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Momentum distribution function of the electron gas at metallic densities
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The momentum distribution function n (k) of the electron gas is calculated in the efFective-potential-
expansion method at metallic densities. The recently established self-consistency relation between n (k)
and the correlation energy [Y. Takada and T. Kita, J. Phys. Soc. Jpn. 60, 25 (1991)]is employed to check
the accuracy of our results. This check shows that the effective-potential-expansion method provides
probably the exact and at least more accurate results of n (k) than all the other methods that have given
n(k) thus far.

I. INTRQDUCTIQN

The electron gas has attracted attention for more than
half a century partly because it provides an excellent test-
ing ground for almost all many-body techniques and part-
ly because the knowledge of its correlation energy per
electron, c,„is essential for the local-density approxiIna-
tion' (LDA) on which many recent energy-band calcula-
tions are based. Although c, is now known accurately by
the Careen's-function Monte Carlo (CsFMC) method, '

we need as accurate information about the quasiparticle
properties of the electron gas as we have about c., in or-
der to construct an improved energy-band calculational
scheme over the LDA. For the purpose of obtaining the
quasiparticle properties, the GFMC method is not so use-
ful because it produces large statistical errors particularly
for quaDtities near the Fermi surface.

In this paper, we focus on the momentum distribution
function n (k) of the electron gas. n(k) has been calcu-
lated by Daniel and Vosko in the random-phase approxi-
mation (RPA). Later some of the exchange terms were
included by Lam. At about the same time, Overhauser
calculated n (k) in his plasmon-pole approximation in
which the exchange and the correlation effects were con-
sidered in terms of the so-called local-field correction in
the definition of the static dielectric function. Lantto
made a Fermi hypernetted-chain (FHNC) calculation in
which the short-range correlation is thought to be treated
quite accurately. In a recent paper, one of the present
authors developed an improved version of the effective-
potential expansion (EPX) method with which we can ob-
tain new data on n (k).

The results of n (k) in these calculations do not agree.
Thus we need some guiding principle based on which we
can determine the superiority of one calculation to oth-
ers. Recently a very useful self-consistency relation is es-
tablished between n (k) and E, . Since we know the exact
c, of the electron gas, we can use the self-consistency re-
lation as the guiding principle by checking how precisely
the relation is satisfied in each approximation for n (k).

II. FQRMULATI(ON

A. Hamiltonian

The homogeneous electron gas is a system consisting of
X electrons embedded in a uniform positive-charge back-
ground. The electrons interact with one another through
the Coulomb interaction. Thus the Hamiltonian is writ-
ten in second quantization as

H =H0+ V,
where

(2.1)

and

HO=QEkCI, Ck
ko

(2.2)

V= —,
' g g g V(q)C|, +q Cq q

.Cl, .Cl,
q&0 ka k'cr'

(2.3)

with ek=k /2m and V(q)=4|re /q . The volume of the
system is taken to be unity. We specify an electron by
momentum k and spin o. and represent its annihilation
operator by C& . This system is described by a single
parameter r„defined by r, —=me /uk~ with a

We show the results of this check in this paper, together
with those of n (k) in various methods.

In Sec. II we give a formulation for n (k) in the EPX
method with a critical review of the calculations in both
the Green's function and the FHNC approaches. In Sec.
III we first recapitulate the self-consistency relation be-
tween n (k) and E, and then give n (k) in various
methods. The accuracy of each calculation is checked
with the self-consistency relation. At the end of the sec-
tion, we discuss the magnitude of the discontinuity of
n (k) at the Fermi surface which is equal to the quasipar-
ticle renormalization factor zF. In Sec. IV we summarize
our results. We discuss an appropriate formula for zz in
the RPA in an appendix. In this paper, we employ units
in which %=1.
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= (4/97r)' =0.521 and the Fermi momentum
kz —=(3' X)'~ . In this paper, we consider r, in the range
1—6.

B. Review of previous calculations

Daniel and Vosko calculated n(k) by evaluating the
terms shown diagrammatically in Fig. 1. Those terms are
expressed as

n (k)= f . [G' '(co)+G„' '(co)X„"'(co)G„' '(cu)],—oo 27Tl

(2.4)

where GI, '(co) is the one-particle Green's function in the
noninteracting system and Xk"(co) is the first-order self-
energy, given as

values for n (k) at k much different from kF where the
short-range correlation involving large energy excitations
plays a primary role in the determination of n (k).

