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A density-functional method for calculations on periodic systems (periodicity in one, two, or three di-
mensions) is presented in which all aspects of numerical precision are efficiently controlled. Highly ac-
curate and rapidly converging strategies have been implemented for (a) the computation of Hamiltonian
matrix elements (by a numerical integration method based on a partitioning of space and application of
product Gauss rules), (b) the approximation of integrals over the Brillouin zone (by the quadratic
tetrahedron method), (c) the evaluation and processing of the Coulomb potential (via a density-fitting
procedure), and (d) the expansion of one-particle states in suitable basis functions (numerical atomic or-
bitals, Slater-type exponential functions, and plane waves). Absolute precision and convergence are
demonstrated for all these aspects and show that the method is a well-suited tool for unambiguous inves-
tigations of the density-functional approximation itself. Attention is given, in particular, to basis-set
questions. Although the method is of the mixed-basis type, it is demonstrated that plane waves are not
necessary; this holds for metals as well as for insulators and semiconductors. By a general prescription,
sequences of accurate linear-combination-of-atomic-orbital (LCAO) basis sets can be defined that sys-
tematically approach the basis-set limit. This enables the routine application of the inherently efficient
LCAO method to all kinds of systems. Exemplary calculations are performed on bulk Si-, g-C (graphite),
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Na, Ni, Cu, and NaCl, and on a hexagonal monolayer of weakly interacting O, molecules.

I. INTRODUCTION

This paper describes a method for density-functional
(DF) calculations on periodic systems, with periodicity in
one, two, or three directions (n-dimensional crystals,
n=1,2,3). To date several methods for DF calculations
have appeared in the literature.!™!3> The chosen ap-
proaches often put restrictions, however, on the achiev-
able precision. The major problems are related to (a) the
evaluation of (Hamiltonian) matrix elements, (b) the
treatment of the [Coulomb and exchange-correlation
(XC)] potential, (c) the integrations over the first Bril-
louin zone (BZ) in reciprocal space, and (d) the basis
functions in which the one-electron states are expanded.
We have been able to remove all limitations to the extent
that for all these fundamental aspects we have imple-
mented efficient, accurate, and rapidly converging stra-
tegies. This makes our method a tool for unambiguous
examinations of what the DF approximation may impli-
cate for periodic structures, and, e.g., for a rigorous in-
vestigation of the merits and deficiencies of pseudopoten-
tials. All types of symmetry and of periodicity (one, two,
or three dimensions) can be handled.

(a) At the core of our approach lies a numerical in-
tegration scheme by which all integrals in real space are
evaluated. When (exact) analytical integration methods
are adhered to, the choice of basis functions and repre-
sentation methods for the potential is severely restricted.
This may give rise to slow convergence (and consequently
to inherent inaccuracies) because the admissible functions
have difficulty approximating efficiently the ideal behav-
ior, e.g., near the nuclei. Employment of pseudopoten-
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tials, making the valence wave functions smoother in the
core region, alleviates this, but at the price of some arbi-
trariness and reduced interpretability of the results. If a
numerical integration procedure is chosen throughout,
relieving the restriction on basis functions and facilitating
the evaluation of potential matrix elements, the accuracy
can be a vexing problem. Virtually perfect schemes exist
for the simplest systems, atoms and diatomic molecules,
but not for three-dimensional systems. The Diophantine
method,'*!* for instance, easily applicable to all kinds of
systems, hardly reaches two or three significant digits; !¢
this may suffice in many cases but it turns into a definite
bottleneck when higher precision is needed in the analysis
of subtle effects and weak interactions. The numerical
scheme we employ is based on a judicious partitioning of
space and subsequent application of Gauss-type integra-
tion rules for the obtained subregions.!”'® This results in
high precisions and rapid convergence with the number
of points, which puts all associated aspects of the calcula-
tion well under control.

(b) The long history of shape approximation methods
(muffin tin, overlapping spheres) illustrates the difficulties
involved in the treatment of the Coulomb potential. By
now it is widely recognized that a close correspondence
between the charge density and the Coulomb potential
that is computationally derived from it is of crucial im-
portance for reliable results; the past decade has wit-
nessed various efforts to improve existing methods in this
respect.®'°72! In our setup the Coulomb potential is
evaluated via an expansion of the charge density in suit-
able function sets.”? The variational freedom of these
sets is easily increased and the rapid convergence in the
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approximation eliminates effectively all problems and im-
perfections in the computation and processing of the
Coulomb potential.

(c) All methods for numerical integrations over the BZ
in k space give fair results for the easy integrals: the
charge densities in insulators and semiconductors. More
difficulties, both in absolute accuracy and in convergence,
are encountered when the occupied bands are cut by Fer-
mi surfaces. The calculation of properties that depend on
details of the density of states and on the proper treat-
ment of van Hove singularities is a serious problem unless
the adopted method is implicitly based on a sensible rep-
resentation of the functional form of the energy bands.
We perform integrations in k space with the quadratic
tetrahedron method,?*?* which will be shown to be accu-
rate and to converge quickly for all types of systems, met-
als as well as insulators and semiconductors.

(d) Numerical integration of the matrix elements gives
a considerable and, in principle, unlimited freedom in the
choice of the basis functions for the one-electron states.
We apply numerical atomic orbitals, analytic (‘“‘Slater-
type”) exponential functions (without limitations on the
angular quantum numbers), and plane waves. The com-
bination of these types of functions leads to highly
efficient basis sets which allow a rapid and convenient ap-
proach of the basis-set limit, as will be illustrated.

A brief discussion of these methodological aspects fol-
lows below. Next we illustrate the precision and conver-
gence characteristics of the present approach. In particu-
lar the efficiency of linear combination of atomic orbitals
(LCAO) versus plane-wave expansion bases will be inves-
tigated. Comparisons will be made to available fully nu-
merical (i.e., basis-set-free) benchmark calculations,
and to the state-of-the-art full-potential linearized-
augmented-plane-wave (FLAPW) method. Finally we
compute the usual quantities (cohesive energy, bulk
modulus, equilibrium lattice constant) for a few well-
known bulk systems: Si, g-C (graphite), Na, Ni, Cu, and
NaCl.

II. METHOD

In the Kohn-Sham approach of the DF theory?>?® the
equation for the electron states in a periodic system reads

Hy, (k;r)=[T+V(r)+V, (r)]y,(k;r)

=e,(k)y,(k;r) . (2.1)

T is the kinetic-energy operator, — 1A in (Hartree) atom-
ic units, V. is the total Coulomb potential, due to the nu-
clear charges and the electron cloud, ¥V, is the XC po-
tential, and ¥, (k;r) is the one-electron state with wave
vector k and band index n. We use for the XC potential
the Vosko, Wilk, and Nusair (VWN) formulas,?’ based
on electron-gas studies by Ceperley and Alder.?® For the
sake of comparison with other publications we apply
sometimes the Xa form, the parametrized variation on
Slaters original proposal for the XC potential.
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A. Numerical integration

An important aspect of our method is the numerical
integration scheme by which all integrals over the crystal
unit cell are evaluated. The points and weights of the in-
tegration formula are generated according to a scheme
which is extensively discussed elsewhere.!”!® The global
approach is as follows. Space is partitioned into atomic
cells (polyhedra) and inside each polyhedron an atomic
sphere is chosen. Integration over the atomic spheres is
done by a product of Gauss formulas for the radial and
angular variables, respectively. To handle the remaining
parts inside the polyhedra, each polyhedron is subdivided
into pyramids, which have their top at the atom and as
bases the respective faces of the polyhedron; the pyram-
ids are thus truncated at their top by the atomic sphere.
By a suitable coordinate transformation a truncated py-
ramid is transformed into the unit cube so that product
Gauss-Legendre rules can be applied.

