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%"e develop a one-dimensional theory of diffraction-induced transverse effects in nonlinear Fabry-
Perot resonators addressed by finite-width incident beams. This is achieved in the framework of the
coupled-mode analysis, which takes full advantage of the fact that nonlinear Fabry-Perot devices are res-
onant. As compared with a recently published theory dealing with the same subject [M. Haelterman,
Opt. Commun. 75, 165 (1990); M. Haelterman, G. Vitrant, and R. Reinisch, J. Opt. Soc. Am. B 7, 1309
(1990); and G. Vitrant, M. Haelterman, and R. Reinisch, ibid 7, 131.9 (1990)],where the nonlinearity is
introduced in an approximate way, the formalism developed here takes the nonlinearity associated with
the optica1 Kerr effect rigorously into account. This feature has an important consequence: It leads to a
theory that can be generalized to the TM case and also to anisotropic nonlinear media. The theory
presented here is valid for any value of the angle of incidence. Under normal (or quasinormal) incidence,
two counterpropagating modes, having the same absolute value of the wave-vector component parallel
to the plane of the mirrors, are resonantly (or nearly resonantly) excited, whereas under oblique in-
cidence, only one of these modes is excited. This allows us to point out that the feedback leading to opti-
cal bistability occurs along the direction of propagation of these resonantly excited counterpropagating
modes of the nonlinear optical resonator. This explains why optical bistability disappears under oblique
incidence. Although developed in the case of nonlinear Fabry-Perot resonators, this theory applies to a
wide range of nonlinear optical resonators such as nonlinear prism couplers, nonlinear grating couplers,
nonlinear interference filters, etc. The theory developed here applies whenever the excited electromag-
netic field can be accurately described by a single mode or two counterpropagating modes of the non-
linear device. As an example, numerical results are given in the case of a nonlinear multiple-quantum-
well Fabry-Perot-type structure of Al, „Ga As/GaAs with Al& Ga„As/A1As mirrors.

I. INTRODUCTION

Nonlinear (NL) Fabry-Perot (FP) resonators appear as
promising basic elements for all optical signal processing:
optical bistability (QB), optical logic, etc. In order to
fulfill the need for massively parallel processors, large bi-
dimensional arrays of micro-NLFP resonators are now
developed. ' The reduction of the size of FP resonators is
limited by the diffraction phenomenon which appears to
be very important for the design of the NLFP resonator.
As a result, the influence of transverse effects arising from
diffraction has to be taken into account.

Diffraction in NLFP resonators has given rise to im-

portant literature ' where a variety of situations re-
garding the geometry of the NFLP resonator, the type of
nonlinearity involved, and the theoretical tools used are
reported. Marburger and Felber treat a high finesse cav-
ity with adjustable focusing elements. Drummond con-
siders an interferometer filled with a NL absorber and
takes into account the radial variation of the electromag-
netic (EM) mode function; dispersive effects and inhomo-
geneous broadening are also included. Rosanov
discusses the existence of transverse diffusive switching
waves. In the paper by Ballagh et aI. , the NL medium

is placed in the waist region of a spherical mirror cavity;
these authors deal with the "small shaping regime"
where diffraction can be ignored. As a result, they derive
an analytic solution for the cavity transmission and bista-
bility threshold. Firth and Wright report an analysi. s of
transverse effects in a NLFP resonator with an input
Gaussian beam. The method involves projection on to a
set of Laguerre-Gaussian functions. Moloney considers
a FP resonator partially filled with a NL medium exhibit-
ing a positive or negative Kerr-type nonlinearity. Firth,
Galbraith, and Wright study the influence of diffusion
and diffraction: this is achieved using a quasifast Hankel
transformation technique. More recently, Weaire and
Kermode and Reinisch and Vitrant' concentrate on
NLFP resonators completely filled, respectively, with
self-defocusing and self-focusing media. Olin and
Sahlen" assume a cylindrical symmetry and treat a FP
resonator filled with a saturable medium; Olin' analyzes
the case of dispersive OB in NLFP where diffraction and
diffusion are equally strong. The influence of heat con-
duction, together with the corresponding diffusive pro-
cess, is considered in Ref. 13. In every case, large
differences are found between plane-wave and finite-
width-beam calculations.
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The papers denoted as Refs. 6—13 have the following
common feature: the study of transverse effects is per-
formed without taking into account that, according to
the value of the input power involved, the transverse field
map (along y, Fig. 1) can be accurately described by its
linear expression. ' As a result, the unknown EM field is
looked for as a function of x and y (Fig. 1) leading, in this
way, to bidimensional theories. Due to its bidimensional
characteristic, this kind of formalism requires large com-
putation times.

Recently, a one-dimensional theory' ' has been
developed which relies fully on the fact that NLFP reso-
nators are resonant devices. This theory is based on a
pole analysis. As compared to bidimensional theories,
the interest of the method of Refs. 15 and 16 is due to
simplicity and rapidity because the y dimension has been
washed out.

