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Metal-insulator transition in doped conjugated polymers:
Effects of long-ranged Coulomb potentials
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The metal-insulator transition in doped conjugated polymers is investigated for charged impurities
that are represented as long-ranged potentials. The impurity positions are randomly selected. The
change in the number of electrons is determined by the number of impurities. Physical quantities are de-
rived from a sufficiently large number of samples, each of which is described by a finite-size Su-
Schrieffer-Heeger Hamiltonian with the impurity potentials. It is shown that the electronic gap can
disappear above a certain concentration even as the dimerization patterns persist. The present results
well explain the appearance of the metallic Pauli susceptibility, its magnitude, and the critical concentra-
tion, characteristic of the metal-insulator transition observed in experiments. The persistence of dimeri-
zation is also consistent with results of experiments in which highly doped samples are used. A compar-
ison with a previous study using short-ranged site-type impurity models is given. It is found that the
agreement is excellent, which indicates that the main results do not depend on whether the impurity po-
tentials are short or long ranged.

I. INTRODUCTION

In a series of studies, ' we have investigated how ran-
dom impurities may affect the electronic structures of
conjugated polymers. For the case in which the impuri-
ties give rise to isoelectronic disorders, we analyzed'
the electronic states by the Takayama —Lin-Liu —Maki
model, using the coherent-potential approximation, and
further by the Su-Schrieff'er-Heeger (SSH) model, ' mak-
ing use of numerical diagonalization of finite systems.
Various changes found in the electronic structure have
been reported. They depend on the type of the impurities
and doping mechanisms. In a subsequent study, the
change in the number of electrons has been considered
and the electronic structures have been investigated by a
numerical method. Coulomb potentials due to the
charged impurities have been assumed to be short
ranged. They modulate the site energy at the impurity
sites. The number of electrons is determined by the nurn-
ber of impurities. We have numerically diagonalized
finite systems with randomly distributed impurities.
Physical properties have been derived from calculated
data of a sufficiently large number of samples. The most
striking observation is that the energy gap at the Fermi
level can vanish even as the dimerization patterns persist.
This indicates an appearance of Pauli susceptibility and
can partially explain the metal-insulator transition. The
value of the critical concentration and impurity strength
turned out to be reasonable for realistic, doped polyace-
tylene. The magnitude of the Pauli susceptibility is also
comparable to the observed value.

Through the above studies, the impurity potentials
have been assumed to be short ranged. A "site-type" im-
purity is effective on electrons only at one lattice site. A
"bond-type" impurity modulates a hopping integral be-
tween a certain pair of CH units. Validity of the short-
ranged impurities is evident, if screening by m electrons is

complete and thus no long-ranged components remain.
However, it might be possible that the screening is not
complete in actual samples. The long-ranged com-
ponents which are not completely screened might affect
the electronic states.

The aim of the present paper is to examine effects of
the long-ranged impurity potentials. Though there might
be other possible forms of realistic Coulomb potentials,
we consider the one used by Conwell and Jeyadev. " The
dielectric constants are anisotropic, depending on wheth-
er the direction of each component is parallel or perpen-
dicular to the chain. The component in the chain is
larger because m electrons can move only in this direc-
tion. The dielectric constants are assumed to take values
observed over the whole sample. They might be locally
different near the impurities. Thus function forms of po-
tentials around the impurities are different from those in
regions far away from them. However, we assume the
same form as in Ref. 11 because effects of long-ranged
tails of the impurity potentials are expected to be qualita-
tively independent of the details of model potentials. We
assume random configuration of impurities. In other
words, we neglect the correlation effects among the im-
purities. The impurities are assumed to be of an accep-
tor type. The number of electrons is effectively decreased
from half filling by the same number of impurities. For a
given impurity distribution, the spatial variation of the
dirnerization amplitude and electronic states are numeri-
cally determined. Physical quantities are derived from
the data for a sufficiently large number of samples. The
numerical method is the same as that used in a previous
study. '

The results of simulation are reported in the following
order. First, properties of typical samples are discussed.
For each sample, the spatial variation of the strength of
impurity potentials, charge distribution, and lattice
configuration are shown. Stationary configurations are
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composed of various types of patterns: positive and nega-
tive solitons, positive- and negative-soliton lattices, and
disruption of m conjugation. It is a consequence of the
large spatial Auctuation of the impurity-potential
strength. Next, the dimerization order parameter is aver-
aged over a sufBciently large number of samples. An
enhancement in dimerization over that in the impurity-
free soliton-lattice system is reported. Finally, informa-
tion about the electronic structures is derived. It is
shown that the energy gap can vanish at an impurity con-
centration which is comparable to the observed magni-
tude. ' The value of the density of states at the Fermi
level is also of the same magnitude as the one observed. '