The short-range correlation is treated quite well in the
variational theories based on the Jastrow wave function, '

given by

~C, &= ~J(r,, )~0&, (2.9)

n(k)= &+,~C,'.C,.e, &/&C, ~e, & . (2.10)

where ~0& is a state described by the plane-wave Slater
determinant and f (r) is a two-particle correlation func-
tion. A scheme to evaluate the energy expectation value
with respect to the trial function (2.9) is called the Fermi
hypernetted-chain (FHNC) method' in which the varia-
tional parameter f (r) is determined by the solution of the
Euler-Lagrange-type equation. Lantto made such a cal-
culation and calculated n (k) through

(2.S)

n~+ (1 n„)], (2.6)

where n„ is equal to B(kF —~k~) with the Heaviside
unit-step function O(x ), b, ( k; q) is defined by

~(l;q) —= l.,+,—.,
and II(q, i0 ) is calculated as

nk (1 ni, +q )—b, (k;q)
II(q, if') =2 g II +[5(k;q)]

(2.7)

(2.8)

Lam included some of the exchange terms in addition to
the terms in (2.6). In those calculations, however, the
ladder diagrams which control the short-range correla-
tion" are not considered. Thus we cannot expect reliable

where

Here II(q, Q) is the polarization function in the RPA.
Transforming the Q integral along the imaginary axis
from the real axis, ' we obtain

~ dQ V(q)
0 7r 1+ V(q)II(q, i Q)

0 —[h(k;q)]
IQ +[6,(k;q)] ]

X [nk~(1 —nk+ )

The main problem in the choice of (2.9) is that the en-
ergy denominators like b, (k;q) are not included. Basical-
ly, the energy denominators are very important in the
evaluation of the correlation eA'ect, or the deformation
e6'ect of the many-body wave function, in a system in
which the Fermi level is located in the continuum of en-
ergy eigenvalues. Without the energy denominators, all
the electrons are treated in the same way, irrespective of
their location in the Fermi sphere. Although it may be
permissible for the quantities like c, in which summa-
tions over all the electrons are done and also for n (k) at
k much di6'erent from kF where the energies involved in
the virtual transitions are large, the absence of the energy
denominators may give a fatal error in n (k) near k =kz.
We are afraid that near the Fermi surface the FHNC ap-
proach gives a smaller deviation of n (k) from ni, than
the exact value. This will result in a too large discon-
tinuity of n (k) at k =k~ in this method.

This absence of the energy denominators also causes a
problem when the FHNC method is applied to the calcu-
lation of the quasiparticle properties in the system with
the interaction having q singularity. A physically
correct screening behavior near q =0 can be obtained
only when all the ring diagrams in the sense of the usual
Green's-function method are summed as in (2.5). But the
absence of the energy denominators makes the meaning
of the ring diagrams defined in the FHNC theories a
di6'erent one and thus the sum of those ring diagrams
does not lead to a complete screening at q =0. The prob-
lem of the incomplete screening becomes serious for the
quantities near the Fermi surface. In fact, Lantto point-
ed out that his result of n (k) had a logarithmically diver-
gent derivative at the Fermi surface, though the result of
n (k) in (2.6) does not have such a behavior.

x: Cko ko v (q) C. The EPX method

FIG. 1. Feynman diagrams for the calculation of n (k) in the
RPA of Daniel and Vosko (Ref. 4).

As we have discussed above, the Green's-function and
the FHNC approaches are complementary to each other.
The former has a favorable feature for the calculation of
n (k) near the Fermi surface, while the latter provides an
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appropriate method for n(k) at k much different from
kF. The EPX method is a combination of those
perturbation-theoretic and variational theories. Thus it is
expected to give n (k) which is accurate enough in the
whole region of k.

A trial function for the ground state in the EPX
method is given with a correlation operator U(0, —ao }
as'

le, &
= U(o, — )lo&

U (o, —
) lo&,n!

where U (0, —00 ) is defined as

(2.1 1)

It!

