x mx my' x mx my+1

V. ONE-BAND APPROXIMATION
P~ = ,'P~[p ), (1+e —)+py~ (1+e ")] (31)

In this section we discuss the validity of a one-band ap-
proximation derived for the parameter range 4T c..
First, however, we want to add some remarks concerning
the derivation of the t-J model.

As we have pointed out, the treatment of the starting
Hamiltonian (1) with the usual Schrieffer-Wolff transfor-
rnation leads to serious problems in the case of a strong
hybridization c —T since the expansion parameter T /c of
the transformation is not small and the convergence of
the expansion is therefore not guaranteed. This conver-
gence, however, is necessary when treating the transport
processes within a perturbation theory as it is done in
Ref. 6. This shortcoming can be avoided by applying the

P =A,DP' +A, , g P'
~ +

(m')
(32)

where A, =0.96, A, ) =0.14. (m') denotes the sum over the
Cu sites nearest to m. Only the two largest terms of this
expansion are taken into account, the terms proportional
to X, (i=2,3,...) are neglected (e g , A,&=0.0. 15. ). The P

are oxygen operators in k representation which are nor-
malized and orthogonal:

P), = [1+—,'(cosk, +cosk~ )]

is the normalization factor. The expansion of the original
P in terms of the P' is as follows:
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are identical with the p' of Ref. 6.
The operators P', however, do not give the complete

set of oxygen operators of the considered oxygen sublat-
tice with two oxygen atoms in the unit cell. Therefore, to
be consistent, an additional set of Wannier operators has
to be constructed. The corresponding operators are Q'

cy of the Cu sites. Under these conditions, the effective
Hamiltonian in hole representation, which describes the
motion of the hole and which is obtained by projecting
the total Hamiltonian (7) to the state mentioned, takes
the following standard form [the half-filled d band
(Cu +—=3d ) and the totally empty p bands (0 =2p )

are taken as the vacuum state]:
Q' =(I/N) pe '"

Qk
k

with

(33)
H tt=(e +0) g n +t g (c c ~ +Hc)

m, o. (m, m'), o.

Qk Pk[p, k (1+e ")—p, k (1+e ')] (34)

where

J g $~$m'
(m, m')

(39)

Now the P' and Q' together form a complete set of
orthogonal and normalized oxygen operators. The Q'
introduced here differ from the asymmetric operators p'
of Zhang and Rice, since their p' are not orthogonal to
the p'

Using the approximate expansion (32), the first two
terms of the Hamiltonian (7) take the form

T4J'=2 (1+2U, /U2)

t =A, , T sin(2a) .

For
~
e

~

~ T, the exchange integral t is -0.13T,

Ho+H~i =Ho+H~),
where

(35)

Ho= g [add d +e P' P'
m, o.

+ 2A.oT(d P' +H. c. )(1 n" )—

+E,Q' Q' (36)

describes the on-site energy:

Hr&=2AiT g (d P', +H. c. )(1—n" )

(m, m'), o.
(37)

c'" =(sina)d +(cosa)P'

c' ' =(cosa)d —(sina)P'

(38a)

(38b)

where

a=arctan[4AoT/(e+2Q) ]

takes into account the hopping process to neighboring
plaquettes. The on-site Hamiltonian Ho can be diagonal-
ized by using the operators

s is the spin operator of the site m, and n is the hole
number operator. Here only the strongest terms of the
expansion are taken into account.

In order to compare the transformed two-band model
(7) and the one-band model (39) derived from it, we calcu-
late the energy of a hole in the rigid AF-ordered spin lat-
tice with one turned Cu spin. As it was mentioned above,
in the two-band model the delocalization energy equals
0.45T. For the same parameters, the delocalization en-
ergy in the one-band model (39) equals 0.27 (for E-4T
one gets an energy of -0.19T). From that we conclude
that, qualitatively, the main effect of the kinetic and mag-
netic interactions, namely, the formation of the ferron-
type hole state, is analogous in both models, although
within a one-band model (39) the infiuence of the kinetic
energy is strongly underestimated. This also explains
that, in a t Jmodel, the-ferrons (ferromagnetic hole clus-
ters), as proposed in Ref. 8, only appear for a very large
ratio t /J ) 19, which corresponds to U/T )6. In con-
trast, in a two-band model, the ferron states already ap-
pear for U/T —3. '

1/2

0— 4X T +—
In this representation, the on-site energies are equal to
c, +Bande .

Following the proposal of Anderson, we assume that
all the states except the highest one are filled with elec-
trons. An extra hole can be brought into the system by
removing an electron from the highest occupied state as
long as possible virtual transitions to other states are
neglected. We also neglect the double-electron occupan-

VI. CONCLUSION

In this communication we studied the interplay be-
tween magnetic interactions and the kinetic energy of
holes in the CuO2 planes of superconducting cuprates.
We started from a two-band Hubbard Hamiltonian and
transcribed it by two unitary transformations. The trans-
formations are chosen in such a form that, for the as-
sumed parameter range ( U ))T, E; 4T )

~
E

~ ), the series
expansion of the transformed Hamiltonian converges. It
turned out that, in the undoped situation, our results
coincide with the commonly used results for the spin-spin
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interactions. In the hole-doped case, however, we could
show that, taking into account the dynamical behavior of
additional holes consistently, the formation of small fer-
romagnetic hole clusters is favored energetically. ' In
addition, we proved that any reduction of the two-band
model to a one-band model strongly underestimates the
inhuence of the kinetic hole energy.
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