Because of the absence of the electron-hole symmetry, the
overall structures of density of states and plots of the in-
verse participation numbers are not symmetric with
respect to the center of the energy. In the Appendix the
present results are compared with our previous study of
short-ranged site-type impurity problem. It is shown
that there are interesting and excellent one-to-one
correspondences, making use of impurity strengths, criti-
cal concentrations, and correlation functions between the
spatial variation of the potential strength and electron-
density configuration. This implies that the disorder
effects on the electronic properties do not sensitively de-
pend on whether the impurity potentials are short or long
i anged.

This paper is organized as follows. In Sec. II, the mod-
el and method of numerical simulation are presented. In
Sec. III the simulation results are reported. Properties of
typical sanlples are then discussed. Next, the informa-
tion on physical quantities is derived and reported. We
summarize the paper and discuss the results in Sec. IV.
In the Appendix we compare the results with those of the
short-ranged site-type impurity problem.

II. MODEL AND NUMERICAL METHOD

The SSH model is generalized to include terms which
describe long-ranged potentials due to charged impuri-
ties. The Hamiltonian is given by

and

i, ji —n) ~N/2
V(n;i ), (2.4)

e
V(n;i )=

&J[(n &) & +(&~(&&J)d ]
(2.5)

Equation (2.5) is an impurity potential centered at the ith
site. This form was also used by Conwell and Jeyadev. "
The quantity e is the magnitude of the unit charge, e~ and

e~~ represent dielectric constants of perpendicular and
parallel directions with respect to the chain, respectively,
a is the lattice constant of the undimerized system, and d
is the perpendicular distance between the chain and im-
purity chain. The form of (2.5) is the Fourier transform
of the representation in the wave-number space:

4m.e
V(q~(, qi ) =

6
//

IQ'
f/

+6J Q' J

(2.6)

P,(n +N)=P, (n ) . (2.7)

where q~ and qj~
are components of a wave vector perpen-

dicular and parallel to the chain, respectively. Note that
the lattice displacement u„ is neglected in (2.5), because it
is much smaller than a: For instance, ~u„~-0.04 A,

0
while a —1.2 A for the perfectly dimerized system. Even
if u„ is included in (2.5), the results do not change ap-
parently, because the impurity potential varies fairly
slowly in the length scale of the order less than a. We
define the quantity V„by (2.4). It represents the total im-

purity strength at the nth site. The sum is taken over all
the randomly distributed impurities. The restriction
~i n~ ~N/2 —is due to the periodic boundary condition.
We consider an acceptor doping case by assuming the
positive V(n;i). When the number of lattice points N
and the concentration c are given, the number of elec-
trons X„ is determined by N,&=X—cN. The periodic
boundary conditions are imposed on electronic and lat-
tice systems in order to remove end-point effects. When
the vth wave function is expressed by P,(n ), it satisfied
the boundary condition

~SSH +~im (2.1)

The first term is the original SSH-model Hamiltonian.
Its form is

The boundary condition for the lattice is

un+N un (2.8)

ssH g [tp a(u„~ i u„)](c„+i c„+H. C. )
Pl, S

The eigenfunction P (n ) is calculated from the
Schrodinger equation

+—g (u„+,—u„)~, (2.2) c, P„(n ) = —(tp —ay„, )P (n —1)

where to is the nearest-neighbor hopping integral of the
undimerized chain, a the electron-phonon coupling
strength due to the modulation of the hopping integral,
u„ the displacement of the nth CH unit, c„, an annihila-
tion operator of an electron at the nth site with spin s,
and K the force constant between adjacent units. The
second term of Eq. (2.1) represents effects of the impurity
potentials. They are given by

—(tp —ay„)P,(n+1)+ V„P (n), (2.9)

y= — —g'P (n+1)P,(n)
KsS

+ g g'P„(m + 1)P,(m ),
77l K, S

(2.10)

where y„=u„+& and c is the ~th eigenvalue. The self-
consistency condition for the lattice is

Himp= g Vncn, sCn, s
Pl, S

(2.3)
where the prinle indicates a sum over occupied states and
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the second term originates from the condition g„y„=0
due to the periodic boundary condition (2.8).