The numbers of integration points are optimized in
each individual sphere and in each (truncated) pyramid
such that a series of typical ‘“‘atomic” one-center test
functions are integrated with some prescribed precision.
This is formalized by an integration parameter A4: the
number of points is determined such that the integrals of
all test functions are computed with a relative error
<10~ 4. When the points and weights are applied in
electronic-structure calculations, the resulting precisions
turn out to be comparable for most polyatomic systems.
A=3 leads usually to moderate accuracy and increasing
A to 3.5 or 4 yields fair precision (better than 1073 a.u.,
say, in cohesive energies); typical numbers of integration
points (per atom) for these settings range from 2000 to
5000. In the section on computational results we give ex-
amples of absolute precision and convergence of molecu-
lar integrals in relation to A.

B. Basis functions

The fully numerical Herman-Skillman (HS) program®

is used to solve the DF equations for the spherically sym-
metric free atoms from which the crystal is built up. As
basis functions are employed the numerical atomic orbit-
als (NAO’s) from the HS program, Slater-type orbitals
(STO?s), and (in three-dimensional crystals) plane waves
(PW’s). Either of these, or a combination of them, can be
used. To obtain a function basis at a particular point k of
the BZ, k-adapted Bloch functions are constructed from
the atomic one-center functions (NAQO’s and STO’s),
¢(k;r)= 3 e’*Ry(r—R—s,) . 2.2)
R
X is a NAO or STO centered on atom a at position s, in
the crystal unit cell; the summation runs over all lattice
points R. The PW’s pertaining to k are the functions
e!®*tK)t where K is a point of the reciprocal Bravais lat-
tice. The frozen-core approximation is optionally used
for the innermost atomic states.

The availability of NAO’s and STO’s opens the way to
flexible and highly efficient basis sets. The NAQO’s pro-
vide a reasonable first approximation to the atomic states
in reaction with other atoms and adding one STO per
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NAO gives the variational freedom to accommodate the
relaxation. The detailed radial behavior of the added
STO turns out to be of limited importance: it is the vari-
ational freedom that counts in the first place.

Substantial improvement on double-£ sets (to be under-
stood here as a NAO plus one STO for every occupied
free-atom state) is obtained by adding polarization func-
tions: STO’s with higher angular-momentum quantum
numbers. Also here it is found that the detailed radial
behavior is not crucial and the major improvement in
basis-set quality comes from the increased variational
freedom in the angular variable. Convergence is fast
when we go to higher-/ values and summarizing we may
state that double-{ sets plus one or two polarization func-
tions yield results not far from the basis-set limit (say de-
viations <1073 a.u., in cohesive energies per atom).

In relatively open structures, such as small molecules,
basis-set requirements are somewhat more stringent and
triple-€ (plus polarization) sets may be needed to achieve
really high precision, as we will see. That such is not the
case in more dense systems like three-dimensional (3D)
crystals is presumably due to the basis functions centered
on surrounding atoms providing the additional flexiblity
which must otherwise come from the triple-§ quality.

In bulk crystals the PW’s provide an alternative for
basis-set improvement. The obvious advantage of PW’s
over atomic one-center functions is that the convergence
to the basis-set limit can be monitored in a rigorous way
(in principle). Starting, e.g., with a small LCAO set PW’s
can be added systematically. From a comparison of the
two alternative approaches we find that the pure LCAO
double-{ plus polarization set performs very well, show-
ing that PW’s, or composite bases, are not necessary to
obtain high precision. This holds for metals as well as for
other systems.

C. k-space integration

For the BZ integrations we employ the quadratic
tetrahedron algorithm. In this approach?*?* the BZ is
partitioned in (small) tetrahedra (triangles in two dimen-
sions). The integrations points are the vertices and the
midpoints of the edges of all the tetrahedra. From the
data in these points the energy bands and the functions to
be integrated are approximated by quadratic forms over
each tetrahedron, and hence piecewise quadratic forms
over the whole BZ. The integrals of these quadratic
forms are solved (piecewise) exactly. The precision can
be increased by taking ever smaller tetrahedra to fill up
the BZ. In the actual implementation this is controlled
by a k-space integration parameter K, which is the num-
ber of sample points on any ray from the central point T’
to a vertex of the BZ (including the end points). The par-
titioning in tetrahedra and the requirement that also the
midpoints of the edges are used implicates that K must be
odd.

The piecewise quadratic approximations give theoreti-
cally a rapid convergence with increasing partition-
ing.?>2* This is confirmed by our findings. K=3 gives
usually reasonable results, K=5 is accurate enough in
most cases, and with K=7 the results are completely con-
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verged for virtually all practical purposes. For the sake
of comparison we have also implemented the linear
tetrahedron method:3""3? partitioning in tetrahedra (re-
spectively, triangles) but using as sample points only the
vertices, not the midpoints of the edges. In that case
there is no restriction on K: it may be odd or even.

D. Coulomb potential

The HS program provides the Coulomb potentials V',
due to the spherically symmetric atomic densities p, plus
nuclear charges Z,. Defining the deformation density
Pder as the difference between the crystal charge distribu-
tion and the superposition of atomic densities gives for
the crystal Coulomb potential

Vo= 3 V() + [ pgedt)|r—r'| "ldr’ . 2.3)

The form in which p ... and hence pg is obtained, i.e.,
as a summation over products of basis functions, pre-
cludes an analytical evaluation of the second term, while
the singularity of the denumerator makes the application
of a numerical integration scheme unsuitable. The prob-
lem is solved by a density-fitting procedure.?? A set of fit
functions f; is chosen such that (a) the density py. can
accurately be expanded in them and (b) the correspond-
ing Coulomb potentials f{ are easily evaluated:

PaehT)= e fi(r)
Ver)m 3 Vo (0)+ e fir) .

(2.4)
(2.5)

The fit coefficients ¢; are determined by a least-squares
solution of Eq. (2.4) with the constraint that the total
amount of charge in the right-hand side (rhs) is zero. As
fit functions we employ atomic “Slater-type” exponential
functions 7" "'e "*'Y,, (Q), the Coulomb potentials of
which are easily computed. 522

Although the charge density in general cannot be fitted
exactly in this way, the precision can be made very high,
especially by using angular-quantum numbers up to /=3,
4, or 5 in the fit set. In practice one uses large /=0 and 1
sets (such that the radial variational freedom is almost sa-
turated), several /=2 functions, and one or two /=3, 4
functions on every atom. The unlimited flexibility of this
type of function sets, in particular with regard to the an-
gular behavior, implies that no fundamental restricting
(shape) approximations are made to the potential.

E. Madelung sums

The one-center fit functions and the corresponding po-
tential functions are combined into k=0 Bloch sums (2.2)
to describe the periodic charge density in the crystal and
its Coulomb potential. Due to the exponential decay of
the fit functions their Bloch sums can be computed for
any evaluation point r as a quickly converging summa-
tion over lattice points in direct space. This does not
hold for the potential functions, however. The potential
of a fit function, a charge distribution characterized by



44 PRECISE DENSITY-FUNCTIONAL METHOD FOR PERIODIC. ..

the angular-quantum number /, decays asymptotically as
1/r' 1. Its Bloch sum gives rise to the familiar lattice
summations. Many methods exist to deal with the diver-
gence and conditional convergence problems related to
it. 1833738 One of the simplest approaches, easily applic-
able to all types of multipole lattice sums, is to use
screening. A well-known screening function is the ex-
ponential function e~ *: one replaces the Coulomb po-
tential 1/7 by e ~ %" /r and considers the results in the limit
a—0+. We employ another screening function 4 (r) to
evaluate the lattice sums by a (screened) summation over
real-space lattice points. The functional form of (r) is
the Fermi-Dirac function

1

h(r)= r—rg)/d °

A (2.6)
1+e

All multipole lattice sums are then evaluated by weight-
ing the contribution from a given distance » by A (r). The
function A (r) decays exponentially for large r, which
makes the lattice sums nicely converging. However, by
choosing the cutoff parameter r, sufficiently large, com-
pared with the smoothness parameter d, the first few
terms in the lattice sum are only negligibly affected by the
screening and this turns out to be an advantage in the
convergence behavior: in a practical application one can-
not reach the limit of vanishing screening and the results
are therefore only approximations of the limiting values.
Ideally one would set both d and r,, (and r( /d) as large as
possible. The computational costs of the lattice sum eval-
uations restricts this of course and in practice d is taken
in the order of a few atomic units and the cutoff parame-
ter r, something like 40 a.u. These parameters are au-
tomatically set larger (smaller) in our program, leading to
better (worse) approximations depending on the numeri-
cal integration parameter A discussed before; 4 deter-
mines thus the precision of a calculation in a more gen-
eral sense than just via the numerical integration scheme.

