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Conductivity in one-dimensional highly correlated electron systems
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The dc conductivity for the t-J model is exactly obtained at t =J and for the Hubbard model in one di-
mension. Our calculation is carried out for arbitrary band filling by use of the finite-size-scaling method
based on the Bethe-ansatz solution under twisted boundary conditions. The effective transport mass
defined as the inverse of the conductivity serves as a sensitive probe of the metal-insulator transition.
The effective mass is extremely enhanced near half-filling both for the t-J model at t =J and the repulsive
Hubbard ~odel, which is a direct evidence of the metal-insulator transition due to the electron correla-
tion. We observe that the large antiferromagnetic coupling J in the t-J model increases the effective
mass. On the other hand, the conductivity in the attractive Hubbard model exhibits quite different prop-
erties from the repulsive models.

I. INTRODUCTION

The metal-insulator transition is a fundamental
phenomenon in which strong electron correlations play
an essential role. In order to characterize the insulating
state, Kohn pointed out many years ago that the low-
frequency conductivity is directly related to the shift of
the energy levels due to twisted boundary conditions. '

We note that this relation holds for systems in any di-
mension. Recently Shastry and Sutherland have reexam-
ined the idea by studying one-dimensional Bethe-solvable
models. An interesting issue is to see if (or how) the
effective transport mass defined from the conductivity
grows to infinity as the correlated system approaches the
insulating phase.

In this paper, based on the idea described above, we
present exact results on the conductivity of the one-
dimensional (10) correlated electron systems. We con-
sider the t-J model at t =J and the Hubbard model with
repulsive as well as attractive Coulomb interaction. In
10 correlated systems without any randomness, the elec-
trons are accelerated by the external electric field. The
acceleration behavior is affected by the correlation effects
as for the other static quantities. Here we note that the
periodicity of the lattice system also plays an important
role in controlling the conductivity. In fact, for the
Galilean invariant system, the conductivity should not be
renormalzied at all even if the interaction is strong. On
the contrary, as we shall see, the conductivity of lattice
electrons is strongly affected by the interaction and van-
ishes at the point of the metal-insulator transition (Mott-
Hubbard transition). Thus we can observe the electron
correlation effect quite clearly by looking at the conduc-
tivity or the transport mass.

In the next section, we illustrate how to calculate the
conductivity by studying finite-size effects in the ground-
state energy under twisted boundary conditions. For this
purpose, we take the t-J model with t =J at which the

II. TWISTED BOUNDARY CONDITIONS
AND CONDUCTIVITY

Let us consider the ring system of length X under
periodic boundary conditions. We introduce a uniform
time-dependent electric field along the 10 chain to study
the response. The external vector potential 3 couples to
the system through the Peierls phase factor in the hop-
ping term of the Hamiltonian. The ground-state energy
E depends on the phase Pcc A. An important conse-
quence of the linear-response theory is'

1 BE
llmco Imcr(co)—
co~0 X t)$2

(2.1)

where o (co) is the conductivity at frequency co. Perturba-
tion theory gives

E(P) E(0)=D,Q IK+—0(N ), (2.2)

where D, is the stiffness constant. These imply that the
dc part of the conductivity is expressed as

Reo. (co ) = D,5(R )co.
2m.e

(2.3)

Now it is crucial, though elementary, to notice that the

model can be solved exactly by the Bethe ansatz. ' The
saxne procedure is straightforwardly applied to the repul-
sive and attractive Hubbard models. The properties of
the conductivity, or the effective transport mass, of these
models are studied in detail in Sec. III. %"e will en-
counter the nonrenormalization nature of the conductivi-
ty of the t-J model and the repulsive Hubbard model in
the low-concentration limit. This is further examined in
Appendix A. In the attractive Hubbard model the con-
ductivity exhibits the logarithmic behavior near half-
filling. Simple renormalization-group analysis to explain
this is given in Appendix B.
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uniform electric field is gauged away from the Hamiltoni-
an. The external field effect is then incorporated by twist-
ing boundary conditions on the electronic wave function,
'Il(x+N)=e'~%(x). Consequently the conductivity, or
the stiffness, can be evaluated from the energy shift under
twisted boundary conditions.

