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Multiple trapping in strong electric fields
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The time-dependent and steady-state drift mobilities of photoexcited carriers are calculated within a
framework of a multiple-trapping model incorporating nonlinear effects due to a strong electric field.

Tunneling processes from localized states to the transport edge and vice versa are taken into account.
We discuss the application of the proposed theory to recent experiments and compare it with hopping
theory.

INTRODUCTION

Recent experiments on the electric-field-dependent
electron transport in amorphous Si:H (Refs. l and 2) have
made available both time-dependent and steady-state
data, which have shown that the nonlinear regime is in-
teresting and must be compared with existing transport
models.

A quantitative theory developed by Scher and Lax,
and Scher and Montroll, the so-called theory of
continuous-time random walk (CTRW), showed in gen-
eral how to replace the random system by an ordered sys-
tem (with respect to the transfer rates) with a selected
"waiting-time distribution. " This theory has been used
extensively to describe the time-dependent transport
properties (dispersion) of disordered materials. This
theory can be reformulated as an effective-medium ap-
proximation, and Schmidlin argued that the multiple-
trapping (MT) process leads to a dispersion equivalent to
that of CTRW. In this approach an electron may be
trapped to a localized site, and then excited above the
mobility edge due to thermal excitations. The electron is
mobile only above the mobility edge and the averaged
mobility is proportional to the number of excited elec-
trons. Tiedje and Hvam and Brodsky showed that MT
can account for the transport properties of amorphous
Si:H, invoking an exponential approximation for the
band-tail density of states.

Although the MT description is adequate in the tem-
perature range 90—400 K, at lower temperatures the hop-
ping among the localized states has been taken into ac-
count. Nevertheless, due to the work by Silver,
Schonherr and Bassler followed by other works, we
know that hopping might provide dispersion analogous
to that of MT. The existing theory, which includes hop-
ping as presented by Grunewald et al., requires comput-
er assistance and so does its extension to nonlinear re-
gimes. It became especially clear that hopping can be

I

understood as a MT process when Monroe' emphasized
that the transport energy plays the role of the "mobility
edge. " It is reasonable, therefore, to apply the MT
theory to more advanced problems, such as high-field
mobility (which is discussed here), magnetic properties,
etc. Semiquantitative arguments are not universal, and
MT theory is not a universal approximation; it requires
careful checks for each application. However, we believe
that the temperature interval 90- 400 K can be quantita-
tively described (see our theoretical fit below). The MT
approach is simple and provides effective description for
experimental needs. It is useful to compare the high-field
MT predictions with the "effective temperature" conjec-
ture of the hopping model proposed by Shklovskii et al. "

The classical MT mobility does not depend upon elec-
tric field. One possibility of taking the field into account
is to consider the tunneling from localizing traps to the
transport edge in the field direction (see Fig. I). Of
course, at high enough temperatures this process has to
be activation assisted, when an optimal excitation and
tunneling are combined, but we deal here only with the
simplest case to demonstrate the model. The detailed
balance requires an account for the opposite process of
tunnel trapping.

The paper is organized as follows. In the following
section we solve the rate equations for MT in the pres-
ence of tunneling to the transport edge and vice versa.
For the time-of-Aight experiments the time-dependent
current is calculated for the times before and after the
transit time, which is the average drift time. The
steady-state current is also obtained. In the subsequent
section we compare our model with experimental re-
sults. '

THE MT RATE EQUATIONS WITH TUNNELING

We follow the Tiedje treatment of multiple trapping
and investigate the linear system

+ ponE+ g(bx)~R (E)nj = g [[r +R (E)]n —[c +C (E)]n]+5(x)5(t),
ax J J

Bn~
(bx )~C (E) = —[[r +R—.(E)]n —[ +cC.(E)] ].nat Bx
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Here n (x, t ), and n (x, t ) describe free and trapped elec-
trons. Subscript j numerates all traps. The left-hand
term with the sum represents the current caused by tun-
neling (E argument). The right-hand sum describes trap-
ping and thermal excitation. We select the energy axis
directed downwards (see Fig. 1). Here r is the MT
"release" rate constant, which equals

r =vej 0

and c describes the "capture" rate constant

c~. =vog(s), (3)

where the continuum limit is used. The constants (2) and
(3) satisfy the detailed balance condition, and the density
ofstatesg(s) is

8/Gog(s) =( I/s, )e

The tunneling constant of release is

(E)—v e & —v e 2eleaE——2(hx. )/a
0 0

and that of capture equals

+ ( S )e 2e leaE . —

(4)

(6)

these rate constants are also related by the detailed bal-
ance.