The errors introduced by the finiteness of the screening
can be judged by a comparison of computed Madelung
constants with the known exact values. We have done
this for a few standard crystal structures. The results are
displayed in Table I for the accuracy values 4=2 and 4
and show that the errors introduced by the approxima-
tions are very small and converge quickly with increasing
A.

F. Energy

The total energy is given by a sum of the kinetic, XC,
and Coulomb energies: E=E;+E, +E.. There are

7891

two sources of error in the computation of the energy.
The first is from the evaluation of various integrals. The
applied numerical integration procedure, though fairly
accurate, is not exact. The second source of error is the
fit functions used for the evaluation of the Coulomb po-
tential, implicit in the Coulomb energy E.. In general,
the fitting cannot be exact and the difference between the
exact (deformation) density and the fit density implicates
an error in the computed Coulomb energy term.

The cohesive energy is the difference between the total
energies of the crystal and the constituting atoms, respec-
tively,

Econ= zEa—Ecrystal . 2.7)
a

The HS program determines the first term in the rhs of
(2.7) almost exactly. The second term, the crystal energy,
might be calculated by numerical integration of the ap-
propriate integrals in the crystal integration grid. Since
E_;, may be very small compared with the two terms
defining it, care is needed lest a meaningless value for
E,, is obtained, even when E ., is computed with a
relative error of 10~ % or 107>, Therefore we will rewrite
(2.7) in a form that allows the calculation of E;, directly
by numerical integration, with corresponding precision.
The crystal total energy is then defined and computed as

Ecrysta]= EEa_Ecoh . (2.8)
a

The HS program yields all atomic functions in the form
of function tables f (r;), specifying the values in a (dense)
grid of radial values r;. By interpolation from these
tables the free-atom functions are evaluated in the crystal
integration points. The various energy terms in E_, are
conceptually the difference of the corresponding terms in
the crystal and atomic total energies, respectively. Since
these can now be computed by integration of the energy
densities in the same grid, the obtained difference term is
identical to the integral of the difference function. Hence
the precision of the integration is preserved in E ;.

It may be stressed here that by numerical integration
of different terms of the interaction energy in the same in-
tegration grid any (analytic) cancellation of large and op-
posite terms is automatically taken care of, since we in-
tegrate effectively the combined term. This applies, for
instance, to the kinetic and Coulomb parts of the relaxa-
tion energy (the energy corresponding to the change in
the electronic density from the sum-of-free-atoms situa-
tion to the self-consistent crystal). The automatic treat-
ment of large and opposite (kinetic and Coulomb) terms,

TABLE I. Computed Madelung constants for different accuracies A4 (see text).

Cesium
Rocksalt chloride Zinc blende Fluorite
A=2 1.747514 1. .. 1.0176541.. 1.6377612. .. 2.5190840. ..
A=4 1.7475619. .. 1.0176795. . 1.6380634. .. 2.5194007. ..
Exact 1.747564 59. . .° 1.01768075.. .2 1.63805...° 2.51939...°

*Reference 38.
bReference 39.



7892

an important point requiring special attention and careful
algebraic manipulation in other approaches,®!! is a
marked advantage of numerical integration methods.
The kinetic and XC energies are computed from the usu-
al expressions, where the latter depends, of course, on the
density functional adopted.
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For the Coulomb term of the cohesive energy let p,
and ¥V, be the density Coulomb potential (including the
nuclear potential) of atom «a located at R,. The deforma-
tion density pyer=pPcrystal ™~ Patoms iS approximated with fit

20Ec= [ [drdr, [pcryml(rlw S Z,8(r,—R,) ]i [pcrysm<rz>+ S Z,8(r,—R,) }
a a

= 3 [ [ardnipdr) + 2,800 —Ro) 1= [pulr) + 2,805~ R )]
a 12

(after some algebraic manipulation, and omitting the spatial arguments)

2Ec=S [Valpg+Zpdr+2 [ Vammspdefdr-i-fVﬁt(pdef+8)dr+ffdrldr28(r1)%8(r2).
a#f

In the rhs of (2.9b) the first term is the electrostatic in-
teraction between the unrelaxed free atoms. The second
and third terms are the relaxation terms, respectively, the
interaction of the deformation density with the sum-of-
free-atoms potentials, and the (approximate) self-energy
of the deformation density. The last term of (2.9b) can-
not be computed; it is an error term resulting from the
inadequency of the fit functions to describe the (deforma-
tion) density exactly.

The electrostatic term is (usually) dominant in the
cohesive energy and can easily be computed separately
with high precision, as we will discuss presently. The two
relaxation terms are evaluated by “normal” numerical in-
tegration. The splitting off and separate treatment of the
electrostatic term has no negative bearing on the cancel-
lation of numerical integration errors in the Coulomb and
kinetic terms of the cohesive energy, since this cancella-
tion pertains to the relaxation of the charge distribution
from the sum-of-atoms situation to the self-consistent
density of the crystal; the relaxation terms in the
Coulomb energy are still evaluated by integration in the
same grid as the kinetic relaxation term.

The electrostatic interaction between two spherically
symmetric atoms A and B at positions R , and Ry is

1
E cjgtar = f fdfldfz(PA +Z, )r_n_(pB +Zp)
= [V,(pp+Zp)dr

=ZyV 4(Rp)+ [V ppdr . (2.10)

The last integral is easily evaluated numerically by using
prolate spheroidal coordinates.*’ Let 4 and B be located
along the z axis, at positions z =*a. Define coordinates
u,v,¢ by

functions for the solution of Poisson’s equation:
Paes=pPsi 8. Then
J
(2.9a)
(2.9b)

12

f

x =a sinh(u)sin(v)cos(¢) ,

y =a sinh(u)sin(v)sin(¢) , (2.11)

z =a cosh(u)cos(v) .

Numerical integration can now be set up as a product
formula in the variables (u,p,¢) with p =cos(v). The ¢
integral yields a factor 27 because the functions V ,(r)
and pp(r) are invariant for rotation around the z axis. So

fVA(r)pB(r)dr=21rfowdu f_lldp J(u,plpp(u,p)
(2.12)

with Jacobian J(u,p)=a’sinh(u)[cosh®(u)—p?]. For
neutral atoms the functions fall off rapidly as u goes to
infinity, so that the upper limit on the u integration can
be replaced by a suitable u,,. Numerical integration is
then performed by a Gauss-Legendre product formula in
u and p (n, Xn, points). For light atoms (up to the first
series of transition metals say) n, =30, n,=20 give al-
ready accurate results. Heavier atoms require somewhat
more points but still the electrostatic interaction energy
can be calculated virtually exactly without much effort.
The precision of the cohesive energy is determined by the
other terms.