Along this line of thought let us calculate the conduc-
tivity of the 1D t-J model. The Hamiltonian is well
known, '

t g (Ciuci +1cr +Ci + 1aCi a )

+2J g(S;.S;+& ,'n—;n—;+&)—p g n;, (2.4)

k +i/2
k i /2—J

~ kj Ay+i/2—
k —A i 2—P=1 j P

where c; (o = f or $) is the spin-o electron annihilation
operator at the ith site, S;=c; S .c; ~ with the spin- —,

' ma-
trix S, the number operator n; =c; c;, n;=n;&+n;~,
and p is the chemical potential. Here the spin coupling
J & 0 and the double occupancy of every site is strictly
forbidden.

The model can be solved by the Bethe ansatz for the
special case of t =J. ' We put t =J=1 for brevity and
take the 1D lattice with even number of sites, N. Among
the total of N, electrons, the number of down-spin elec-
trons is M. The Hamiltonian is diagonalized in two steps.
First we seek for the wave function as a superposition of
the plane waves characterized by the charge rapidity p
(j =1,2, . . . , N, ). The complete integrability is then en-
sured by the factorization of the scattering matrix
(Yang-Baxter relation). ' On imposing twisted boundary
conditions with phase deviations P& (P&) from periodic
ones, for the up (down) -spin electrons, respectively, we
reduce the problem to the ancillary one in the spin space.
This problem can be solved by the generalized Bethe an-
satz introducing the spin rapidity A (a=1,2, . . . , M).
The resultant Bethe-Yang transcendental equations are
given in terms of kj =

—,'cot(pj /2) and A

where J =(N, +M+1)/2 mod 1. The ground-state en-

ergy has the form
N N /2

E= —2 g cosp = 2N—, +2 g 2 . (2.7)
IA +1

We assume that the total electron number is even. Under
periodic boundary conditions (P& =pt=0), the solutions
kj and A for the ground state are distributed symmetri-
cally with respect to the origin, say lA l

~ Q. It is seen
from (2.6) that the presence of the phase shift P leads to a
small asymmetry of the order of 1/N in the distribution
of the solution A . Hence we have to compute the excita-
tion energy originating from the asymmetric distribution.

In the thermodynamic limit, the distribution of A is
obtained by taking the derivative of (2.6)

p(A) =— — dA'—1 1 , 1 p(A')
~ A2+1 e ~ (A —A') +1

in terms of which we express the energy density as

(2.8)

E /N = 2N, /N +—2f d A P
q A+1 (2.9)

Here we have introduced the abbreviation of the integral

f,=f'.+f,. (2.10)

For subsequent calculation it is convenient to convert the
above integral into f ~ . This can be performed
straightforwardly by Fourier transform. One finds

Q+
p(A) =R (A)+ f dA'R (A —A')p(A'),

Q
(2.11)

with the kernel being

R (x)= dco exp( icox)—
1 +expl~l

(2.12)

Similarly the energy density can be rewritten in a suc-
cinct form

2N tan '(A )=2m J +2/+2+ tan '(A —A&), (2.6)
P=l

a=1,2, . . . , M

j =1,2, . . . , N, e(P)=E(P)/N= f —R(A)e(A)dA,
Q

(2.13)

c A —kj+i/2 M A~ —Ap+i= —exp(i/~

if'�)

+-
I A Ap s

a=1,2, . . . , M . (2.5)

We note that the ground state is described by N, /2 pairs
of the charge complex solution k =A +i/2, which cor-
responds to the singlet ground state.