There is however a drawback concerning the pole
analysis. ' ' In this theory, the linear equation describ-
ing the x behavior of the transmitted field is first derived.
This equation involves the propagation constant of the
linear mode. The nonlinear equation is then obtained by
replacing this propagation constant by a nonlinear one
which takes into account its dependence on the mode in-

tensity. This is done without any demonstration and the
validity is only checked numerically by comparison with
the bidimensional calculation. A rigorous demonstration
of this treatment is given in the present paper.

We show here that it is possible to develop a one-
dimensional theory of diffraction in NLFP resonators il-
luminated by a finite-width beam under any angle of in-
cidence, where the optical Kerr effect is rigorously ac-
counted for. This is achieved in the framework of the
coupled-mode analysis. ' This formalism is particularly
well suited for the study of diffraction in NLFP resona-
tors because the nonlinearity introduces itself naturally
from the very beginning of the calculation.

The coupled-mode analysis first requires us to charac-
terize the modes of the linear FP resonator. This is done
in Sec. II. Section III is devoted to the determination of
the NL equation which describes the coupling between
the incident field and the excited modes. A local Kerr
nonlinearity is assumed. This equation is compared with

the corresponding one in Ref. 16. The results of Secs. II
and III are discussed in Sec. IV where it is shown that, al-
though derived for NLFP resonators, the NL coupling
equation also applies to NL prism couplers, NL grating
couplers, and NL interference filters. In this section, for
the sake of completeness, the main results of Ref. 16,
which only concern transverse effects in transmission, are
summarized. We then consider a nonlinear multiple-
quantum-we11 Fabry-Per ot-type structure of
Al, Ga As/GaAs with Al

&
Ga„As/A1As mirrors

working in reQection.

II. MODES OF A LINEAR FABRY-PEROT DEVICE

Let r &, t &
', r2, t 2 be the linear reAection and transmission

coefficients, in amplitude, of, respectively, the front and
back mirrors of the FP resonator. It is an easy matter to
show that the linear plane-wave transfer function is given
by the following expression:

t e
jpo(p)

&(p)
py (p)

1 —r'e'

with t =t, t2, r =r, r2, p=kosin0, 8 the angle of in-
cidence, ko =(to/c)n, n the index of refraction of the out-
side medium, c the speed of light in vacuum, co the angu-
lar frequency of the incident beam,

(P) (k2 P2)1/2,

e the thickness of the FP resonator, k =(co/c)&e, and e
the linear relative permittivity of the NL medium, as-
sumed lossless, located between the two mirrors —thus e
is real.

Let

t'= ~t~'e' ' r'= ~r~'e' "

According to Eq. (2), one sees that it is p, and not p,
which enters the expression of r(p). Thus it is more con-
venient to consider the functions Po and r as functions of
p instead of p, i.e., $0= $0(p ) and r=r(p ).

Any resonance m of r(p ) is associated with a pole
=y of this function. The pole y fulfills

2 j2&0~&m~
1 —r e (3)

X

In Eqs. (1) and (3) r is a function of P. However in many
experimental situations the function r(p) is a slowly vary-
ing function of p in the resonance domain of interest.
Thus we neglect the P dependence of r.

Let

Kerr-law medium

2= 2 '2
ym =pm+J~m .

Equation (3) yields

(4a)

p =k — [(mm. ——,'g„) —
(inner~ ) ],2 2

e

(mm. ——,'@„)ln~r~ .2 2

e

(4b)

(4c)

FICx. 1. Geometry considered in this paper.

The quantity y is a simple pole of r(P ). Since y is
complex, y describes leaky modes of the FP resonator.
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This leaky feature comes from the fact that lrl (1, i.e.,
one deals with an open resonator. Assuming a
sufficiently high finesse cavity, in the vicinity of a poleI, the Laurent expansion' of r(p ) can be approximat-
ed by the following expression:

Cm
r(p )=r (p')=

p2 y2

with

2 J&p(~')

c = lim (P —y )
P y' J2pp(p j

1 —r e

We get

c =j ( —1) +'(mvr+j 1nr) .
re

(6a)

+m
Cm

2
'Vm

Resonance occurs when

Re(y ) =p =0 .

If we let y =y' +jy", Eq. (8a) shows that

ly'
I

= ly"
I

.

(Sa)

(Sb)

Besides this, according to Eq. (4b) Eq. (8a) leads to the
value e of e for which the leaky mode m is resonantly
excited:

k e =[(mar —
—,'P„) —(1nlrl) ] . (8c)

That is to say, under normal incidence, two counterpro-
pagating leaky modes (labeled m) of the FP resonator are
resonantly excited provided Eq. (Sc) is fulfilled. These
two modes have longitudinal x-wave-vector components
+ly'

I

(ii) 8%0

Cm

(ko sin8 —y )(ko sin8+y )

In the case of high-refiectivity mirrors (r =1), the use of
Eq. (6a) together with Eq. (4c) yields

e
1 —(P„/2m )

(6b)

Equation (5) provides a suitable basis to discuss which
modes are excited when the angle of incidence 0 is varied.
This equation can be rewritten as

Cm
+m

sjn20 —y
2

From Eq. (7), it is seen that one has to distinguish be-
tween the two situations 0 equal or close to zero and 0
different from zero. Let us assume that the wavelength is
a fixed parameter.