A numerical solution is obtained in the following way.
(i) First, we choose cN impurity sites randomly out of

N total lattice points and thus 6x a sample.
(ii) Next, random numbers between —yo and yII0

(yo=0. 1 A) are generated for the initial values of the
bond variables Iy„' ']. Here we start the iteration.

(iii) At the kth step of the iteration, the electronic part
of the Hamiltonian is diagonalized by solving Eq. (2.9) for
the set of the bond variables Iy„' 'I.

(iv) Using the electronic wave functions IItI„(n)f ob-
tained above, we calculate the next set Iy„'"+"j from the
left-hand side of Eq. (2.10).

(v) The iteration is repeated until the sum
g„[y„' "—y„'"'] becomes sufficiently small.
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Numerical investigations are performed for the param-
eters a =4. 1 eV/A, K =21 eV/A, and to =2.5 eV for the
systems with X= 100. These give the dimensionless
electron-phonon coupling constant X—:2u /m. Kt0=0.20.
All the quantities with the dimension of the energy are
given in the unit of to. Simulations are performed for two
sets of dielectric constants. They are case A @~~=7.08
and @~=1.77 and case 8 m~~=11. S and @~=2.5. These
values have been used by Conwell and Jeyadev. " The
dielectric constants within a distance of a few lattice con-
stants from the impurity are not necessarily equal to the
values observed over the whole sample. We, however,
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FIG. 2. Quantities V„—V,„, p„, and y„ for another sample
which is different from that in Fig. 1. Dielectric constants and
the concentration are the same.
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take those values in order to stimulate effects of the long-
ranged impurity potential. Other parameters in (2.5) are
a =1.22 A, d=2. 4 A, and e =14.3 eVA. The impurity
concentration c is varied within the range 0.04 ~ c ~ 0.20
for each case.

In Figs. 1 —3 three typical solutions are presented for
the case A and c=0.12. In each figure part (a) shows
spatial variation of the impurity potential V„—V,„,
where V,„=(1/N)g„V„. Positions of impurities are
denoted by the squares on the abscissa. The strength V„
is larger in the regions where impurities are concentrated
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FIG. 1. (a) Spatial variation of the impurity potential
V„—V,„, where V,„=(1/N)g„V„, (b) the smoothed electron-
density distribution p„=(p„&+2p„+p„+& ) /4, and (c) the
smoothed dimerization amplitude y„=(—1)"(y„—y„+&)/2 for a
typical sample with long-ranged impurity-potentials. The
dielectric constants are those of case A. The impurity concen-
tration is c =0.12. Positions of centers of the impurities are in-
dicated by squares on the abscissa.
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FIG. 3. Quantities V„—V,„,P„, and y„ for another sample
which is different from those in Figs. 1 and 2. Dielectric con-
stants and the concentration are the same.
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more densely. It is smaller where impurity density is
lower. The difference between the maximum and
minimum of V„ is larger in Fig. 2(a) than in Fig. 1(a). It
is the largest in Fig. 3(a). In part (b) of each figure,
distribution of the smoothed electron density
p„=(p„,+2p„+p„+,)/4 is depicted. Instead of p„,
the electron-density reduction from half-filling, 1 —p„
(the hole density) is shown. The gross features of spatial
variation of p„are mainly determined by the distribution
of V„. Small changes and structures come from the
presence of solitons and soliton lattices. Part (c)
represents the smoothed dimerization amplitude
y„= ( —1)"(y„—y„+i ) /2, the acoustic component being
removed. In Fig. 1(c) a positively charged soliton is
pinned around impurities at n =71 and 76. A positively-
charged-soliton lattice is realized in the region
20 ~ n 5 50, where impurities are densely distributed.
The hole density is continuously large in this region.
Where the spatial fluctuation of V„ is larger, the
configuration of the lattice is more complicated. In Fig.
2(c) a negatively charged soliton is found at n -25. This
soliton is confined in the potential valley around the
minimum of V„. In Fig. 3(c) a negatively-charged-soliton
lattice is found in the region 10~ n 540, where the im-
purities are sparsely distributed. This is associated with
the enhanced electron density. Furthermore, the local di-
merization amplitude almost disappears at n -72. Here
the hole density is close to unity. This means that m. elec-
trons do not exist and the conjugation is locally disrupt-
ed. This is due to the fact that the impurity density is so
high that V„ is extraordinarily large around n -72 (the
magnitude of V„—V,„ is larger than rc ). In this way the
lattice configurations and electron distributions greatly
depend on spatial fluctuation of the impurity strength V„.
The possible configuration patterns are very fertile when
the Auctuation is large.