The finite-size corrections to the ground-state energy
due to twisting are now calculated, following the pro-
cedure explained in Ref. 4. In order to obtain the electric
conductivity, it is sufficient to consider the twisting
effects only on the charge sector. Thus we set P& =P& =P
hereafter. The logarithm of (2.5) for the ground-state
solution with k =A +i /2 gives the expression

where the charge excitation energy s(A) is defined by

Q
+

c,(A)=2m.R(A) —(2+@)+f dA'R(A —A' )s(A') .
Q

(2.14)

The parameters Q+ and Q corresponding to the Fermi
points are determined so that e(A) should vanish at these
points

s(Q+)=s(Q )=0 . (2.15)

As we have mentioned, the twist shifts the interval
form [—Q, Q) to [Q,Q+], and hence the ground-state
energy deviates from the periodic one. Now the energy
density e(P) is expended up to (Q*WQ) . We readily
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verify Be(P)/BQ —=0 using (2.15). The second derivative
of the energy takes the form

B'e(A } Be(A)

B(Q }' BQ+ ~=g+
Q++ d A'R (A —A')

a B(Q*)'
(2.17)

where we have again used the condition (2.15). Further-
more, for the first derivative of s(A), there exists the rela-
tion

Be(A) Be(A)

BQ w=g+ BA w=g+
(2.18)

in accordance with (2.15). Inserting the iteration solu-
tion of (2.17) into (2.16), and making use of (2.18), we ob-
tain

e(P) —e (0)=ir[p(Q) ]'U, [(Q —Q )'+(Q + Q )'],
(2.19}

where the velocity of the charge excitation is defined by

Vq
= s'(Q)

(2.20)
27rp

Here p(Q) and e'(Q) =BE(A)/BA~~ & are those obtained
from (2.11) and (2.14) with Q

+—=+Q. We next express
the change of the parameters Q in terms of P. Replac-
ing the summation in (2.6) by the integral and
differentiating both sides with respect to Q —,we obtain
the expression for BPIBQ+—. The same steps described
above are then followed to find

B e(P) +R Be(A}
A=Q+

+ B A+ J R(A) + dA. (2.16)a- B(Q+-}2

For B c(A)/B(Q ) we derive the integral equation from
(2.14)

we note that the critical exponent a, for the 4k~ oscillat-
ing part of the charge correlation function (k~ being the
Fermi momentum) is given by 2[/(Q)] . ' ' We thus
obtain the relation between the conductivity and the
correlation exponent '

1
D, = a, U, .

4~
(2.25)

It is not surprising to have the 4k+ exponent u, since the
energy shifts under consideration are closely related to
those occurring for the charge-density excitation with
4k+ momentum transfer. ' ' It is also possible to
rewrite (2.25) by the bulk quantities only. It was shown
in Refs. [5, 12, and 13] that a, is expressed in terms of
the compressibility y, and the specific-heat coefficient y,
coming from the charge Auctuation part, n,
=2m' g, /(3y, ), where the Boltzmann constant ks = l.
Consequently

7T +c
18 y2

(2.26)

III. CONDUCTIVITY AND EFFECTIVE
TRANSPORT MASS

We discuss the electron correlation effects on the elec-
tric conductivity. In order to see the correlation effects
clearly, we introduce the effective transport mass m*
defined by the relation

—1

In a similar way, we calculate the finite-size corrections
in the Hubbard model using the Bethe-ansatz solution.
As a result we arrive at the same expression for the con-
ductivity although each quantity (such as y, ) takes
different values from the t-J model (see Sec. III). To con-
clude this section, we emphasize that expressions
(2.24) —(2.26) for the conductivity are not specific to the
t-J model and the Hubbard model, but are valid generally
for the 1D correlated electron systems, which is one of
the universal aspects of Luttinger liquids introduced by
Hald ane. "

Q —Q=Q-+Q= ~Q
2mp(Q) N

(2.21)
m*

Reer(co) =
m

4e
5(fico),

+0
(3.1)

(2.23)

Consequently we obtain the charge stiffness D, in the
conductivity

D, =
2

[PQ)]'U, .1
(2.24)

This expression can be recast into other forms. First

where a function g(A) defined by

g(A)=1+ J dA'R(A —A')g(A') (2.22)—Q

is called a dressed charge function' '" since it corre-
sponds to the effective charge of the elementary charge
excitation. Inserting (2.21) into (2.19) yields the final ex-
pression for the energy up to P,

( ) v,
E($)—E(0)= +O(N ') .