In case the crystal calculation is started up with ions,
the electrostatic energy has to be split in two terms: the
Madelung energy due to the effective ionic point charges
plus the interaction between the neutral atoms. The
latter has been treated above. The former is evaluated by
a finite lattice sum in real space with the screening func-
tion 4 (r) discussed before (2.6).

An upper bound on the error term in (2.9b) can be
determined for three-dimensional crystals. Let 8 have
the Fourier expansion

8(r)= 3 dge’¥T. (2.13)
K

K runs over the reciprocal-lattice sites. p4.r contains zero
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charge, as does pg, (and hence §) because of the applied
constraint in the fit (2.4). Hence §,=0 in (2.13). The
Coulomb potential due to 8(r) can be derived from (2.13)
by Poisson’s equation —AV =41p, yielding for the error
term

e—f fdrldrz
=fV5(r)8(r)dr

—41rf

4
K2

min

8(r)8(r,)

tKrzs erKr dr

<

f82(r)dr ) 2.14)

K .in is the smallest nonzero vector of the reciprocal lat-
tice. The integral f 8%(r)dr is easily computed and has
shown in practice that the fit functions routinely em-
ployed are adequate.

G. SCF linearizations

In big calculations the computational costs of the SCF
procedure are dominated by two parts. (a) The evalua-
tion of the matrix elements of the potential, the iterative-
ly changing part of the Hamiltonian, in every sample
point of the BZ,

ZwV

i=1

¢,, )k (r;) (2.15)
w; is the weight of integration point r; and ¢",f is the pth
basis function in the kth sample point of the BZ. With M
k points, n basis functions, and N integration points in
real space, the computational effort is proportional to
MNn?. (b) The iterative construction of the density,

2
plr;)= 2 zo,,<k> zcb’;,¢,’;(r)

k=1 b=1 p=1

(2.16)

0,(k) are occupation numbers for the one-particle eigen-
states; c,f;, are the coefficients of the expansion in the basis
functions. With B occupied bands the computational
effort scales with MNnB, which is a little less than for the
potential matrix elements, but of the same order.

A considerable saving of computer time is achieved
when the involved multiple-loop structures in the compu-
tations can be circumvented. For both cases this is possi-
ble, be it only at some cycles of the iterative procedure.
The integration points and the basis functions are fixed
quantities and the only factors that change from cycle to
cycle are the potential V' (r) in (2.15), respectively, the oc-
cupation numbers 0,(k) and eigenstate coefficients céj, in
(2.16). The latter are combined in the density matrices
P* (one for each k point)

B
k — k* k
P,,= bgl 0p(k)ey, cpg

(2.17)

from which follows the expression for the density
[equivalent with (2.16)]

7893

2 2P, (2.18)

k=1 pq

Kk (r)pk(r,) .

The potential matrix elements depend linearly on the
potential function (2.15) and similarly the density de-
pends linearly on the density matrices (2.18). So, if in the
first case the current potential function ¥V (r) is accurately
described by a linear combination of potentials in previ-
ous cycles, then the same holds for the potential matrices
V¥ and, analogously, a linear combination of previous
density matrices P* defines the corresponding linear com-
bination of density functions p(r). Testing the accuracy
of the approximations and constructing the linear com-
binations are computationally of minor importance be-
cause in all cases one or more of the cost-determining fac-
tors are absent.

The linear approximations have enhanced the
efficiency of our program considerably, in particular for
computations on slowly converging systems. The num-
ber of cycles in which the approximations are not accu-
rate enough, so that the exact potential and/or density
have to be computed, does not vary so much from one
system to another and has thus far always been between 5
and 50, with values in the range 5—-15 being encountered
the most frequently.

III. COMPUTATIONS

In this section we will first demonstrate the precision
and convergence behavior of the integration techniques
in real space and in k space and show that these aspects
are completely under control: with normal settings the
errors are already very small and they can be reduced to
any desired level without requiring unreasonable compu-
tational efforts. Having settled that point we will address
basis-set questions. By tests against fully numerical
(basis-set-free) and state-of-the-art FLAPW calculations
and by comparisons with mixed basis sets we will see that
in our method accurate LCAO basis sets are conveniently
defined, which can in a well-prescribed way be extended
to approach rapidly and efficiently the basis-set limit. Fi-
nally we will apply our approach to compute a few bulk
solids; in view of the accuracy analyses below the results
can be taken as very close to the (local-) density-
functional limit (errors in the cohesive energies <0.002
a.u., say).

A. Integration in real space

We start with the integration method in real space and
examine its performance in two types of systems. In the
first place we take the bulk solids Na (bcc), Ni (fcc), Cu
(fce), NaCl, g-C (graphite), and Si. Figure 1 shows the er-
rors in the cohesive energies as a function of the integra-
tion parameter A4 discussed before. As “exact” we have
taken the supposedly converged 4=38 values. The con-
vergence is found to be very good in general.

The bumpy and irregular character of the trends
displayed in Fig. 1 is hard to explain in detail. Two
causes probably play a major role here. (a) The test func-
tions used to calibrate the integration scheme will in gen-
eral not represent every aspect of the molecular in-
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FIG. 1. Errors in cohesive energies (a.u./atom) as a function
of the (real space) integration parameter A4 for the bulk solids
Na, Ni, Cu, NaCl, g-C, and Si.

tegrands to which the scheme is to be applied. Hence in-
creasing the precision of the test integrals with a certain
factor may occasionally change the final precision to a
larger or smaller extent. (b) The testing algorithm moni-
tors the relative integration precision in every individual
atomic sphere and pyramid. The total precision then de-
pends also on possible cancellations of the individual er-
ror terms. This cancellation effect is in its nature statisti-
cal and may therefore be expected to result in a some-
what bumpy behavior of the total error as a function of
A. (c) The cohesive energy is a highly nonlinear function
of various integrals, so that the error in it, and its conver-
gence, cannot be expected to match in detail the integra-
tion errors. Also here, cancellation effects may play a
role. Since the overall trend displays definitely a rapid
convergence the irregularity is of minor importance.

In the second place we take periodic arrays of small di-
atomic molecules. CO or O,, with very large separations
between neighboring molecules (30 a.u.). Three different
periodic structures are employed for both CO and O,: (a)
a three-dimensional simple cubic lattice with the mole-
cules oriented along a coordinate axis, (b) a two-
dimensional hexagonal array with the molecular axis or-
thogonal to the plane, and (c) a one-dimensional repeti-
tion where the molecules are aligned with the axis of
periodicity. The geometry of these structures with their
large empty spaces is far from ideal for the integration al-
gorithms because several of the atomic pyramids that are
generated in the scheme are very large (those directed to-
wards neighboring cells) or very wide and flat (directed
towards the partner atom in the cell). In such cases the
integration method is put to a severe test: in the large py-
ramids because the relatively localized integrands are im-
plicitly approximated by a slowly converging expansion
in polynomials over the large region: in the very wide
ones because the Jacobian of the transformation from a
truncated pyramid to the unit cube approaches singulari-
ty.!”!8 The considered cases, though extreme, are not
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academic: in chemisorption studies for instance, periodic
overlayers of adsorbate molecules with large spacings
may occur [cf. case (b)]. Figure 2 displays for all em-
ployed periodic structures the maximum errors in the
one-particle energies as a function of A [the errors in the
cohesive energies (not included) are in line with the
presented data for the one-particle energies]. In spite of
the geometric awkwardnesses the precision and conver-
gence are reasonable, though markedly less indeed than
for the more “homogeneous” bulk systems above. We
conclude that accurate results are obtained in normal sys-
tems by setting 4=3.5 or 4.0. We will adopt therefore
A=4 as standard value; in geometrically suspect systems
the integration precision should be checked and possibly
increased.