When the concentration is small enough, the Auctua-
tion of V„ is suppressed. Most of the lattice and charge
configurations are like those of Fig. 1. As the concentra-
tion increases, the Auctuation of V„enhances. This
enhancement raises the number of samples which contain
various patterns found in Figs. 2 and 3. When c-0.20,
about half of the samples contain local disruptions of the
m. conjugation.

The lattice and electron-density configurations for case
8 are qualitatively similar to those case A. Quantitative-
ly, the Quctuation of V„ is suppressed because of the
larger dielectric constants. Then the probability of the
occurrence of configuration patterns such as those of Fig.
1 is larger than in case A.

Randomly and independently chosen samples are aver-
aged over N„=100 times for each set of dielectric con-
stants and concentration. Here we tacitly consider a
fibril structure which is composed N„chains of size N.
Real fibrils in (CH)„might have the similar numbers of
N„and X. We numerically simulate electronic and lat-
tice structures of the fibril itself (we do not take the limit,
N„~ ao ). Weak three-dimensional couplings among
chains would be present in real systems. We, however,
neglect them because it is beyond the capacity of the
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0
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FIG. 4. Concentration dependences of averaged dimerization
amplitude ( ~y„~ ). The notation ( ) indicates averaging over

N„samples and N lattice points in each sample. The solid line

shows ( ~y„~ ) of the impurity-free soliton lattice system, I, =0.
The symbols and 0 denote numerical data for cases 3 and 8,
respectively.

computer to treat them fully. Results would not change
so much as far as the three-dimensional effects are weak
enough.

Figure 4 shows the averaged dimerization amplitude
( ~y„~ ), where ( ) means the averaging over N„sainples
and N sites. Numerical data for cases A and 8 are denot-
ed by the solid and open circles, respectively. The solid
line represents the same quantity ( ~y„~ ) of the irnpurity-
free system. The magnitude of (~y„~) of the systems
with impurities is larger than that of the impurity-free
system. This may come from the fact that the magnitude
of the dimerization amplitude in regions far from the soli-
tons, for example, the region 70~n ~95 in Fig. 2, is
larger than that of the impurity-free soliton-lattice sys-
tern. A similar enhancement of ( ~y„~ ) has been found in
the case of short-ranged site-type impurities. For case A,
i.e., the stronger impurity potentials, the absence of de-
crease for higher concentrations is found. The reason
may be that most of the positive solitons are so strongly
pinned around large-V„regions that the soliton width is
smaller than that in the impurity-free system, and thus
the spatial regions, where the dimerization amplitude
takes relatively larger value than in the impurity-free sys-
tem, extend. The same property has been pointed out in
the site-type impurity problem. We conclude that the
dimerization is enhanced by the presence of the long
ranged impurities, as has been found in the case of the
short-ranged impurities. The enhancement means that
the magnitude of ( ~y„~ ) is larger than that of the
impurity-free system, but is not necessarily larger than
that of the perfectly dimerized ground state. The dimeri-
zation becomes smaller around impurities, but persists
more strongly in the regions far from impurities. The
latter persistence mainly contributes the enhancement of
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( ~y„~ ). This persistence of the bond-alternation pattern
agrees with experimental features of heavily doped po-
lyacetylene: For instance, the x-ray-difraction data have
the peak associated with the bond-alternation pattern of
double and single bonds [for example, see Fig. 1(b) of Ref.
13].

Next, we discuss the electronic properties. Figure 5(a)
shows the density of states of the impurity-free system
with c=0.12. We show typical simulation data of the
density of states per site by a histogram in Fig. 5(b). The
dielectric constants are those of case 3 and the concen-
tration is c=0.12. The position of the Fermi level is
denoted by the arrow. The randomness has rounded off
the inverse-square-root divergences found at band edges
in Fig. 5(a). The valence, soliton, and conduction bands
are already joined together. The breakdown of the
electron-hole symmetry due to the impurity potentials is
clearly seen.