2+%

where y0 is the compressibility of the noninteracting sys-
tem and v=N, /(2N) is the electron concentration (U =

—,
'

for half-filling). Notice that the mass enhancement factor
m*/m is unity irrespective of the interaction strength if
the system is Galilean invariant. On the other hand, for a
system undergoing the metal-insulator transition, the
mass is expected to be greatly enhanced close to the insu-
lating phase and eventually diverge at the transition
point. Hence the effective transport mass will serve as a
sensitive probe of the metal-insulator transition.

A. t-Jmodel

We begin with the discussion of the t-J model. In Fig.
1, we show the result for the charge stiffness D, obtained
from (2.26). For comparison the static quantities y, and

y, are also shown in Fig. 2.
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FIG. 1. Normalized charge stiffness D, for the t-J model at
t =J. The result for the noninteracting case is plotted (dashed
line) for comparison.

FIG. 3. Effective transport mass m */m for the t-J model at
t=J.

In the low-density limit the conductivity vanishes
linearly as the electron concentration decreases. This is
simply due to the decrease of the carrier density just as
for the noninteracting case. On the other hand, as v~ —,',
the conductivity decreases and finally vanishes at half-
filling in contrast with noninteracting model. This
reflects the fact that the system undergoes the metal-
insulator transition due to strong electron correlation.
We notice that the curve drawn in Fig. 1 is not sym-
metric about the v= —,

' point, though it looks almost sym-
metric [compare (3.4) and(3. 5)].

The electron correlation effect on the conductivity can
be seen more clearly if we plot the enhancement factor of
the transport mass. See Fig. 3. We immediately observe
that the mass is not renormalized (m /rn =1) in the
low-concentration limit. We refer to Appendix A for the
analytic derivation of this result. Physically it means that
in such a low-concentration limit, the system becomes
effectively Galilean invariant and any strong interaction
cannot modify the transport mass. This holds valid also
for the repulsive Hubbard model but not for the attrac-
tive model, as will be studied in Sec. III B.

In the vicinity of half-filling, on the other hand, the
effective mass of the electron becomes heavier and
heavier, indicating the metal-insulator transition. The
critical behavior in this region is now clarified. First we
find that the compressibility near half-filling is given as

(1—2v)
2 [R (0)]

R "(0) (3.2)

where R (0)=(1/rr)ln2, R "(0)= —(3/2n )g(3) with g be-
ing the Riemann zeta function. The dressed charge be-
comes

g(Q)=1+(1—2v) . (3.3}

m 2=—(1—2v) =0.637(1—2v)
—1 —1

m
(3.5)

which will be derived from (3.10). We thus observe that
the mass of the t-J model (t =J) is about 7% enhanced
compared with the infinite-U Hubbard model near half-
filling. Based on these results, we can say that the large
antiferromagnetic interaction in the t-J model has a ten-
dency to enhance the effective transport mass. It is un-
derstood noting that the large antiferromagnetic coupling
favors singlet paris of the nearest-neighbor electrons,
which restricts the free motion of each electron. This sit-
uation of favoring singlet pair seems to be similar to that
of the attractive Hubbard model. In the attractive case,
however, the pairing effect modifies the effective mass
rather drastically (see the next section).

Substituting these expressions into (2.24), we obtain the
effective transport mass near half-filling

16(ln2) (1—2v) =0.679(1—2v) . (3.4)
—1

3m/(3)

This behavior should be compared with the U~ ~ Hub-
bard model near half-filling,

I

0.25 0.5 B. Hubbard model

FIG. 2. Compressibility y, and speci6c-heat coefficient y,
for the t-J model at t =J. We plot the quantities normalized so
that g, =y, = 1 at v=

2
for the noninteracting case.