(i) 8=0

kosin8=+Re(y ). This equation can be solved either
with respect to e or 0. If the variable of interest is the
thickness e, for a given 0 this relation leads to the value
e of e for which resonance occurs:

[(mm —
—,'f„) —(lnlrl )2]

1 —(ko/k )sin 8

Due to the nonzero value of 0, it is also possible to derive
the value 8 of 8 for which there is resonance (the thick-
ness e being given): ko sin8 =+Re(y ).

III. NONLINEAR COUPLING EQUATION

We are now in a position to derive the NL coupling
equation between the incident field and the leaky modes
of the NLFP resonator. This is achieved using the
coupled-mode approach. ' We remind the reader that, as
already stated in Sec. I, the NFP resonator is filled with a
local Kerr medium.

A. Derivation of the general nonlinear coupling equation

The theoretical developments first require us to define
the unperturbed system. The latter is constituted by the
linear FP resonator without any illuminating beam. Its
normal modes are those discussed in Sec. II. The pertur-
bation arises both from the source polarization due to the
incident beam and the nonlinearity of the medium filling
the NLFP resonator. We make the usual hypothesis' '

according to which the resulting perturbation can be split
into two independent components as follows: One ac-
counts for the coupling process between the incident
beam and the NLFP resonator. The corresponding
source term is calculated considering the associated
linear case. The other component accounts for the NL
effect and comes from the existence of the optical Kerr
effect inside the NLFP resonator.

It has been shown in Refs. 14 and 16 that the results
concerning the response of a NLFP resonator derived
from the bidimensional theory ' are in good agreement
with the corresponding ones obtained using the NL
coupled-mode formalism. '" ' Since in the bidimension-
al theory the excitation process and the induced optical
Kerr effect are treated rigorously, this agreement justifies
the hypothesis of Refs. 19 and 20 according to which the
excitation process can be treated as mentioned above.
This conclusion holds whatever the shape of the incident
beam may be: plane wave or finite width.

The EM field supported by the unperturbed FP can be
expanded' on the basis of the modes introduced in Sec.
II; the coefficients of this expansion do not depend on x.
In the presence of the incident beam, these coefficients
become functions of the longitudinal x coordinate. ' The
general expressions of the transverse (in the plane perpen-
dicular to x) electric field CT(x,y) and magnetic field

&T(x,y) are given by the following expressions:

CT(x,y) =g c+(x)ET+ (y)e

Only one leaky mode m is resonantly excited provided:
+g c (x)Er (y)e (9a)
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&r(x,y)=g c (x)Hr+ (y)e
da~

N — =+jN~y a*—jco&E~~' (y) P~L(x,y) &

+g c (x)Hr (y)e (9b) —j (E*' (y).P (x,y)& . (1 lb)

The quantities Er (y)e and Hz (y)e refer,
+jy x kjy x

respectively, to the electric and magnetic fields of the for-
ward (+) and backward ( —) propagating modes of the
unperturbed structure (an e 1"' time dependence is as-
sumed). Ez (y) describe the linear transverse electric
mode shape of the forward and backward modes m. &e
assume d /dz =0, thus the mode profile is only a function
of y.

It is shown in Ref. 17 that the coefficients c +—(x) fulfill

the fo11owing equation:

c*
N = —jco(Er ' (y) P (x,y) &e

and c, is a unit vector along the z axis where

P&L=e~~3~~ @~2@

According to Eqs. (11a) and (12), Eq. (11b) yields

dQm =jy a —+jcoV "~a++a
~

(a++a )
dx

(12)

%'e pursue the TE case and consider isotropic NL
media. ' Thus

C=e, 8 and E=e,E,
pL e pL pNL e pNL

Z z

+jmV F,(x), (13a)
—J~&E*'(y) P (x,y)&e (10a)

In Eq. (10a) the following statements are true. (i) ( &

stands for an integral in the cross-section plane:
& &= J. . .dy.

(ii) N*=(u (Er XHr' —Er' XHr )&, (lob)

where u is the unit vector along the x axis. The integral
in the cross-section plane is calculated from y = —~ to
y =+ ~. The superscript t denotes the adjoint structure
deduced from the original one by transposition of the
dielectric permittivity and the magnetic permeability ma-
trices. ' Thus the quantity y' fulfills'

where use has been made of the fact that

(y"'(y)E'(y)IE (y)~'&
yNL

m

(E (y)& (x,y) &

V F,(x)=
m

(13b)

(13c)

F~(x) accounts for the x dependence of the finite-width
incident beam at y =0. For example, in the case of an in-
cident Gaussian beam

2—(x cosa/wo) &pz
I I

x' +x (10c)
According to Eq. (10b)

(iii) The first bracket accounts for the existence of the op-
tical Kerr effect of the medium filling the FP resonator
which gives rise to the NL polarization P "(x,y). The
second one describes the in-coupling of the incident
beam, the resulting source polarization being P (x,y).