In order to obtain information about the electronic
structures around the Fermi level, we analyze the data in
the following way. For a fixed set of dielectric constants
and concentration, the energy gap E is defined as the
difference between the minimum of eigenvalues of the
lowest unoccupied states among the N„samples and the
maximum of those of the highest occupied states. In oth-
er words, we assume that the energy gap vanishes in the

(a)

fibril when the valence- and soliton-band states overlap
each other. It is obvious that this definition of E explic-
itly depends on X„. We, however, believe that this sim-
ple definition can be helpful to simulate electronic struc-
tures of polyacetylene films which are composed of fibrils
with similar magnitudes of X and X„. As far as E & 0,
the Fermi energy of the fibril locates in the energy gap.
Weak interchain interactions do not transfer electrons
among chains. Then the definition of E would be
reasonable. On the other hand, when E &0, the elec-
trons will move among chains due to the interchain cou-
plings. The fibril system will change into energetically
more favorable configurations. Eventually, the relation
E & 0 will be satisfied. We cannot simulate this situation
because of the limited CPU time available. We, however,
believe that E would become small enough, compatible
with the mean level spacing of the undimerized system.
Then we could regard the system as metallic. In the
present work, we calculate the density of states per site at
the Fermi energy p(p), when Eg (0, by the number of
states between the minimum and maximum. It is to be
divided by the product XN„~Eg ~. The result would not
change so much even if the three-dimensional transfer is
included, because the mean level spacing is so small that
the system is regarded as metallic. It should be noted
that the same definitions of E~ and p(p) as those in the
previous work are used so as to compare each other's re-
sults.

Numerical data about Es and p(p) for cases A and 8
are presented in Figs. 6 and 7, respectively. Solid circles
represent the energy gap. When the gap is open, it is E .
When the gap disappears, the solid circles show the zero
value and the solid squares represent ~E ~. The density of
states at the Fermi level p(p) is shown by the open cir-
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FIG. 5. Densities of states per site (a) for the impurity-free
system and (b) for case A. The concentration is c =0.12. The
arrow shows the position of the Fermi level. In (b) the valence,
soliton, and conduction bands are joined together.

FIG. 6. Impurity concentration dependences of the energy
gap and density of states per site at the Fermi level for case A.
Numerical data of the energy gap is denoted by solid circles: It
is Eg when Eg is positive and zero otherwise. When Eg (0 its
absolute value ~Eg ~

is shown by the solid squares. The open cir-
cles indicate the density of states at the Fermi level p(p). The
left scale represents numerical values of the gap and ~Eg ~, while
the right scale is for p(p). Note that the solid square for
e =0.18 is out of the range of the left scale; the value is 0.252to.
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FICx. 7. Impurity concentration dependences of the energy
gap and density of states per site at the Fermi level for case 8.
Notations are the same as those in Fig. 6.
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cles. We find that the energy gap vanishes between the
concentrations c =0.06 and 0.08 for case A. The critical
concentration lies between c =0.14 and 0.16 for case 8.
This reQects the difference in magnitudes of dielectric
constants, in other words, impurity strengths. The criti-
cal concentration of case A is close to the observed value,
about 7%%uo. The values of p(p) in the concentration re-
gion with no energy gap are of magnitudes similar to that
of the impurity-free undirnerized system,
(2nto) '=0. 16to ' This e.xplains well the magnitude of
the density of states estimated from the observed Pauli
susceptibility. To conclude, our results of case 3 re-
markably explain observed features of the metal-insulator
transition: the value of the critical concentration, the ap-
pearance of the Pauli susceptibility, and its magnitude. '

We analyze amplitude distributions of wave functions
with the help of the inverse participation numbers
(IPN's). ' The IPN of the ath wave function is defined by

It is a relative measure of the strength of localization. It
is larger when the wave function is more strongly local-
ized. The IPN's for the impurity-free system with
N = 100 and c =0.12 are presented in Fig. 8(a). The mag-
nitudes are of plane waves. A characteristic simulation
result is shown in Fig. 8(b). The dielectric constants are
of case A and the concentration is e =0.12. NXX„
points (E„,I„)are plotted. The arrow indicates the posi-
tion of the Fermi level. It is at the center in the small in-
terval of the width ~Eg ~. The IPN's of the soliton and
conduction bands are like of one band: The states in two
band edges are localized more strongly than those in the
band center. This indicates that the soliton and conduc-
tion bands are so strongly mixed together that they can-
not be recognized as two independent bands. On the oth-
er hand, the valence and soliton bands do not mix so
strongly. This is the consequence of the two facts that
the Peierls mechanism, to open a wide gap around the

-3.0 O

I

(E —V~v)/to
3.0

FIG. 8. Inverse participation numbers of wave functions (a)
for the impurity-free system and (b) for case A. The concentra-
tion is c=0.12 The arrow indicates the position of the Fermi
level. In (b), N XN„points (c,„,I„)are plotted.