U (0, —ao )= f e 'dt, . . . f eo ™dtT[V,(t, ). . . V, (t )]L

m

+ f e 'dt, . . .f eo ™dtT[V,(t, )V,(t, ). . . V, (t )], , (2.12)

with the long- and the short-range parts of the effective
potential VI and V, . We do not explain either the mean-
ings of the symbols in (2.12) or the physical considera-
tions to reach this form here. Both of them were given in
detail in Ref. 8.

We can write the energy expectation value Eo with
respect to l @o& as a power series in V, as

(2.13)

The nth-order term in (2.13) is given by the sum of the
terms each of which is represented as a multidimensional
integral of momentum variables for the integrand com-
posed of n V, (q)'s and numbers of VI(q)'s up to infinite
order. Here V, (q) is given by

V&(q) = V(q)/[ —,'+ —,
' exp(q /q, )], (2.16)

where the optimized cutoff momentum q, was found to
be less than 0.16kF for r, in the metallic densities. Thus
Vt(q) is not zero only for q less than about 0.2kF. On the
other hand, V, (q) is very small in that region.

We can use (2.10) for n (k) with the trial function in
(2.11). As in (2.13), n (k) is expanded in powers of V, (q)
as

n(k)= g n'"'(k) .
n=0

(2.17)

All the important terms in Eo up to eighth order were
given explicitly in Ref. 8. The optimum V&(q) and V, (q)
to give the minimum Eo were determined in Ref. 8 and
the results were shown in Fig. 5 of that paper. We note
that VI(q) is optimized within a functional form, given by

V, (q)
V, (q) —=

[e(q, o) ]

with the dielectric function e(q, Q), defined as

e(q, Q) =1+II(q,Q) V~(q) .

(2.14)

(2.15)

The terms in n' '(k) are represented by the Feynman dia-
grams with the symbol X in Fig. 1 in Ref. 8. The Har-
tree term is given by n& and the ring contribution
n„' '(k) is expressed by the second term in (2.4} with V(q)
replaced by V&. The exchange term is given by

dQ dQ' dc' Vl(q} Vl(q }
n,"„'(k)=

2vri f— 2ni f— 2mi e(q, Q) e(q', Q')

XGj', '(co) Gq+'q (co+Q')Gj', ~q (co+Q)GI', ~q+q (co+Q+Q') . (2.18)

This contribution is very small. Namely, its absolute value is always less than one-hundredth of that of n„' '(k). The
same is true for the contribution from the two other diagrams having two screened interactions VI/e. The terms with
more than two screened interactions have much less contribution. Thus n' '(k) is given by (2.6) with V(q) replaced by
VI.

The first-order ring contribution n„'"(k) is shown diagrammatically in Fig. 3(a2) in Ref. 8. It can be expressed as the
second term in (2.4) with V(q)/[1+ V(q)II(q, Q)] replaced by V, /[e(q, Q)] . We can employ the static approximation
as explained in Ref. 8 for the calculation of n„' "(k). As a result, it is written as

V&(q) nz. (1—nz. q
~ )n„'"(k)= —2g g V, (q) 2 [nz (1—nz+q ) —nz+q (1 nz )) . —

[a(I;q)+a(I ', —q)]'

The product of V, (q) with VI(q)/e(q, o) is small in the entire region of q. Thus the contribution of n ~ ~(k) is not large,
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j.e., about one-tenth of that of n„'o'(k). Further, there is a strong cancellation of this term with the exchange term
shown in Fig. 3(bz) in Ref. 8. Therefore, n'"(k) contributes very little to n (k).

The important contribution to n'2'(k) comes only from the two diagrams in Fig. 4(a) in Ref. 8. The static approxima-
tion can be used to evaluate those terms. Then the combination of them gives n' '(k) as

n'2'(k) = —g g V, (q)[ V, (q)e(q, O) —5 V, (lk' —k —ql)]
q k'o'

n„. .(1—n„ ~
. )[n~ (1—nz+q ) —nz+q (1—~q )]
[b,( k; q) +b.(k', —q) ]

(2.20)

The overall behavior of n (k) is almost determined by the sum of (2.20) and the Hartree term nz . In particular, only
(2.20) determines the deviation of n (k) from nz at k much different from kF.