JV'= t g a; a—+ U g a,.&a;&a;&a;&,
&ij &, o. i

(3.6}

We consider the one-dimensional Hubbard chain de-
scribed by the Harniltonian
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where the electrons are assumed to transfer between the
nearest-neighbor sites. Both repulsive and attractive
cases are discussed using the Bethe-ansatz solution. '

1. Repu, lsive case

p(k)= +cosk f dk'R(sink —sink')p(k'),= 1 Q

2m' —Q
(3.8)

E(k) = 2t cos—k —p

+ f dk'cosk'R (sink —sink')s(k'), (3.9)—Q

where Q is determined by s(+Q) =0. In Figs. 4 and 5, we
plot the charge stiffness and the corresponding mass
enhancement factor as a function of the electron concen-
tration. As in the t-J model, the effective mass for low
concentration is not renormalized (see Appendix A).
When the concentration is increased toward half-filling,
the effective mass is considerably enhanced due to the
metal-insulator transition. '

Near half-filling the mass enhancement for the Hub-
bard model is explicitly obtained as

(1/2 —v)
m B

3 = f dz(z —1) ' csch(2n. tz/U),
1

m. t ~ 2 ~~2 [2coth (2m.tz/U) —1]dz z —1
4U t sinh(2~tz/U)

(3.10)

The calculation goes in parallel with the t-J model.
We note here that the twisting effect on the Hubbard
model was examined by Frahm and Korepin, ' and the
conductivity was discussed by the present authors fol-
lowing the method of Shastry and Sutherland. Indepen-
dently Schulz obtained the same result earlier using the
bosonization method with the aid of the Bethe-ansatz
solution.

The conductivity is given by (2.24), where we should
use the following charge function:

g(k)=1+ f dk'cosk'R (sink —sink')g'(k') (3.7)—Q

and the velocity v, =e'(Q)/[2np(Q)] with

0
)

0.25 0.5

FICr. 5. Effective transport mass m*/m for the repulsive
Hubbard model.

For small U, m */m shows the essential singularity prop-
erty which can be expressed in terms of the Mott-
Hubbard gap Eg in the universal form

m* 2Eg
(1—2v) (3.11)m m.t

Es =8(tU/n )'~ exp( 2rrt/U) —. (3.12)

2. Attractive case

We next turn to the attractive case and see that the be-
havior of the conductivity is quite different from the
repulsive case. The analysis helps to get an intuitive in-
terpretation of the mass enhancement for the repulsive
case. The conductivity is again given by (2.24) to which
we substitute the dressed charge g(A) and velocity
U, =E'(Q)/[2np(Q)] obtained from

g'(A)=1+ f dA'K(A —A')g'(A'),—Q
(3.13)

This indicates that the mass enhancement is directly re-
. lated to the formation of the Mott-Hubbard gap associat-
ed with the metal-insulator transition. In the strong-
coupling limit it follows the spinless fermion behavior
m '/m =(2/m)(1 —2v) ' as given in (3.5).

D,

0.5
0.5

0.25 0.5 0.5

FICx. 4. Normalized charge stiffness [D, =sin(n. v) for U =0]
for the repulsive Hubbard model. See also results by Schulz
(Ref. 5).

FICx. 6. Normalized charge stiffness [D, =sin(s.v) for U =0]
for the attractive Hubbard model. There exist the logarithmic
behaviors near half-filling.
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correlation function P (r) -r ~ at large distance r.
Finally we remark that the logarithmic behavior in the

mass enhancement factor exists in the vicinity of half-
filling, which is directly related to the existence of the
marginally irrelevant operator. This point is discussed in
Appendix B following the renormalization-group
method.

IV. SUMMARY

I

0.25 0.5

FIG. 7. Effective transport mass m /m for the attractive
Hubbard model.

p(A ) =—Re [ 1 —[A+i U/(4t) ] ]
=1

(3.15)

+ f dA'K(A —A')p(A'), (3.14)—Q

E(A) = 4t ReI 1 ——[A+i U/(4t)] ]
'~ —2p

+I dA'K(A —A')e(A'),—Q

where the integral kernel reads K (A) = [ U/
(2~t) ][A'+ U'/(4t') ]

In Figs. 6 and 7, we depict the conductivity and the
effective transport mass as a function of the electron con-
centration. The stronger the attractive interaction is, the
larger the effective mass becomes over the whole range of
the electron concentration. It is noteworthy that at the
low-density limit, the effective mass is enhanced by the
interaction strength, which is quite distinct from the
repulsive case. The enhancement is due to the fact that
the singlet electron pairs are developed by the attractive
force, which restricts the free motion of electrons consid-
erably. The effective mass in the strongly attractive re-
gion is analytically shown to be proportional to