Note, that the tunneling current in (1) is distributed be-
tween two equations. To clarify this distribution one may
consider a lattice model. For example, the income tun-
neling term for a trap population is Ci(E)n fx+(hx )J ],
which gives the current upon expanding.

The system (1)—(6) may be solved by a Fourier time
transform, if we are interested in drift properties only. It
means that we actually omit all the terms which are pro-
portional to the squared wave vector, or E . The result-

ing equation for the image tT(co, x ) is

icon+[@os'E+u(co, E)] = i—coK(co,E)n+5(x), (7)
Bx

with the tunneling "velocity"

RJ(E)cj—C (E)r
ico+r +Ri E

and the combined rate constant,

cj +Ci(E)

All the sums over localized states may be replaced by in-
tegrals, using the simple rule g.= Jds. The substitution
c= —T 1nu is used below.

We first evaluate integrals for Eqs. (8) and (9). The
tunneling velocity from Eq. (8) may be written as follows:

a
f(a,P),

p 3poT
(Sa)

u +E '(1 —u) 1f(a,P)= 3c(P f d—u ln
0 lQ) + + p

Vp

with the usual MT parameter a= T/Eo, and a new field-
dependent one p =2 T /eaE; compare their ratio with the
definition of Shklovskii et al. of the effective temperature
in the strong electric field. " Integral (Sa) gains its value
in the region u —1. Therefore one can definitely omit the
frequency-dependent term in the denominator, as soon as
ai/vo « 1 at the times of relevance; vo has an atomic or-
der. It means that the tunneling velocity, or nonlinear in-
put in mobility, is frequency independent.

Integral (Sa) can be calculated exactly,

p+a
p —I

3aP P+a —1

8(p —1)' p 1—P&1,

f(ct P)=', F
8(p—1)' 1 P—
3(2a+ 1)
Sa(a+ 1)

P&l,

2
q(1)

2

Here g(" is the trigamma function. In low fields, p»1,
the asymptotic form is valid, f(a,P)= —,'g(3)aP ', so that
the field-dependent mobility behaves like

~
E~,

[p(E)—po]~ ~E~. At large fields, in the limit a,p&& 1,
the asymptotic form is f(a,p) =3ap /(a+p) . There-
fore, strong electric field 6rst increases and then decreases
the effective mobility almost back to the zero-field value,
p,o. For a given temperature (fixed a) the maximum is at

l

P & 1, and its value is close to the f(a, 1) listed above. It
means that there exists a maximum nonlinearity of the
mobility at the field E-2T/ae. The nonlinear part of
the mobility can be large.

Now we evaluate the combined rate constant

u '+ut' '
K(o),E)=aJ du

0 LEO + + p
Vp
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K(co,E)=
CX

sin

(9c)

Therefore, this field range supports the conjecture of
Shklovskii et al. of the hopping approach; the ratio a/p
would be a dispersion parameter if eaE/2 is believed to
substitute for the temperature. " Note, that the "transi-
tion" from the regular temperature to this "effective"
temperature can be summarized as

T,it=max(T, eaE/2) .

The remaining case of even stronger fields, P(a is
different:

K (co,E)=—ln
ECO

P vo

The value of this integral also depends upon electric field
in a curious manner. At fields when P) 1 (note the "),"
not "))," the precision is exponential), one obtains the
regular MT result,

;a—1
ECO

&77
Vp

sino;m

Because the field dependence is absent, all the expressions
in this case are factorized in field- and time-dependent
multipliers (as was measured in Ref. 2). It means that en-

ergy and space evolutions are independent. Electrons at
a given point in space are rapidly distributed along the
energy axis in accordance with the time available. The
independent process is the tunneling current, which
occurs slowly; but the tunneling length is large and
makes it possible to dominate the mobility.

In the case a (P & 1, the field enters the dispersion pa-
rameter:

' a/P —1

EQP

&o

I

I

I

I

I

I

I

I
c~

I

I

I

mobility edge

jth trap

FICx. 1. The kinetic processes taken into account in the pro-
posed model. Two vertical lines indexed by c,. and r, represent
regular multiple traping; and two horizontal lines with C, {E)
and RJ {E) show the tunneling for the jth trap.

Now we may integrate Eq. (7) and find the inverse trans-
form.