Among the higher-order terms, odd-power contributions can be neglected for the same reason as explained for the
first-order term. However, we have to include even-power contributions, especially those from the fourth- and the
sixth-order ring families. We can employ the same approximation for the calculation of those terms in n' "'(k) as that
for E„' "'(Ho) given in Ref. 8. The result is given by

n' "'(k)= —g g. . . g [V,(q)] " [e(q, O)] "
q k2&2 k2. 2.

XI[V,(q))] [e(q, O)] —[(2n —2)5 V, (lk2 —k3 —ql)

+2m(q, O)5 V, ( lk k2+ql )]e(q o) V, (q)

+5 5 [2n —3+2@(q,O)] V, ( lk —k,„+ql ) V, ( lk —k2+ql ) ]

[b(k;q)+b(k; —q)][A(k; —q)+b(k, q)]. . .[4(k „;—q)+h(k;q)]
X [nq (1—n~+q ) —nj, +q (1 nq —)], (2.21)

for n =2, 3, . . . .

III. CALCULATED RESULTS

g ezn (k) =ED(1)—
Mo(k)

BA,
(3.1)

In the electron gas, Eo(A, ) is usually expressed as

4~e &~& 2.21 0.916 +0 g2 2 gr c s (3.2)

where c,, (A,r, ) is the correlation energy per electron as a
function of the scaled r, parameter A, r, . In terms of the
difference between n (k) and nz, (3.1) is rewritten as

A. Self-consistency relation

Based on the Pauli-Feynman theorem, ' we can derive
an exact relation between n (k) and Eo(A, ) which is the
ground-state energy of the system described by the Harn-
iltonian H(A, )—=Ho+A, Vwith a scaling parameter A, . Ac-
cording to Ref. 9, the relation is given by

g[n(k) —nz ]=0. (3.4)

However, this is not so useful, because almost all the ap-
proximate calculations for n (k) satisfy (3.4) automatical-
ly. Thus (3.4) can be used only for the check of the nu-
merical calculation rather than the validity of the ap-
proximation.

Here b.c,,(r, ) may be regarded as the kinetic-energy shift
per electron in units of Rydberg (Ry) me /2. It is posi-
tive definite by its definition. Since c,, and its derivative
with respect to r, are known very accurately, ' we can
give the accurate value of b.s, (r, ) for each value of r,
from the right-hand side of (3.3). In Table I, we give
those values of hs, (r, ) for a very wide range of r, .

Equation (3.3) is very useful for the check of accuracy
of n (k): If we obtain n (k) in some approximate calcula-
tion, we can evaluate its accuracy by comparing between
the accurate value of b, E, (r, ) and that from the left-hand
side of (3.3). The conservation of the total number of
electrons leads to another relation for n (k) as

NbE, {r,)=gsz[n{k)—nz ]
ko.

me4 —c.,—r,
2 dr

(3.3)

B. Momentum distribution function

In Fig. 2 we show the calculated results of n (k) in vari-
ous methods at r, =4. The solid, the dashed, the dotted,
and the dashed-dotted curves represent, respectively, the
results in the EPX method, the FHNC of Lantto, the
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TABLE I. Kinetic-energy shift per electron Ac, for various values of r, in units of Ry.

10 20

0.0733 0.0486 0.0368 0.0296 0.0248 0.0212 0.0132 0.006 40

RPA of Daniel and Vosko, and a correction to the RPA
with some of the exchange terms given by Lam. The re-
sult obtained by Overhauser is very close to that of Lam
at this value of r, . (This is an accidental coincidence.
For other values of r„ they are not the same. The result
of Overhauser seems to be much better than that of Lam
as we will see later. ) Since the correlation effect is overes-
timated in the calculation of Daniel and Vosko, its result
of n (k) gives a too large deviation from the noninteract-
ing value n, & in the whole region of k. A considerable
improvement seems to be made by Lam. In particular,
the Lam result happens to be very close to that in the
EPX method near the Fermi surface at this value of r, .
At k much different from kF, however, the Lam result is
not good at all. For those values of k, the FHNC method
gives essentially the same result as that in the EPX
method. In fact, these two are different only in the very
vicinity of the Fermi surface.