~
U~/t,

since the effective electron hopping around the sites is
possible only by breaking the electron pair whose binding
energy is of the order of

~
U~. The formation of the sing-

let pairs of the electrons is also understood from the be-
havior of the pair correlation function. ' We present in
Fig. 8 the correlation exponent P for the singlet pairing

In this paper we have discussed the conductivity of the
10 correlated electron systems based on the finite-size-
scaling analysis under twisted boundary conditions. The
extremely large enhancement of the transport mass has
been observed near half-filling for both the t-J model and
the repulsive Hubbard model, which is a hallmark of the
metal-insulator transition.

We have shown another example of the mass enhance-
ment in the attractive Hubbard model, in which the
enhancement results from the formation of the electron
pairs with antiparallel spins. In view of the pairing
mechanism we understand that the mass enhancement
near the metal-insulator transition in the t-J model and
the repulsive model is caused by the formation of the
electron-hole pair which also restricts the free motion of
electrons. The Mott insulator can then be regarded as an
extreme case in which the pairing of electron and hole
severely restricts the electron motion so as to make the
transport mass infinitely heavy.

The present discussion of the t-J model has been re-
stricted to the integrable point t =J. In this special case
we have seen that the large antiferromagnetic coupling J
gives rise to the pairing effect between antiparallel spin
electrons on the nearest-neighbor sites, which in turn
makes the mass enhanced more than the repulsive Hub-
bard model. What will then happen when the strength of
J is increased further? Intuitively the transport mass is
expected to increase gradually and then diverge at the
transition point to the phase separation. In fact, accord-
ing to recent numerical calculations by Ogata et al. ,

' the
compressibility becomes extremely large on the boundary
of the phase transition. Based on formulas (2.24) —(2.26),
we naturally confirm the above picture for the conduc-
tivity.
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APPENDIX A

0.6

0.25 0.5

FICx. 8. Critical exponent P of the singlet-pairing correlation
function for the attractive Hubbard model.

We prove here that the mass is not renormalized in the
low-density limit of the repulsive Hubbard model. The
technique described here is applicable to many interact-
ing 10 systems. For the t-J model, however, we need to
invoke another technique, which will be mentioned in the
end of this appendix.

In the low-density limit (Q ~0), basic equations
(3.7)—(3.9) for the repulsive Hubbard model are reduced
to
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g(k) =1+f dk'R (k —k')g(k'), (A 1)

s(k) = —2t (1 k—/2) p—+ f dk'R (k —k')E(k'),Q

—Q

(A2)

1
Xg=

7r't
(A 1 1)

This result together with [g(Q)] ~2 (for Q~ ~) leads
to the desired result m */m =1 in the low-concentration
regime of the t-J model.

p(k)= + f dk'R (k —k')p(k') .2' —Q
(A3)

APPENDIX B

We first express s'(Q) in terms of the dressed charge
function g(k). To do so, we consider the integral equa-
tion for the second derivative s"(k). From (3.9), one ob-
tains

s"(k) =2t+ f dk'R'(k k') s—(k')—Q

=2t —[R (k —Q)+R (k +Q)]s'(Q)

+ f dk'R'(k —k')E"(k'), (A4)—Q

where we have used the condition E(+Q) =0 in the first
line. Since the equation is linear we may decompose c.

"
as E"(k)=si(k)+ Ez(k). E,(k) [sz(k) ] satisfies the equa-
tion with the driving term given by the first (second) term
in (A4). It is then obvious

E,(k)=2tg(k) . (A5)

The formal solution of cz obtained by iteration yields the
relation

f Ez(k)dk=2[1 —g(Q)]s'(Q) . (A6)—Q

From (A4) —(A6) we get

E'(Q) = f s"(k)dk
0

,' f 2—tg(k)dk+[I—g(Q)]E'(Q), (A7)—Q

from which we verify the useful identity

E'(Q)= f g(k)dk . (A8)—Q

Noting that g(k)=2mp(k), we finally obtain the mass
enhancement factor for (2.24),

m*/m =1 (A9)

v= (p+2t)—1 1/2 (A10)

The compressibility is evaluated

in the low-concentration limit.
The above technique can be applied straightforwardly

to the electron gas system and the bose gas system (with
5-function-type interaction), because the basic equations
are given by essentially the same formula as (Al) —(A3).
In these continuum models, it is thus shown that the
transport mass is not renormalized for arbitrary electron
(boson) concentrations.