The terms P (x,y) and P (x,y) couple all the modes
of the structure. Thus Eq. (10a) represents an infinite set
of first-order coupled NL differential equations. As
pointed out in Ref. 17, this set is exact. It is worth noting
that Eq. (10a) is valid for the TE and TM cases and also
for anisotropic NL media.

In the remainder of the paper, we consider the situa-
tion where (i) only two counterpropagating modes +y
may be resonantly excited and (ii) all the other modes are
far enough from these two modes such that the expansion
of the transverse EM field takes the following form which
accounts both for the normal or non-normal incidence
situation:

Cr(x, y) =c+(x)Ez (y)e +c (x)Ez (y)e

DYE(xy)=c+(x)Hz (y)e +c (x)Hz (y)e

(1 la)

Let a (x)=c (x)e; the use of Eqs. (10a) and (10c)
leads to

m
N = «'&

COPp
(13d)

In Eqs. (13b) and (13c), N and the numerator of
V F, (x) involve integrals which have to be calculated
over the whole cross-section plane. According to the
leaky feature of the modes, each of these integ rais
diverges. It will be explained in the following section
how this difficulty is solved.

Let g (x) denote the x dependence of the total electric
field of the mode: g (x)=a+(x)+a (x). From Eq.
(13a), we get

d2
+y g +g )g ~ g =g F,(x) (14a)

with
= —2coy V

~' (g"'(y)E'(y)l& (y)~'&

&E.'(y) &

Equation (14a) is important since it constitutes the NL
coupling equation between the incident field and the EM
field constituted by the forward and backward NL guided
modes m. It is worth noting that Eq. (14a) holds even in
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the case of multiple-beam excitation.
Once g (x) is known, the transmitted field 8, is given

by the following expression:

C, (x)=g (x)E (y =e), (14b)

6„(x)=g (x)E (y =0) F;(x—) . (14c)

whereas the refIected one 8„ is derived from the continui-
ty of the tangential component of the electric field at
y =0.

in that case, p=0 and b, = —p . Thus it is seen that
under normal incidence, and for self-focusing media, the
two modes involved in the QB process fulfills p (0. An
increase of the excited modes intensity leads to an in-
crease of (p ) =p +g ~f ~

. Resonant excitation of
these two counterpropagating modes occurs when
(pNL)20

Let us now calculate the quantities g and g
" enter-

ing Eq. (16a). This is achieved according to the pro-
cedure outlined at the beginning of Sec. III A.

Equation (14c) can be rewritten as

6„(x)=q A, (x) F,(x—),
where

E (y =0)
q E (y =e)

(14d)

(y2 p2)f —gL (17)

1. Determination of gL

It is worth noting that the coe%cient g does not de-
pend on the shape of the input beam. Thus g can be
determined considering a plane wave instead of a finite-
width incident beam. In that case, Eq. (16a) yields

Equation (14d} provides a useful relation between the
rejected, transmitted, and incident fields. It is worth
noting that this relation is a linear one between 8„(x),
8, (x), and F;(x). This result is a direct consequence of
the assumption underlying the coupled-mode analysis;
namely, that the transverse field map (along y) corre-
sponds to the linear one.

Use of the steepest-descent method' shows that the
far-field pattern, in transmission and reAection, is propor-
tional to the Fourier transform of e, (x) and 6„(x), re-
spectively.

Besides this, the transmitted field F, is given by

F, =f E (y=e) .

Equations (17) and (18) lead to
L

E (y=e) .
y2 —p2

(18)

(19)

Equation (19) is nothing but the transmittivity ~ of the
FP resonator. Comparison of Eqs. (5) and (19) leads to
the desired expression of g

B. Comparison with the results of Ref. 16

In order to compare Eq. (14a) with the corresponding
equation of Ref. 16, we consider the case where only one
beam is incident on the NLFP resonator. Thus

2

=j(—1)
1 —(Q„/2m~) E (y =e)

2. Determination of g
"

(20a)

and

F;(x)= A;(x)e~~

g (x)=f (x)e~p" .

(15a)

(15b)

Equation (16a) shows that the resulting NL longitudinal
wave-vector component y is complex and depends on
the local electric-field intensity

~f ~
through the follow-

ing relation:

(yNL)2 p2 +gNL~f ~2+jit2 (16b)

Therefore

—p2 2

corresponds to the initial detuning of the NLFP resona-
tor.