In order to find the best n (k) among those results, we
have calculated be, (r, ) through the left-hand side of
(3.3). The values for b,e, (4) are, respectively, obtained as

0.0549, 0.0432, 0.0271, and 0.0292 Ry per electron for
n (k) in the RPA, the Lam theory, the FHNC approach,
and the EPX method. On the other hand, the exact value
for EE,(4) is given as 0.0296 Ry per electron as shown in
Table I. Thus the EPX method gives the best value and
is very close to the exact result. Note that if we calculate
n (k) up to second order in (2.17), we obtain 0.0273 Ry
for b,e, (4). If we consider the situation from the side of
the FHNC method, we can conclude that the overall be-
havior of n (k) is quite good due to a correct treatment of
the short-range correlation. To get a better agreement
with the correct value of b,e, (4), i.e., to have a larger
kinetic-energy shift by about 9%%uo, n (k) near the Fermi
surface should be a little more deviated from n, & as we
have obtained in the EPX method.

We have also calculated he. , at other values of r, . In
Fig. 3, the results of he, with n (k) in the EPX method

Q.1 Q

1p I I I I
)

& ( ( (
I

's= 4

0.05—

EPX

Lam
RPA

"s
5 6

( I I ) I I I I I

0.5 1.P

k (units of kF)

FIG. 2. Calculated results of n (k) of the electron gas in vari-
ous methods at r, =4. The solid, the dashed, the dotted, and the
dashed-dotted curves represent, respectively, the results in the
EPX, the FHNC (Ref. 7), the RPA (Ref. 4), and a correction to
the RPA with some of the exchange terms (Ref. 5).

FIG. 3. Kinetic-energy shift per electron in Ry units as a
function of r, . The results of 4c,, with n (k) in the EPX method
are given by the sohd curve. The results with n (k) up to second
order in (2.17) are shown by the dotted-dashed curve. The dot-
ted and the dashed curves represent, respectively, the exact
values in Table I determined with the use of the GFMC method
(Refs. 2 and 3) and those with n (k) in the RPA (Ref. 4). The re-
sults in the FHNC method (Ref. 7) and the Lam theory (Ref. 5)
are shown by the solid and the open circles, respectively.
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kF
n ( k) =0.0122r, g t i (0) (3.5)

where g & &
(0) is the spin-antiparallel pair distribution

function at zero separation. We find that n(k) in the
EPX method shows this asymptotic behavior for k larger
than about 4k+. The values for g & &

(0) obtained from
(3.5) are, respectively, 0.54, 0.17, and 0.055 for r, =1, 3,
and 5. Of course, these values agree with those given by
the solid curve in Fig. 9 of Ref. 16.

The fractional number of electrons excited above the
Fermi surface by the correlation effect bN/N, is defined
by

y
"+

k [ I n(k ) ]3k-

kF
(3.6)

are given by the solid curve. Since the results are very
close to the exact ones in Table I plotted by the dotted
curve, it is dificult to distinguish the two curves on the
scale of this figure. For comparison, the results with
n(k) up to second order in (2.17) are shown by the
dotted-dashed curve, while those with n (k) in the RPA
are given by the dashed curve. The results in the FHNC
method and the Lam theory are shown by the solid and
the open circles, respectively. The FHNC results happen
to be on the dotted-dashed curve.

Since the EPX method seems to give the values of n (k)
very close to the exact ones, it may be useful to show the
results of n (k) for other values of r, . In Fig. 4, we plot
n(k) for r, =l, 3, and 5. When k becomes very large
compared to k~, n (k) behaves as'

The calculated results of AN/N in the EPX method, the
RPA, and the Overhauser theory are, respectively, plot-
ted as a function of r, in Fig. 5 by the solid, the dashed,
and the dotted curves. The two solid circles represent the
results in the FHNC method.