B. Integration in k space

Next we consider accuracy and convergence of the in-
tegration in k space. We test this both for 3D BZ’s (the
bulk solids Na, Ni, Si, g-C, and NaCl) and for a 2D case
[a single-layer Cu(100) slab]. Figure 3 gives the cohesive
energy errors as a function of the integration parameter
K introduced in the preceding section; the errors are
defined as the deviations from the presumably K-
converged values (K=9). For a comparison we have
used both our quadratic tetrahedron method (data for K
odd) and the classical linear tetrahedron method (K
even). The outcomes confirm the theoretical superiority
of the quadratic approach?>?* and henceforth we consid-
er only the quadratic method. In all cases the conver-
gence rates are very similar and the absolute precision is
moderate for K=3 (~0.01 a.u.), good for K=5 (~0.001
a.u.), while the results for K=7 can be considered con-
verged for all practical purposes.

10"

-0- 0, (1D)
—o— 0, (2D)
-a- 0, (3D)
—% CO (1D)
—— CO (2D)
-x- CO (3D)

Error
(a.u.)
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1

102

Ll Lo

FIG. 2. Maximum errors in the one-electron energies (a.u.) in
CO and O, “crystals”, as a function of the integration parame-
ter A. 1D, 2D, and 3D refer to one, two, and three-dimensional
periodic structures (see text).
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FIG. 3. Errors in cohesive energies (a.u./atom) as a function
of the k-space integration parameter K for bulk Na, Ni, g-C, Si,
and NaCl and for a one-layer Cu(100) slab.

C. Basis set

To investigate basis sets we consider first the diatomic
molecules CO and O,; they are computed effectively as
isolated molecules because the separation with neighbor-
ing molecules is so large (30 a.u.) that intermolecular in-
teractions are negligible. These systems are interesting as
testing material because the local-density (LD) basis-set
limit is presumably known, cf. the fully numerical results
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for diatomic molecules.*! "% Near-dependency of basis

sets, often feared as a worrying feature in LCAO solid-
state methods, is of minor importance in isolated mole-
cules, so that we can extensively investigate basis-set
effects. For CO an elaborate analysis of basis sets in
LCAO calculations is known,** in which the Amsterdam
DF molecular program was used, which is very similar to
our band-structure program; this gives an additional
check on our CO results and the basis-set analysis we will
perform for O, can be compared with the results found
previously for CO.

We start with an all-electron high-quality basis set,
which can be characterized as quadruple-§ (double-§ for
the deep-lying ls states) plus d- and f-polarization func-
tions; the exponential decay factors have been taken
even-tempered (approximately); for the polarization func-
tions it was assumed that they should attain their max-
imum in the bond region, halfway the next atom or a lit-
tle more contracted. The STO basis has been derived
from Baerends et al.** For the oxygen atom we have re-
placed one STO by the corresponding NAO in the sub-
sets for the occupied atomic states (1s,2s,2p). This does
not affect the results with the high-quality basis. When
considering smaller basis sets, however, as we will do
next, it may be expected that the NAQO’s are able to de-
scribe to a large extent the behavior of the molecular or-
bitals in the core region so that the flexibility of the addi-
tional (Slater-type) functions can be utilized for the bond
region. The specifications of the large basis are given in
Table II, where also the characteristics of the fit functions
(for the computation of the Coulomb potential) can be
found.

TABLE II. Basis functions and fit functions for carbon and oxygen in CO and O,. NAO’s are nu-
merical orbitals from the free-atom program. All other entries refer to Slater-type exponential func-
tions 7" 'e “*'Y,,, (Q); the leftmost column specifies the quantum numbers (n,1); the exponential decay

factors a are given in the other columns.

Basis functions

Fit functions

Orbital Carbon Oxygen Carbon Oxygen
1s 7.68 8.00 NAO 6.80 16.00 10.02 19.60 14.72
2s 4.20 2.68 NAO 5.87 11.59 8.07 16.00 10.60
1.52 1.06 4.31 1.70
3s 8.23 6.06 10.32 7.29
4.47 3.29 5.15 3.63
2.42 2.57
4s 2.36 1.80 2.40 1.77
2p 6.51 2.60 NAO 7.56 7.60 10.42 6.90
1.44 0.98 345 1.14
3p 4.18 2.94 6.71 4.74
2.20 3.35
4p 3.13 2.30
3d 3.71 2.12 2.96 1.69 4.40 3.16 9.36 6.61
1.92 4.67
4d 4.36 3.21
5d 2.94
4f 2.06 2.50 4.70 3.46 5.06 3.72
2.74
5f 2.51
5g 5.00 3.80 4.00 3.03

2.30
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TABLE III. One-particle energies (a.u.) for the diatomic molecules CO and O,. Present calculations: periodic structures with in-

termolecular separation 30 a.u.

CO 0,

Orbital Numerical calculations? Present Molecular calculations® Orbital Numerical calculations? Present
1o —18.7442 —18.7446 —18.7448 lo, —18.7856 —18.7832
20 —9.9114 —9.9115 —9.9122 lo, —18.7855 —18.7831
30 —1.0442 —1.0451 —1.0461 20, —1.1665 —1.1652
40 —0.4891 —0.4890 —0.4903 20, —0.6870 —0.6850
So —0.3030 —0.3040 —0.3036 3o, —0.4607 —0.4585
17 —0.4126 —0.4127 —0.4137 1w, —0.4481 —0.4462
27* —0.0505 —0.0506 1, —0.1882 —0.1862

2Reference 43.
YReference 44.

For a comparison with the fully numerical results of
Laaksonen, Sundholm, and Pyykkéi43 the Xa formula,
with parameter value 0.7, is used for the XC functional
and spin polarization is not allowed, i.e., the calculations
are performed “spin restricted.” The atomic separations
are 2.27 a.u. for O, and 2.13 a.u. for CO. In Table III we
give the one-electron energies from which it is clear that
our basis sets for carbon and oxygen are fairly complete.
The deviations in the one-electron energies from the nu-
merical values are roughly 0.002 a.u. and even less for
CO. The agreement with the values of Baerends et al.**
for CO is as it should be, since essentially the same
method and basis have been used; it serves as a check and
shows besides that the employment of oxygen NAO’s, in-
stead of one more STO for 1s, 2s, and 2p, does not make
much difference in this basis.

We have also calculated O, with the slightly larger O-
O distance 2.282 a.u. for a comparison with precise
FLAPW computations,® which can be considered state-
of-the-art for plane-wave-type approaches. In Ref. 8 a
2D hexagonal array of upright molecules was used,
separated by 6.846 a.u.; we have employed the same
geometry as well as the 2D hexagonal array with the
larger intermolecular separation of 30 a.u. as in our other
computations. Assuming that the same high level of pre-
cision applies to these O, calculations with the larger O-
O distance 2.282 a.u. as for the distance 2.27 a.u. above,

the quality of the FLAPW data can be assessed. The re-
sults are presented in Table IV and Fig. 4. For the small-
er intermolecular separation there is a non-negligible in-
teraction between neighboring molecules, giving rise to
dispersion, i.e., to bands, so that a single value of molecu-
lar one-particle energies does not apply. The energy
values of Ref. 8 are the eigenvalues at the ' point.*
Taken as data for an isolated molecule (as they were
presented in Ref. 8) all FLAPW o energies are close to
the limiting values, with errors of a few milli-atomic-units
but the two 7 states are too high by ~0.014 a.u. Howev-
er, in fairness the comparison should be made to a
periodic structure calculation, in which the intermolecu-
lar interaction is taken into account The I' eigenvalues
are then the lowest values in the o bands and the highest
in the 7 bands. Now it turns out (Fig. 4, Table IV) that
the complete FLAPW spectrum is shifted upward by no
less than ~0.015-0.020 a.u. (~0.5 eV). We do not know
the reason for this shift; probably the field caused by the
incomplete screening of the surrounding oxygen nuclei is
not fully taken into account. Another possibility (not
completely ruled out by the information in Refs. 8 and
45) is that only the I" point is used in the computation, so
that the integrations over the BZ have in fact been
simplified too much. In Fig. 4 (leftmost part) we have
also plotted the outcome of such a simplification: a no-
dispersion, molecularlike spectrum, shifted upward (by

TABLE IV. One-particle energies for 2D O, crystals with intermolecular separations of 30 and 6.846

a.u. for comparison with FLAPW results.