It is interesting to consider the situation 0=0 because

From Eqs. (14a) and (15), it is seen that f (x) obeys the
following NL coupling equation:

d2
+2jP +(y' P')f +g lf I'f —=g W;(x}.

dx dx

(16a)

According to Eq. (16a), the optical Kerr elfect exhibit-
ed by the medium filling the FP resonator leads to new
NL eigenmodes of the interferometer with a longitudinal
wave-vector component given by Eq. (16b). Thus the
quantity y ", and as a result g, can be derived looking
for the homogeneous solution of the NLFP resonator,
i.e., without any input beam. The calculation of g can
be performed analytically for a thick (e ))A, in the NL
inaterial) FP resonator, using Jacobi elliptic functions
or a numerical method for a thin NLFP resonator. For
the sake of simplicity, we consider here a thick FP reso-
nator. In this case, one derives the NL phase shift which
is related to the effective NL index variation An. Once
An is known, Eqs. (4) yield

b (y ) =26,n — &e,
C

gNL —3 ~(3)
771

'1+ [r, /'
(20b)

From Eqs. (16a), (4a), and (20), we see that the quantity

which, together with Eq. (16b), leads to the expression of
PL. Thus
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F, (x) obeys the following equation:

d F
+2jp ™+(p' 13

—+p" IF, I~)F,
dX dX

+ja F, = —c A;(x)

with

NL

IE (u=e)l'

(21)

In Ref. 16, for the sake of simplicity r and t have been as-
sumed real. Within the same approximation, Eq. (21) is
the same as Eq. (13) of Ref. 16. Such a result justifies a
posteriori the method used in this reference to include the
nonlinearity.

IV. DISCUSSION

The NL coupling equations (14a) and (21) are valid for
any incidence: normal, quasinormal, or oblique. As a re-
sult, the formalism developed here allows the study of not
only NLFP resonators but also NL prism couplers or NL
grating couplers. Indeed, as has been already noticed,
all these devices belong to the class of nonlinear optical
(NLO) resonators: the EM resonance involved in NL
prism couplers or NL grating couplers is the NL guided
mode resonance whereas for NLFP resonators it is the
NL Airy resonance.

When a NLO resonator is excited under oblique in-
cidence, only one mode is involved; the corresponding sit-
uation has already been studied by Carter and Chen. ' It
is an easy matter to check that under oblique incidence,
Eq. (21) yields Carter and Chen's equation. But for de-
vices which are usually illuminated under normal or
quasinormal incidence, two counterpropagating modes
are resonantly excited; this fact needs to be included in
the theory. Thus the theory developed in this article ex-
tends Carter and Chen's analysis to the case of NLO
resonators illuminated under small incidence angles with
respect to the resonance width in the 0 domain.

2. Transverse e8'ects in transmission

Extensive numerical results concerning the behavior of
the response of NLFP resonators when varying the
finesse, the width wo of the incident beam, and the angle
of incidence can be found in Ref. 16 where the emphasis
was only on the transmitted beam. We first summarize
the main results obtained there (Ref. 16) and then consid-
er a nonlinear device working in reAection. In Ref. 16
the following has been shown.

(a) For normal incidence and for self-focusing media
there is an OB loop even for tightly focused beams. This
is a consequence of the existence of a self-focusing chan-
nel of light in the NLFP resonator. For self-defocusing
media, the OB loop disappears when wo decreases.

(b) Under oblique incidence two facts are shown. (i)
There exists a limiting value 8& of 8 beyond which (8 & 8~)
OB is lost. This conclusion may be understood on the
basis of Secs. II and III. Under normal incidence, the op-
tical Kerr effect allows a simultaneous retuning of the

forward and backward propagating modes m. On the
other hand, under oblique incidence only one mode may
be resonantly excited (forward or backward, depending
on the sign of 8). Therefore it is seen that the feedback
giving rise to OB occurs along the x direction since it
comes from the resonant excitation of two counterpro-
pagating modes. In the case of oblique incidence, feed-
back is lost and OB disappears Consequently the zig-zag
path inside the NL resonator does not introduce the
necessary feedback to get OB, it only allows for the ex-
istence of NL eigenmodes of the structure. (ii) Concern-
ing the variation of 0I with the width wo of the input
beam, it has been found' that an increase of wo leads to a
decrease of 8&. the larger the input beam, the smaller the
8 range yielding OB. This result is surprising because
when considering an incident plane wave, OB exists
whatever the value of 0 may be. The reason for this be-
havior of 0I comes from the fact that the Fourier spec-
trum of the incident beam in the wave vector domain,
which is linked to the diffraction effect, is all the more
important than wo is small. Everything happens as if the
finite-width incident beam was behaving as a wave-vector
generator. It is this wave-vector generator which allows
the simultaneous resonant excitation of the two counter-
propagating modes even when 0 is different from zero.
Since this generator includes fewer and fewer wave vec-
tors as wo increases, one understands why 01 decreases
when wo increases. In addition, it is seen that under
non-normal incidence, the plane-wave solution is never
recovered both for self-focusing and self-defocusing
media. This is also the case for normal incidence, but
only for positive Kerr media. '