C. Qnasiparticle renormaiization factor
at the Fermi surface

As shown in Figs. 2 and 4, n (k) has a discontinuity at
k =kF. Its magnitude is related to the renormalization
factor at the Fermi surface zF. ' In Fig. 6 we show the r,
dependence of zF obtained from various calculations of
n(k). The solid, the dashed, the dotted, the dashed-
dotted, and the dashed —double dotted curves correspond,
respectively, to the results in the EPX method, the
FHNC approach, the RPA of Daniel and Vosko, the
Lam theory, and the Overhauser plasmon-pole approxi-
mation. Although it provides quite good results for the
quantities like b,N/N in which all the electrons are in-
volved, the FHNC method gives a rather poor result for
zF in which only the electrons near the Fermi surface
play a primary role. Thus it seems certain that for the
quantities like zF the inclusion of the energy denomina-
tors in the trial function is quite important. On the other
hand, the Overhauser result is very close to that of the
EPX method in the whole region of r„ though the values
for b,N/N are quite different between the two. This indi-
cates that even if n (k) in the entire region of k is not al-
ways correct we can obtain a correct n (k) near the Fermi
surface as long as the screening behavior is treated
correctly combined with proper sum rules.

1.0 l I I I

0.3

RPA

OVERHAUSER

/
/

/
/

/
/

/
/

/
/

/
/

/

c 05—

Z:

a

0.1

i s

5.

0.5 1.0 1.5

k(unIts of kF)

FIG. 4. Results of n (k) in the EPX method for r, = 1, 3, and

FIG. 5. Fractional number of electrons excited above the
Fermi surface. The results in the EPX method, the RPA (Ref.
4), and the Overhauser plasmon-pole approximation (Ref. 6)
are, respectively, plotted as a function of r, by the solid, the
dashed, and the dotted curves. The two solid circles represent
the results in the FHNC method.
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1.0 In Fig. 8 we compare the results of zz in (3.7) with those
in (3.8) as a function of r„ together with those in the EPX
method shown in Fig. 6. As can be seen, (3.7) and (3.8)
give very different zz.

In the literature, ' ' formula (3.7) is usually employed
for the calculation of z~. However, it is physically quite
puzzling that (3.7) in the RPA gives a larger value than
(the probably correct) zF in the EPX method for r, )2,
because the important corrections to the RPA are con-
sidered to make zF larger. Therefore we have recon-
sidered the applicability of (3.7). The details of the dis-
cussion are given in the Appendix, but our conclusion is
that the correct value of zF in the RPA is given by (3.8)
(the dotted curve in Fig. 8) rather than (3.7). Formula
(3.7) includes some effects of the exchange and the ladder
diagrams implicitly and this is the reason why (3.7) gives
a value of z~ much closer to that in the EPX method
than (3.8).

IV. SUMMARY

rs

Based on the self-consistency relation between the
momentum distribution function n (k) and the correla-
tion energy, we have verified that the EPX method gives
quite accurate results for n (k) of the electron gas at me-
tallic densities. We have also argued that both the short-

FIG. 6. Renormalization factor at the Fermi surface as a
function of r, obtained from the magnitude of the discontinuity
of n(k) at k=kF. The solid, the dashed, the dotted, the
dashed-dotted, and the dashed —double dotted curves corre-
spond, respectively, to the results in the EPX method, the
FHNC theory (Ref. 7), the RPA (Ref. 4), the Lam theory (Ref.
5), and the Overhauser plasmon-pole approximation (Ref. 6).

1.0

In the Careen's-function method, ' ' we can go beyond
the calculation in (2.4), if we confine ourselves to the
properties near the Fermi surface. For the calculation of
zz, for example, we can sum infinite number of terms
shown in Fig. 7 instead of two in Fig. 1. The result for zF
obtained from such a calculation is

0.5

while the result indicated by the RPA in Fig. 6 is

(3.7)
RPA (&+ d~

)d4)

(3.8)

(a)
rs

FIG. 7. Feynman diagrams for the calculation of n(k) ob-
tained by the infinite sum of the RPA terms in Fig. 1.