Present Present
D=6.846 a.u. FLAPW? D=30 a.u.
Orbital I'-point values D=6.846 a.u. (isolated)
log —18.8044 —18.789 —18.7839
lo, —18.8043 —18.789 —18.7838
20, —1.1775 —1.1545 —1.1602
20, —0.7040 —0.6905 —0.6871
3o, —0.4764 —0.4615 —0.4582
1m, —0.4509 —0.4295 —0.4442
17, —0.1957 —0.175 —0.1883

#Reference 8.
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FIG. 4. Comparison of one-particle energies in O,. The one-
particle states have been shifted relative to each other to enable
an overview in one picture. The gaps in the energy axis separate
the distinct parts of the spectrum. Right (isolated molecule):
present periodic structure calculation with large intermolecular
separation (30 a.u.). Middle (FLAPW): calculation of Ref. 8 for
periodic structure with intermolecular separations 6.846 a.u.; ei-
genvalues at I'. Left: present periodic structure calculation
with molecular separation 6.846 a.u. Leftmost: computation
with only the I' point for BZ integrations, giving a discrete
spectrum. Rightmost: correct BZ integrations used: single
states broaden into bands; the I'-point eigenvalues are the
lowest in the o bands and the highest in the 7 bands; these are
indicated as solid lines.

~0.020 a.u.) with respect to the isolated molecule. The
reason for this computational effect is easily understood:
the major dispersion effects are displayed by the 7 bands,
so that the error caused by simplifying BZ integrals (to
compute the charge density) to the I' point only, is dom-
inated by representing the 7 bands only by the antibond-
ing k=0 combination. This contracts the (-) charge
density too much onto the nuclei, the nuclear potentials
are spuriously screened, and the one-electron eigenener-
gies are raised.

PRECISE DENSITY-FUNCTIONAL METHOD FOR PERIODIC. ..

7897

We proceed to assess what aspects of the basis are pri-
marily responsible for the high quality. We do so for O,
(with the O-O distance 2.27 a.u. and with large separa-
tions between the molecules). Table V defines a sequence
of basis sets for O,. Set 1 is the “limit” set defined in
Table II and used for Tables III and IV. In set 2 the two
3d polarization functions are replaced by one (with inter-
mediate exponential factor). In set 3 we reduce in addi-
tion the s and p sets from quadruple-{ to triple-§ quality;
this basis will turn out to be an interesting one: the
smallest accurate basis. We assess the minimality of that
basis by reducing the s and p sets to double-{ quality
(bases 4 and 5), or by removing the 4f and 3d polariza-
tion functions (6 and 7). In all cases the basis-set errors
increase significantly. Sets 8 through 11 are variations on
(the minimal accurate) set 3 in the sense that the ex-
ponential decay factors of the STO’s are varied. In basis
12 finally the frozen-core approximation is used for the
oxygen ls state; this hardly changes the outcomes at all.

Figure 5 displays the maximum errors in the one-
particle energies and the cohesive energies, defining the
results with set 1 as exact. It has been established** that
for CO a triple-£ s,p set plus one 3d and one 4f function
(for each atom) represents almost the basis-set limit and
reduction of one of the components seriously affects the
results. We find the same for O,. The exponential decay
factors turn out to be noncritical: variations within
reasonable limits keep the results within the overall
basis-set accuracy range. This is an interesting and wel-
come notion because it means that for accurate calcula-
tions time-consuming basis set optimizations are not
necessary. It opens the way to a routine choice of high-
quality LCAO basis sets. Naturally in less precise com-
putations with smaller basis sets the detailed choice of
functions may be more critical, but this means only that
the results of such calculations are inherently unreliable.
We conclude that a (minimal) accurate basis consists of
triple-§ s and p sets and two polarization functions. The
decay factors of the latter are to be chosen such that their
maxima are ~0.4 times the bond length; the triple-{ sets
contain one contracted and one diffuse function in addi-
tion to the NAO.

TABLE V. Different basis sets for O, used to analyze the essence of “high quality” in LCAO bases. Entries between parentheses

refer to other sets; set (1) has been defined in Table II.

Basis 1s 2s 2p 3d 4f
(1) NAO 6.80 NAO 5.87 4.31 NAO 7.56 3.45 2.96 1.69 2.50
1.70 1.14
(2) (1) (1) (1) 2.00 (1
(3) (1) NAO 431 1.70 NAO 4.08 1.12 (2) (1)
(4) (1) NAO 1.70 (3) (2) (1)
(5) (1) NAO 1.70 NAO 1.30 (2) (1)
(6) (1) (3) (3) (2)
(7) (D (3) (3)
(8) (1) (3) (3) 1.80 2.25
9 (1) (3) (3) 2.50 3.75
(10) (1) (3) (3) 2.20 3.20
(11) (1) NAO 4.00 1.40 NAO 4.00 1.20 2.20 3.20

(12) frozen (11)

(11) (11) (1
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FIG. 5. Errors in the cohesive energy and the one-electron
energies (a.u.) in O, for several basis sets, defined in Table V.

We turn now to bulk solids and examine basis sets in
Si, g-C, Na, Ni, Cu, and NaCl. These represent a fair
variety: covalent bonding, simple and transition metals,
and ionicity. We cannot completely repeat the analysis
used for O, because large “molecular” valence sets (triple
§ or even quadruple §), incorporating diffuse functions,
cause dependency problems in the Bloch basis due to the
accumulated overlaps with functions on surrounding
atoms. Furthermore, the basis-set limit is not known and
from a principal point of view LCAO methods seem un-
suitable for a well-defined systematic approach of this
limit.

The first point makes it probable that double-§ sets
might be sufficient, as the reduced one-center variational
freedom may be compensated by the presence of func-
tions on nearby atoms. The second problem can be at-
tacked by the application of plane waves. The following
approach is therefore chosen. We define as the starting
point a double-§ (naturally: one NAO plus one STO)
valence set without polarization functions, which will be
denoted the basic set; the frozen-core approximation is
used for the innermost atomic states. Then we add polar-
ization functions and monitor convergence (the cohesive
energy is used to compare results). The polarization
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functions that give too small improvements, less than
0.001 a.u./atom say, are removed again and we have ob-
tained a presumably accurate LCAO set, which will be
called the full (LCAO) basis. For a comparison we add
also plane waves to the basic set and monitor convergence
of that sequence. Finally we add plane waves to the full
set and check in this way whether we have been missing
important components in the LCAO basis (which proves
not to be the case).

The plane-wave sequences are defined by adding the
waves in ‘“‘stars” of reciprocal-lattice points. The polar-
ization STO’s to be supplemented have exponential decay
factors a such that the maxima of these functions are
roughly at 0.33-0.40 times the nearest-neighbor distance.
This is a little shorter than was found optimal for the O,
molecule. We have done so because in denser systems,
like the bulk solids under consideration, only local
features of the wave functions need to be described; fur-
ther away the basis functions on other atoms take over.
We have carried out a few pilot calculations and found
the more contracted functions performing better, al-
though the differences were small (~0.002 a.u. at most)
for a fair range in exponent values; this points out once
again that detailed radial characteristics are relatively
unimportant for the basis-set quality.