To summarize, it has been shown that considering a lo-
cal Kerr medium, there is no OB under oblique incidence
in the case of a finite-width incident beam. This result
contradicts the conclusion of Refs. 24—26, dealing with
plane-wave excitation, where it is shown that OB occurs
even under oblique incidence. As explained in Ref. 14,
the existence of OB under oblique incidence with plane
waves is due to the fact that a plane-wave calculation in-
troduces an "artificial" feedback through the implicit as-
sumption that the NL index of refraction is independent
from x. In fact, plane-wave calculations describe experi-
mental situations where a completely delocalized non-
linearity is involved. In this paper, we concentrate on a
local nonlinearity. Moreover, the result of Ref. 28—
according to which there should be OB under oblique in-
cidence, even in the case of a finite-width incident
beam —has been shown to arise from the approximation
made in Ref. 28, where it is assumed that the NL index of
refraction has no x dependence. Again this hypothesis
introduces an "artificial" feedback which explains the ex-
istence of OB reported in Ref. 28.

B. Transverse effects in re8ection

For the sake of specificity, let us now consider the case
of a nonlinear multiple-quantum-well Fabry-Perot-type
structure of Ali Ga„As/GaAs with Al

&
„Ga As/

A1As mirrors (Fig. 2). Such a device works in reAection
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Er Air

TABLE I. Numerical values of the parameters for the modal
theory.

Front Mirror: 7 periods of Al 0, Gao 9 As/AIAs

Active layer: 130 periods of GaAs/Alo ~ Ga07 As

Back mirror: 14 periods of AIAs/Aloq Gaog As

Paramater

2
m

Cm

gNL

Pm

qm

Value

1.8901X10' +j0.61878X10' m—jO. 1805 X 10' m
—3.701X10" V-'
—0.9927+j0.000 55

3.586+jO.0157

Substrate: GaAs

FIG. 2. Geometry of the nonlinear multiple-quantum-well
Fabry-Perot-type structure of Al& „Ga„As/GaAs with
Al& Ga„As/AIAs mirrors.

and corresponds to a recently published structure.
The front and back mirrors are assumed linear and are

constituted by, respectively, 7 and 14 periods of quarter-
wave layers of AIAs/Alp i GAp 9As such that their
refiectivities in intensity are RF =91.7% and
Rs =97.6%. The refractive indices of AIAs, GaAs, and
A10 1Gao 9As are, respectively, chosen equal to 2.956,
3.660, and 3.551 at a wavelength in vacuum of 840 nm.
The active medium exhibits a negative Kerr effect and
consists of 130 periods of alternating (-10 nm) GaAs
and Alp 3GAp 7As layers. We have checked that it is pos-
sible to replace it by a single layer with an averaged com-
plex refractive index n0 equal to 3.537+j6.7 X 10

The layers of the mirrors are quarter-wave ones at a
wavelength A, =838 nm, and the thickness of the central
layer is chosen equal to 2.7258 pm. In order to determine
the refiected field of the NL device (Fig. 2), it is con-
venient to consider first the associated linear device.

(a) Associated linear device In the p.lane-wave case,
there exists a linear relation between the rejected field
V„„„(P),the transmitted one 7, &;„(P), and the ampli-
tude A;(p) of the incident plane wave which may be
written as

paper, these quantities keep the same expression in the
NL case. In addition, Eq. (22) remains a linear equation
between the rejected, the transmitted, and the incident
fields. Thus considering now the NL device (Fig. 2), we
get

F„(x)=p A; (x)+q F, (x), (24)

where F, (x) is given by the full NL Eq. (21) and F, (x)
is the refiected field map. Equation (24) is a generaliza-
tion of Eq. (14d) to the case of a multilayered NL struc-
ture. Thus for a NLFP resonator the coefficient p is
equal to —l. In the case of the NL device (Fig. 2), the
values of the coefficients p, ~, c, g, q, and p
have been derived by a fit considering the plane-wave ex-
citation of the NL device (Fig. 2). The corresponding ex-
act reAectivity has been determined extending the
method of Ref. 24 to the case of a multilayered nonlinear
structure.

The numerical values of the parameters obtained for
this structure are given in Table I. For the NL device
(Fig. 2), the resonance under normal incidence occurs at
A, =838.3 nm. Thus the threshold for bistability is at
837.62 nm and we consider a working wavelength at
837.12 nm for which bistability exists with plane waves.

It is seen in Fig. 3 that the agreement between the
modal refiectivity obtained from Eq. (24) and the exact
reQectivity is excellent. Hence, we use these tested
coefficients to study the transverse effects in the nonlinear
structure (Fig. 2) illuminated by an incident Gaussian
beam.