FIG. 8. Renormalization factor zF as a function of r, calcu-
lated in the RPA in two different formulas. The dotted and
dashed curves give, respectively, the results of the formulas to
first order (3.8) and to infinite order (3.7). The results in the
EPX method are plotted by the solid curve and are the same as
in Fig. 6.
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(c)

FIG. 9. Feynman diagrams for Xz~(co), Xz"'(co), Xz~'"'(co),
and Xz '(co}. They are given in (a), (b), (c), and (d), respectively.

and the long-range correlation should be treated accu-
rately in order to obtain the correct behavior of n (k) in
the whole region of k. The former plays a primary role in
the region of k much diFerent from kF, while the latter
plays a role in that of k near the Fermi surface. Among
the calculations of n (k) reported thus far, only the EPX
method includes both of these eFects correctly. As a by-
product of this study, we have reconsidered the conven-
tional formula (3.7) for z~ and clarified the implication of
the formula.

APPENDIX: RENORMALIZATION FACTOR
IN THE RPA

Basically, n (k) can be calculated by the co integral of
the full Green's function Gk (co) as

n(k)= f . Gk (co)—oo 27Tl

(A 1)

FIG. 10. Examples of the Feynman diagrams for the self-
energy corrections to n (k).

~k= 8k+ Xk.(~k) (A2)

where Xk (co) is the full self-energy. The true energy
dispersion co& is determined by

where Xk"(co), Xk'(co), and Xk '"'(co) are given diagram-
matically in Figs. 9(a), 9(b), and 9(c). I'The expression for
Xk"(co) is given in (2.5).] Up to second order of this ex-
pansion, (A2) is solved as

and zF is given by

BXk (cok)
zF= 1—

Bcok
(A3)

(1)
(i)~k ek+ Xkcr( Ek) +

g
Xko ( Ek)

BEk

+Xk"'(Ek)+ Xk '"'(Ek) (A5)

Now we expand Xk (co) as

(A4)

As noted by DuBois, ' there is a strong cancellation be-
tween the third and the fourth terms in (A5). In fact, the
sum is given by

ar'" E.

XkIT(Ek)+Xko (Ek)=r f . f . Gk+qcr(ek++) Gk+q o(Ek++')
1BE,I

—oo 2fTl —oo 27Tl

V( lq' —ql )

1+v( lq' —ql )11(
I

q' —ql, 0' —0)
V(q')

1+ V(q')II(q', 0') (A6)

and it becomes very small. Similar cancellations also occur in higher-order terms as well. Thus as far as we calculate
the self-energy in terms of the bare G.reen s function as in (2.5), it is sensible to calculate cok by

cok —ek+Xk (ek) .
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ay(2s)(s )

BEI

(&)
(, ) (2s)

&) (E))+&) '(&))
BE,k

(AS)

In particular, if we neglect all the exchange diagrams such as XI, '"'(e), ) we can replace the self-energy by XI,"(E&) in
(A7).

In the same spirit, we can rewrite (A3) up to second order as

ar„".)(.,) a'x„".)(.,) ar„":"'(.„)
BEk

ar('.)(e, ) ar('.)(s, )
' ar(':")(e„)

1 + —B
aE) BEg

ar„".)(.„) ar„".)(.„) '
z '=1-F +

BE,k BEk

ay())(e )

BEg

(A9)

where we have considered the cancellation between
XI, '(a))aXI,"(co)/ao) and XI, '(o)). In a diagrammatic

with ~k~ evaluated at kF. As before, we can neglect the
last term in (AS). Then we obtain (3.S) instead of (3.7) for
zF up to second order, if we do not include the exchange
diagrams. Similar cancellations work in higher-order
terms. For example, when we include the third-order
term XI, '(a)) as shown in Fig. 9(d), we obtain up to third
order as

I

language, we can say that the self-energy corrections to
n (k) in Fig. 10 cancel the contribution of higher-order
ring terms for n (k) in Fig. 7. For example, the term in
Fig. 7(c) is cancelled by the one in Fig. 10(a). Therefore
we find that (3.S) gives the result for zF in the RPA with
all the terms in Figs. 1, 7, and 10 and thus it is superior to
(3.7). Note that this is consistent with the conventional
procedure' to calculate the efrective mass I* by the
derivative of co), in (A7) with respect to k. Note also that
if the exchange term Xk '"' is included and its derivative
happens to cancel the third term in the last line of (AS),
we obtain (3.7) for z~. This indicates that the formula
(3.7) includes implicitly some effect of the terms which
are not included in the RPA.
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