Table VI contains the (STO parts of the) basic sets and
the polarization functions. The latter are labeled by a
star; those with a double star turn out to be unimportant
and do not belong to the “full” LCAO basis. Figure 6
displays for the basis-set sequences defined above the
cohesive energies as a function of the number of functions
(per unit cell) added to the basis set; for each system a
constant term has been added in order to enable a fine-
scale overview of all cases in one picture: we consider
here convergence and relative values rather than absolute
ones. Adding plane waves to the full LCAO sets yielded
changes in the cohesive energies smaller than 0.0015 a.u.;
we do not show these data here.

The basis sets for Na have been used for the sodium
crystal as well as for NaCl. As is apparent from Fig. 6
the Na polarization functions play no role in the sodium
crystal. They are important, however, in NaCl; the single
and double stars on the Na functions in Table VI refer to
the latter. The polarization sequence for NaCl is defined

TABLE VI. STO characteristics for the basic sets and for the polarization functions (* ). Unimportant polarization functions are

indicated by two stars (% * ); see text.

Orbital C Si Ni Cu Cl
1s (frozen) (frozen) (frozen) (frozen) (frozen) (frozen)
2s 2.00 (frozen) 2.20 (frozen) (frozen) (frozen)
2p 2.00 (frozen) 2.20 (frozen) (frozen) (frozen)
3s 2.00 1.10 4.05 4.15 1.75
3p 1.60 1.10* 3.50 3.55 1.30
3d 1.90* 1.35* 1.10* 1.95 1.30 1.10*
4s 2.00 2.50
4p 2.00* 1.85%
4d
4f 2.90* 2.00* 1.70%* 2.00* 1.85% 1.70**
5g 3.80** 2.70*%* 2.60%* 2.50** 2.20%*
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FIG. 6 Convergence of the cohesive energy errors
(a.u./atom) for basis-set sequences. Abscissa: number of func-
tions on top of the “basic”” LCAO set. Polar: LCAO polariza-
tion functions added. PW: plane waves added (in stars of
reciprocal-lattice points). The exact values are here defined as
the best values obtained with the employed basis sets.

by taking at every step an additional function for each of
the two atoms. With two polarization functions per atom
the sequence is converged, but a test calculation showed
that the 4f function on Cl was in fact irrelevant; hence
the double star on it in Table VI.

Basis-set-free results are not available in these cases, as
they were for the diatomics CO and O,. Furthermore, al-
though the PW sequences are known formally to con-
verge, it is not certain to what extent the limited se-
quences displayed in Fig. 6 have actually approached the
limit. Nevertheless the data strongly suggest that the
limit is approximated closely and we infer that (a) the po-
larization approach gives a very good convergence, two
functions being usually necessary and sufficient to yield a
highly precise result (the remaining basis-set error is
~0.001 a.u. or better) and hence (b) the full LCAO basis
is very adequate; in particular the polarization functions
are important; they represent what alternatively the plane
waves have to offer to a bare double-§ basis. In the cases
of g-C and Si the approach with polarization functions is
significantly more effective than with the plane waves,
but also for the metals and NaCl the PW approach does
not match the LCAO method in efficiency. Mixed basis
sets (PW’s plus Gaussians) have been tested before for
semiconductors*® and for metals,*’ and it was found that
one polarization function gives already very good results
and that addition of a few plane waves on top of that
basis produces virtually the limiting results (by compar-
ison with large plane-wave sets); these findings fit in with
our results.

As a last note we mention that in the computations on
NaCl we start routinely up with neutral atoms. We have
done a few comparative calculations by starting up with
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ions (+0.8e). This implicates of course a different set of
NAO’s. Confirming the general trend of our findings,
i.e., that the flexibility of the basis determines the quality,
rather than details of individual functions, we found
changes in the total crystal energy of only 6 X107 % a.u.
(basic set+ 1PW) and 5X 1072 a.u. (basic set+2PW), i.e.,
the differences are small compared with the total basis-set
error and disappear rapidly as the quality of the basis is
improved.

D. Si, g-C, Na, Cu, Ni, NaCl

Finally we compute for the employed bulk crystals the
usual physical quantities: the equilibrium lattice con-
stant, bulk modulus, and cohesive energy The full bases,
as defined above, are used and the integration parameters
have been set at high values 4=5, K=7 (A=4, K=5
during geometry optimization) to remove any relevant in-
tegration errors. From the analyses above it will be clear
that the results must be virtually converged with these
settings. We have verified this by comparing with the re-
sults for “normal” integration settings 4 =4, K=5 in the
equilibrium geometry. The cohesive energies change at
most by 0.002 a.u., in qualitative agreement with Figs. 1
and 3.

The VWN formulas have been applied for the
exchange-correlation functional. The lattice constant
and the bulk modulus for the energy minimum are ob-
tained by fitting the Murnaghan equation of state!>*® to
the energy values E (V) for different volumes V. From a
moderate variation in volumes and hence in energy
values, say a 20% range in lattice constants, the equilibri-
um volume is easily determined, using Murnaghan’s
equation or any other reasonable curve. For the bulk
modulus, however, significantly different values are found
if a simple polynomial fit of degree 2 (or 3 or 4) is used
around the minimum. The problem of an accurate deter-
mination of B, from a simple polynomial approximation
has been noticed before.!! Van Camp, Van Doren, and
Devreese*® applied another “equation of state,” the equa-
tion of Birch,’® and found differences with the Mur-
naghan results up to 4%; moreover, the Birch equation
gave smaller moduli and a better fit in the cases they con-
sidered (diamond and silicon). We have used the Mur-
naghan equation to conform to the majority of workers in
this field. When comparing to experimental values, how-
ever, one should keep this uncertainty in mind and allow
for ‘“error bars” in the order of a few percent.
Murnaghan’s equation is

E(V)=E(V,)
.
VB, Vo Vo
B 12|+ 2| —1].
B'(B'—1) 2 }+ Z 1’

(3.1)

Vy is the equilibrium volume, B, the bulk modulus, and
B' its volume derivative.

The computed cohesive energies in Table VII have
been corrected for the zero-point motion in the solids,
which is contained in the experimental values, and they
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TABLE VII. Cohesive energy (E,,, a.u./atom), equilibrium lattice constant a, (a.u.), bulk modulus B, (Mbar), and (for Ni) the
magnetic moment u (up/atom). The cohesive energy of NaCl is defined with respect to the ions (+1e). PP is pseudopotential and Sr
is semirelativistic. Exchange-correlation functional employed in this work: VWN.

Na Cu Ni
Eon ao By Econ 4o B, Econ ao By |2
Expt. 0.0412 7.98* 0.068° 0.128° 6.82¢ 1.37° 0.1632 6.7° 1.86f 0.55f
1.42°¢
This work 0.044 7.71 0.086 0.157 6.71 1.67 0.215 6.52 2.44 0.552
Other DF 0.0412 7.69% 0.09? 0.150% 6.77% 1.552 0.210? 6.55% 2.27° 0.688
calculations 0.045" 0.149¢ 6.8° 1.29¢ 6.6° 2.098
0.123 6.85¢ 1.50°
0.173" 6.7V 1.86
0.141k 6.84% 1.80
0.152! 6.82! 1.88k
0.144™ 1.62!
Si g-C NacCl
Ecoh Qo BO Ecoh a 4 BO Bisotr. Ecoh ap BO
Expt. 0.170" 10.24¢ 0.99° 0.272° 4.6491 12.578" 0.41° 3.18° 0.147¢ 10.6¢ 0.26°
10.26" 0.98° 4.653" 12.612 0.148° 10.66° 0.266"
4.647 10.7¢
This 0.193 10.259 0.95 0.320 4.62 12.26 0.38 3.09 0.162 10.36 0.315
work
Other 0.172Y 10.301Y 0.98% 4.65% 12.9% 0.50% 3.19% 0.142° 10.2¢ 0.32¢
DF 0.180* 10.11* 1.15* 0.149¢ 10.66" 0.304"
calculations 0.209Y 10.223* 1.0% 0.152¢
0.183% 10.267" 0.92"
0.178" 10.14! 0.89
0.200% 10.256° 0.855°
0.880°
HF 0.117%
0.104%*

*Reference 53: KKR, modified Hedin-Lundqvist.

bReference 55.