The infiuence of the incident beam width iv (iv is full
width at half intensity) on the response of the nonlinear
FP resonator is analyzed at normal incidence. Figure 4

9'„h„(p)=p ~;(p)+q &, ~;„(p), (22)
x10

where V, &;„(P) is simply derived using Eq. (21) and p
and q are two constant complex coefFicients nearly in-
dependent of P in the vicinity of the resonance m. Thus
in the case of a finite-beam-width excitation, the rejected
field spatial distribution F„~„„(x) is related to the
transmitted one F, h„(x), by the following relation:

1.5—

~ 1.0—
O

0.5—

F„(;„(x)=p A;(x)+q F, h„(x) . (23) 0.0—

x10
(b) KL device The followin. g is worth noting. Accord-

ing to their definitions, p and q only depend on the
features of the linear transverse field map. Therefore, in
the framework of the coupled-mode analysis used in this

Incident intensity

FIG. 3. Comparison between the exact and modal theories in
the plane-wave case. Normal incidence.
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FIG. 4. Response of the device for three incident beam
widths w (w is full width at half intensity).

FIG. 6. Reflected profiles for working points A —C of Fig. 4:
far field at infinity (w is full width at half intensity).

V. CONCLUSION

It has been shown in this paper that the coupled-mode
formalism is particularly well suited for the study of

x10
8—

6—

4

E
crt

W=3 fLfn
w=6
w=12 "

-20 -10
I

0
x (pm)

I

10 20

FIG. 5. Transmitted profiles for working points A —C of Fig.
4: near field at the substrate interface (w is full width at half in-
tensity).

shows the bistability curves in reflection for Gaussian
beams whose waists are w =3, 6, and 12 pm. The total
reflected power integrated across the beam section is
plotted versus the total incident power. It is seen that for
a given detuning there exists a minimum waist for bista-
bility.

We are now interested in the beam profiles after the
commutation occurs, when the nonlinear term is high,
here for the working points A —C of Fig. 4 correspond-
ing to the three waists. Due to self-defocusing, the
transmitted (not observable experimentally) profile (Fig.
5) shows a smooth shape, contrary to the self-focusing
case. ' ' ' In fact the transmitted beam is spatially nar-
rower (after the commutation) than the incident one,
since the commutation only occurs at the center where
the incident intensity is high enough. This leads to the
existence of sidebands in the reflected beam. In addition,
the saturation of the nonlinear transmittivity, together
with the self-defocu sing spatial spread out of the
transmitted beam, explains the existence of a peak at the
center of the reflected beam. This qualitatively explains
the typical shape which is constituted of a central peak
with sidebands in the refiected far-field pattern (Fig. 6).

transverse effects in NLO resonators. It is worth noting
that this is achieved by rigorously taking into account the
optical Kerr effect. Moreover, this formajkism also allows
us to study the transverse effects in the NLO resonator
including anisotropic Kerr-law media whatever the polar-
ization of the incident beam(s) (TE or TM) may be. As
compared with bidimensional analysis, ' the theory
developed here takes full advantage of the resonant
feature of the NL device. One may think that this reso-
nant requirement corresponds to a limitation. This is not
the case because' the NL coupling equation applies to
NLO resonators whose finesse is as low as 5. In addition,
the theory presented here leads to a strong reduction' in
the computation time as compared to bidimensional
analysis: of the order of 100. This allows a systematic
study of diffraction effects in NLO resonators, for exam-
ple, the influence of 0, m0, the finesse, etc. on the optical
response of the NL device in transmission as well as in
reflection. As already mentioned, this theory applies not
only to NLFP resonators but also to NL prism couplers
and NL grating couplers. In fact, this analysis applies
whenever it is possible to isolate a single EM resonance
(in the P domain), i.e., each time the associated linear
transmittivity can be approximated by a Lorentzian in
the vicinity of the nearest EM resonance. This extends
the range of application of the NL coupling equation to
NL prism couplers, NL grating couplers, and NL in-
terference filters ' but excludes superlattices ' be-
cause in this case the spacing between the EM resonances
is nearly equal to their width. The features of the NL de-
vice enter Eq. (14a) through g and g . In the case of
NLFP and NL prism couplers, an analytical calculation,
using the method of Sec. III, is possible. When dealing
with the NL grating couplers or NL interference filters, a
fitting method based on the numerical plane-wave calcu-
lation has to be used.

Since the NL coupled-mode theory presented here ap-
plies to bulk devices (such as NLFP or NL interference
filters) and also to devices in the guided-wave geometry
(such as NL prism couplers or NL grating couplers), it is
not the bulk or guided-wave characteristic of the
geometry of these devices which is important. The irn-
portant feature is the ability of these NL devices to exhib-
it an EM resonance (NL Airy resonance for NLFP reso-
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nators, NL guided-mode resonance for NL prism
couplers or NL grating couplers). It is this feature which
leads to the possibility of using a coupled-mode theory,
usually developed for guided-wave devices, even for bulk
NL resonators. Thanks to the "guided-wave" type of the
theory, we have shown that the feedback leading to OB
takes place along the x direction. This ex lains why no
OB is obtained under oblique incidence. ' ' This study is
only concerned with local Kerr media. But the formal-
ism we have developed can be generalized to include non-
local effects. This has already been done for NL prism
couplers.