Note that some of the features are sensitive to the mod-
el assumptions. Namely, specific behavior in the vicinity
of the points, p= 1, p=a, i.e., the different laws coexist-
ing with the exponential precision, is an artifact which
may be smeared by more realistic approaches. One may
adopt, for example, that the localization radius is energy
dependent, a(E)." We shall not discuss this in detail.
The nonanalyticity [p(E)—po] ~ ~E~ which was found in
the low-field limit is also a by-product of one-side tunnel-
ing (see Fig. 1). However, in the presence of hopping,
both-sides jumps provide the proper mobility at low
fields, [p(E)—po] ~E~.

The quantity which is measured in Refs. 1 and 2 is the
current, which is defined as

poE +U(E)
I(E, t) = f n (x, t)dx

o

POE+ ( ) ~ e'"' ' icoL [I+K(co E)]
dco . I —exp

2nL —~ ice[1+K(co,E)] p~+v(E)

TABLE I. Electric current; asymptotic expressions.

1)P)a

I ( I+a)avoL
2(poE+ P)(vot )'+

I ( I+a/P)avoL
2(poE+ V)(vot )'+

I (1—a)sin'(acr)(poE+it)
a~2L {+Ot )1

—a

I'(1 a/P)P sin (a/Pm)(p—DE+V)

a+L(v.t )'

aL
2pt (tJ,OE+s')

p(poE+ 0')

aL in{1/vot)
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10
T=90 K

0 30 ns

I(E)=[poE+8'(E)]n . (12)

For the current in the time-of-Aight experiments th
time limits with respect to transit time and three

ere

e results for thefield intervals, p&1, 1&p&a, a&p. The resul
current in these six cases are collected in Table I. There
~T means the transit time which is estimated as the time
where two asymptotical answers match.

1
0.0 0.5

Electric f'ield

I

1.0 1.5

(1& V/cm)

FIG. 2. Fi uigure 10(a) of Ref'. 2 is fitted by Eqs. (Sa), (Sb), and
(13). Parameters taken from Ref. 2: T=90 K

= 1.0
, op=257 K,

pp= ~ cm /V s. Parameter used, vpa =0.12 cm s

COMPARISON WITH EXPERIMENTS (REFS. 1 AND 2

Let us begin with Ref. 2, where we found a quantitative
accordance using one adjustable parameter. A t '

dn onia is
c i ave interpreted their data as a proposal of th

time factorized dependencies [see Fig. 6 and Eq.
a o e

(9) of Ref. 2]. This is consistent with Tabl I '

fit
gime efore the transit time. We found 't lun i a so possible to

their Fig. 10(a) using the formula

In the stead -state ex
' I

that the r
y- citation experiments we assum d

recombination time ~„does not de end
UITle

ma with respect to transit time, so that the con-
centration n is uniform and constant. We

p i ed assumption to focus on the mobility behav-
ior only. Then the current equals

p, E U(E)

Po IJoE
(13)

together with Eqs. (8a) and (8b), and parameters taken
from Ref. 2, T=90 K e =257 K ( =0.3
cm /V s. The result is shown in Fig. 2. The fit could be
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FIG. 3. Fi ure 4bg y Stachowitz, Fuhs, and Jahn (Ref. 1) (a) is fitted b E s. Say q . ), ), . a k o R
es. Previously selected ~al~es: ~p=257 K p = 1 0 /Vcurves. Prevjousl s:p=, pp= . cm /V s. From the fit:
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done at any point in the (vo, a) plane, along the line
vpa =0.12 cm /s, if a & 10 A. We preferred to select the
smallest vp, so it follows that vp = 1 2 X 10'

s ', a = 10 A, which seems to be reasonable.
According to Eq. (12) we may try the same formula for

the data of Stachowitz, Fuhs, and Jahn. ' Because the
concentration n is not known, we fix the low-field con-
ductances for different temperatures using Figs. 1 and 4
of Ref. 1. To the best of Eq. (12) possibilities we were
able to fit high-temperature curves (100, 120, and 150 K),
selecting vp=4. 0 X 10' s ', a = 10 A. The low-
temperature curves cannot be described, because the non-
linearity in our approach is restricted [see (Sb)]. It means
that the transport energy and concentration do change
with field; this effect lies outside the exploited model.
The fit could be improved if we take into account the field
dependence of the recombination time. "

CONCLUSION

We proposed a simple model of multiple trapping with
the tunneling to the transport edge and vice versa in the
strong electric field. At temperatures T & 90 K this mod-
el may be used for experimental fitting. We have also
shown how to connect the temperature and the high-field
effective temperature, proposed in Ref. 11.
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