‘Reference 62: sr, pp, PW+GTO, Ceperley-Alder.

dReference 54.

‘Reference 7: ASW, modified Hedin-Lundqvist.

fReference 74.

8Reference 73: KKR, von Barth—Hedin.
hReference 64: spherical cellular, modified Hedin-Lundqvist.

iReference 61: pp, PW, Ceperley-Alder.

iReference 63: sr, ASW, modified Hedin-Lundqvist.
kReference 65: pp, GTO, Hedin-Lundqvist.

'Reference 66: LAPW, Wigner formula.

MReference 67: pp, PW.

"Reference 60: pp, PW, Wigner formula.
°Reference 49: pp, PW (two different equations of state), Wigner formula.

PReference 69.
9Reference 68.
"Reference 71.
SReference 72.
‘Reference 75.

“Reference 59: FLAPW, Hedin-Lundqvist.
"Reference 56: pp, PW, Wigner formula.
“Reference 70: FLAPW, Hedin-Lundgqyvist; E ., from computed total energy and our own atomic energy values.
*Reference 13: pp, GTO, Hedin-Lundqvist.
YReference 57: LMTO, von Barth—Hedin.
*Reference 58: LMTO, modified von Barth—Hedin.
#Reference 52: LMTO, HF/von Barth—Hedin.
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are defined relative to spherically symmetric spin-
polarized atoms in their lowest DF (VWN) state, e.g., for
Ni: d°s!. (So multiplet splitting is neglected, the atomic
energy is calculated too high, and hence the cohesive en-
ergy is calculated too strong.) For NaCl, however, the
cohesive energy is with respect to the ions (Xle); the
Na™' and Cl™ ions are closed-shell systems and can be
computed spin restricted. The atomic spin-polarization
energies are as follows (in a.u.): for C, —0.0439; for Si,
—0.0244; for Na, —0.0075; for Ni(d°’s'), —0.0182; for
Cu, —0.0074. The ionic energies with respect to the neu-
tral atoms are (in a.u.) for Na, 0.1685; for Cl, —0.1056.
The zero-point vibration energies in the crystals are as
follows (in a.u./atom): for g-C, 0.0066 (Ref. 51); for Si,
0.0026 (Ref. 52); for Na, 0.0005 (Ref. 53), for Ni, 0.0015
(Ref. 53); for Cu, 0.0015 (Ref. 53); for NaCl, 0.0016 (Ref.
54).

The numerical results are displayed in Table VII.
From an overview of the data published by other
researchers (Table VII) it transpires that the various DF
computations yield significantly different outcomes, with
ranges of ~2% in lattice constants, 10% in cohesive en-
ergies, and up to 25% in bulk moduli. An obvious first
reason for these discrepancies is the use of different DF
formulas for the XC interaction. This may (partially) ex-
plain the small variation in computed lattice constants.
Furthermore, it has been found®’° that different DF for-
mulas lead to variations in (total) energies of a few milli-
a.u. The differences among the energy data in Table VII
are much larger, however. They are hence to be attribut-
ed to shape approximations used for the Coulomb poten-
tial, unsuitable or ill-converged basis sets, loss of pre-
cision by inadequate integration methods in real and/or k
space, and of course to the arbitrariness inherent in pseu-
dopotential approaches. The efforts we have undertaken
to control all aspects of precision are therefore fully
justified as they appear to be necessary if one wishes to
assess the merits and deficiencies of the DF approxima-
tion itself.

A comparison of our results with experimental data re-
veals that the VWN functional leads to an overestimation
of the cohesive energy by as much as 10—-20 %, and (ex-
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cept for g-C and Si) a too short lattice constant (and a too
large bulk modulus). This tendency towards shorter and
stronger bonding is also often found in LDF calculations
on molecules. The energy fault is (at least partially) due
to the atomic energies being calculated incorrectly, since
multipole splitting is neglected. It has also been ar-
gued’”’® that the discrepancies with experiment should
be repaired by incorporating nonlocal terms in the XC
functional; gradient exchange corrections have success-
fully been applied in molecular calculations; %2 an
efficient setup for their application to periodic systems
has been devised, !® but it has not yet been implemented
in our code.

The few Hartree-Fock results that we have found in
the literature (see Table VII) severely underestimate the
cohesive energies and show once more that correlation
plays a crucial role in the understanding of crystals.

Finally we give a summary of computational efforts
corresponding to the ‘default” integration settings
(A=4, K=5). Table VIII displays the number of basis
functions using the full LCAO basis sets: basic plus two
polarization functions per atom (even where some of the
functions may be irrelevant, for Na and NaCl), k points
(in the irreducible BZ), integration points, the maximum
number of words stored on disc at any moment during
the run, the number of iteration cycles that were used to
reach self-consistent-field (SCF) convergence, and the to-
tal CPU time (on the Cray Y-MP464), with a percentage
distribution of the latter over the three phases of a calcu-
lation: preparation (of crystal basis functions mainly),
SCF, and properties (“post-SCF”). The data refer in all
cases to a single run (i.e., one fixed geometry) with com-
plete SCF convergence.

In calculations on slabs and polymers the relative part
of the preparation phase is usually considerably less (typi-
cally 40% and 20%, respectively); the relative impor-
tance of this part in computations on bulk solids (in par-
ticular those with small unit cells) is due to the construc-
tion of the crystal basis functions, which gives rise to
large sums over lattice points in order to obtain fair pre-
cision in the Bloch sums of one-center functions. In sys-
tems with very slow SCF convergence with large numbers

TABLE VIII. Data on computational efforts for standard integration settings ( 4 =4, K=15) with the

full LCAO bases. See text.

g-C Si Na Ni Cu NacCl
Basis functions 80 40 18 30 30 38
k points 75 65 35 65 65 65
I“teg“‘(tl‘g?) points 11.6 7.0 5.0 3.4 3.4 7.7
File storage
(10° worres 155 43 7.9 17 16 45
No. of SCF 20 14 2 46 21 17
1terations
Total CPU time 4287 738 129 689 385 794
(secs)
Pre-SCF 61% 71% 81% 42% 75% 76%
SCF 39% 23% 19% 58% 27% 24%
Post-SCF 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%
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of iterations the SCF part becomes relatively more im-
portant.

IV. CONCLUSIONS

The analyses of the preceding section demonstrate that
all aspects of numerical precision in a calculation are well
under control. This applies to the evaluation of integrals
in real space and in k space as well as to the representa-
tion of the one-particle wave functions. A straightfor-
ward choice of LCAO basis sets with polarization func-
tions leads to rapid and systematic convergence towards
the basis-set limit. Plane waves, composite bases, or off-
site one-center functions are not required to obtain high
precision (at least not for the systems considered in this
paper). The relative irrelevance of detailed characteris-
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tics of the LCAO basis sets diminishes the need for tedi-
ous basis-set optimizations, and hence renders the LCAO
method easy to apply with highly precise results, so that
the inherent efficiency of this approach, due to the “natu-
ral” choice of atomiclike functions, comes to its full
right. The calculated properties of bulk g-C, Si, Na, Ni,
Cu, and NaCl are supposedly very close to the basis-set
limit of the LD (VWN) approximation.
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