A different method is required to discuss the case of
the t-J model, since the low-concentration limit corre-
sponds to Q ~ oo limit. Employing the Wiener-Hopf
method, which was discussed in detail in Ref. 6, we find
the asymptotic relation for the electron concentration as
Q~oo (i.e., p~ —2t),

LH kE (H) E(0)=-for L~~, H —+0
4mu,

(Bl)

where L is the system size and u, denotes the spin-wave
velocity. Notice that H has mass dimension 1. As first
shown by AfBeck the zero-field susceptibility is thus
given by

BE Lk
Xg

27TU

For finite H we expect the scaling form

LHE(H) —E(0)= — @(g(H)),

(B2)

(B3)

where 4& is a universal function and g (H) is a renormal-
ized scaling variable corresponding to the marginal
operator P(x) (Ref. 23)

1+mbg ln(1/H). (B4)

Here b is a universal constant fixed by a three-point func-
tion

We discuss the logarithmic behavior of the conductivi-
ty of the attractive Hubbard model near half-filling. It is
well known that under the canonical transformation
a;&=d;&, and a, &=( —1)'d;&, the Coulomb interaction
changes its sign and the role of the chemical potential p
and the external field H is interchanged. ' Thus the at-
tractive Hubbard model H =0 away from half-filling is
transformed into the repulsive model with nonzero exter-
nal field at half-filling. This means that the compressibili-
ty near half-filling in the attractive case is replaced by the
spin susceptibility of the repulsive model at half-filling.
Since the latter model belongs to the same universality
class as the spin- —,

' Heisenberg chain, the problem is re-
duced to evaluating the susceptibility of the quantum
spin chain. Logarithmic corrections to the susceptibility
have already been studied by means of the Wiener-Hopf
method when the exact Bethe solution is available. '
In the following, we give a simple renormalization-group
argument to derive the result.

We consider the spin-s Hamiltonian and assume that it
is attracted to the multicritical point whose critical be-
havior is described by the level-k (=2s) SU(2) Kac-
Moody algebra. ' In the spectrum of this theory there
exists a marginally irrelevant operator with scaling di-
mension 2, which is usually responsible for logarithmic
terms.

The ground-state energy E depends on an external field
Has
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(P(xi)P(x2)P(x3)) =
X( X3 X2 X3

Hence, for ln(1/H) »1/(bg), we get

(B5)

The magnetization ML = d—E /BH is represented as
M = ( (SL +Sz ) )H /L, where SL = fdx JL (x). From this
we may evaluate (Jl Jz(x)) =M /4. Substituting this
into (B8) and comparing with (B3) for g «1 we obtain
N'(0) =bk /8. We thus find the susceptibility for a small
external field

I.HE (H) E(—0)=— k @'(0) 1

4~ m b ln(1/H)

where 4(0) =k/(4m ) from (Bl). This explains the
universal logarithmic correction to y, as H —+0.'

We next determine the coefficient 4'(0) /b. The
correction to the 6xed point Hamiltonian due to the mar-
ginal operator is

5&=g Jdx P(x), (B7)

where P(x) = 2n bJ—
L

.J„(x) and JL {z) is the left (right)
-moving SU(2) current. At the first order of perturba-
tion we have

I k k 1+$1+2i.u, 2 ln(1/H)
(B9)

1 1
X,(v)=X,(v=-,') 1 ——

2 ln(1 —2v)
(B10)

thereby we obtain the mass enhancement factor

which agrees with the known results for k = 1.' ' Final-
ly the logarithmic correction to the compressibility in the
attractive Hubbard model near half-filling is given as

E(H) E(0)=—— +u, g J dx(P( x)) . (B8)
IH k

Uq

m*, 1 1(v= —,
'

) 1+—
m ' 2 ln(1 —2v)

(B1 1)
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