According to its wide range of applications, it is seen
that this coupled-mode analysis of transverse effects pro-
vides a powerful tool for the study and design of micro-
NLO resonators where diffraction-induced transverse
effects cannot be neglected.

ACKNOWLEDGMENTS

R.R. and G.V. would like to acknowledge support
from DRET Contract No. 89-189. The work of M.H.
was partly supported by the FNRS and the IAP program
of the Belgium government.

J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, and J. H.
English, Appl. Phys. Lett. 51, 94 (1987}.

J.H. Marburger and F. S. Felber, Phys. Rev. A I7, 335 (1978).
3P. D. Drummond, IEEE J. Quantum Electron. QE-17, 301

(1981).
~N. N. Rozanov, Zh. Eksp. Teor. Fiz. 80, 96 (1981) [Sov.

Phys —JETP 53, 47 (1981)].
5R. J. Ballagh, J. Cooper, M. W. Hamilton, W. J. Sandie, and D.

M. Warrington, Opt. Commun. 37, 143 (1981).
6W. J. Firth and E. M. Wright, Opt. Commun. 40, 233 (1982).
7J. V. Maloney, Opt. Acta. 29, 1503 (1982).
8W. J. Firth, I. Galbraith, and E. M. Wright, J. Opt. Soc. Am. 8

2, 1005 (1985).
9D. Weaire and J. P. Kermode, J. Opt. Soc. Am. 8 3, 1706

(1986).
~OR. Reinisch and G. Vitrant, J. Appl. Phys. 67, 6671 (1990).

U. Olin and O. Sahlen, J. Opt. Soc. Am. 8 4„319(1987).
~2U. Olin, J. Opt. Soc. Am. 8 5, 20 (1988).

U. Olin, J. Opt. Soc. Am. B 7, 35 (1990).
~~G. Vitrant, These d' etat, Institut National Polyteilimique de

Grenoble, 1989.
~5M. Haelterman, Opt. Commun. 75, 165 (1990). M. Haelter-

man, G. Vitrant, and R. Reinisch, J. Opt. Soc. Am. B 7, 1309
(1990).

~ G. Vitrant, M. Haelterman, and R. Reinisch, J. Opt. Soc. Am.
B 7, 1319(1990).

~7H. Kogelnik, in Integrated Optics, edited by T. Tamir, Topics
in Applied Physics Vol. 7 (Springer-Verlag, New York, 1975},
Chap. 2; C. Vassalo, Theoric des Guides d'Ondes
Electromagnetiques (Eyrolles, Paris, 1985), Vols. 1 and 2. The
adjoint structure is introduced in this reference; J. E. Sipe and

G. I. Stegeman, J.Opt. Soc. Am. 69, 1676 (1979).
~sG. Arfken, in Mathematical Methods for Physicists (Academic,

New York, 1970).
G. M. Carter and Y. J. Chen, Appl. Phys. Lett. 42, 643 (1983).

2 C. Liao and G. I. Stegeman, Appl. Phys. Lett. 44, 164 (1984).
2~J. W. Nibler and G. V. Knighten, in Raman Spectroscopy of

Gases and Liquids, edited by A. Weber (Springer-Verlag, New
York, 1979), p. 243.
F. S. Felber and J. H. Marburger, Appl. Phys. Lett. 28, 731
(1976).
W. Chen and D. L. Mills, Phys. Rev. 8 35, 524 (1987)~

24R. Reinisch and G. Vitrant, Phys. Rev. 8 39, 5775 (1989).
258. Bosacchi and L. M. Narducci, Opt. Lett. 8, 324 (1983).
2 V. J. Montemayor and R. T. Deck, J. Opt. Soc. Am. 8 2, 1010

(1985).
27G. Vitrant, R. Reinisch, J. Cl. Paumier, G. Assanto, and G. I.

Stegeman, Opt. Lett. 14, 898 (1989).
~8V. J. Montemayor and R. T. Deck, J. Opt. Soe. Am. 8 3, 1211

(1986).
G. Vitrant, P. Arlot, and R. Reinisch, Proc. SPIE 800, 169
(1987).
B. Sfez, J. L. Oudar, J. C. Michel, R. Kuszelewicz, and R.
Azoulay, Appl. Phys. Lett. 57, 324 (1990); J. L. Oudar, B.
Sfez, R. Kuszelewicz, J. C. Michel, and R. Azoulay, Phys.
Stat. Solidi (to be published).
F. V. Karpushko and G. V. Sinitsyn, J. Appl. Spectrosc.
(USSR) Proc. 29, 1323 (1978); B. S. Wherrett, D. Hutchings,
and D. Russel, J. Opt. Soc. Am. 8 3, 351 (1986).
J. Danckaert, K. Fobelets, G. Cauwenberghs, and I. Vereten-
nicoff, Proc. SPIE, 1280 (1990).

33W. Chen and D. L. Mills, Phys. Rev. 8 36, 6269 (1987).