IV. SUMMARY AND DISCUSSION

In the present paper, we have numerically investigated
lattice configurations and electronic structures of doped
trans-polyacetylene, when charged impurities are ex-

Fermi level, is effective even in disordered systems and
that the electron-hole symmetry property is violated due
to the impurity potentials. The IPN's of the valence
band are larger than those of the soliton and conduction
bands. This asymmetry can be explained by the
difference in the number of states and bandwidth between
two bands. The number of states in the valence band is
smaller than that of the soliton and conduction bands.
The width of the valence band is narrower than that of
the latter. Thus the IPN's of the states in the middle of
the valence band are larger than those in the center of the
other bands. The IPN's around the Fermi level are rela-
tively larger than those at the band centers. Wave func-
tions are more strongly localized. This feature may be
disadvantageous to explain the metallic conduction. This
may reveal limitations of discussions based on one-
dimensional models. Higher-dimensional effects might be
necessary to discuss the high conductance.



METAL-INSULATOR TRANSITION IN DOPED CONJUGATED. . . 7841

pressed by long-ranged Coulomb potentials. The electron
number is determined by the number of the impurities.
The numerical method is the same as that has been used
in our previous work on the short-ranged site-type im-
purity problem The main conclusions are that the ener-
gy gap can vanish at the impurity concentration of
several percent even as the bond-alternation patterns per-
sist and are rather enhanced by the impurities. The
enhanced dimerization is larger than that in the
impurity-free system, but is smaller than that of the per-
fectly dimerized ground state. These properties do not
depend on whether the impurity potentials are short or
long ranged. The presence of dimerization in the highly
doped case agrees with results of x-ray diffraction experi-
ments, which providing evidence for the alternation of
single and double bonds. ' The disappearance of the en-
ergy gap can explain the observed metal-insulator transi-
tion characterized by the onset of the metallic Pauli sus-
ceptibility. Our calculations are in excellent agreement
with the experimental properties: the value of the critical
impurity concentration, the appearance of density of
states inferred from the Pauli susceptibility, and its mag-
nitude. '

We find an interesting correspondence between the
short- and long-ranged impurity-potential problems.
This is shown in the Appendix. Two quantities, the criti-
cal concentration of the energy gap and the correlation
between the impurity-potential configuration and
electron-density distribution, remarkably agree with each
other. This indicates that the electronic properties do
not strongly depend on the range of impurity potential.
On the other hand, the lattice configuration patterns are
affected by whether the impurity-potential range is short
or long. For the short-ranged impurity potentials, the lo-
cal dimerization amplitude around impurities changes
suddenly. The lattice configuration patterns contain
strongly pinned solitonlike objects. The averaged order
parameter is also sensitive to the impurity-potential
strength. When the impurity potentials are long ranged,
the order parameters around the impurities do not varies
so strongly. Thus, the averaged order parameter does not
change so much as in the short-ranged impurity-potential
problem. The spatial Auctuation in the impurity-
potential strength is enhanced compared relative to that
in the short-ranged impurity-potential case. The lattice
configurations contain various kinds of local objects: pos-
itive and negative solitons, positive- and negative-soliton
lattices, and disruption of ~ conjugation. In contrast,
only the positive soliton and positive-soliton lattice were
found in the short-ranged impurity-potential problem.

From the analysis of IPN's, we find an asymmetry be-
tween the valence and conduction bands. The gap be-
tween the soliton and conduction bands closes for weak
strength of disorder. The gap between the valence and
soliton bands is stable against disorders. It vanishes for
stronger disorder. Distribution of plots in Fig. 8 reflects
this difference. IPN's of the soliton and conduction
bands have a structure characteristic of a single band.
Their values at the middle part of each band are larger in
the valence band. The asymmetry has also been found in
the short-ranged impurity-potential problem. It is one

of the consequences of the absence of the electron-hole
symmetry.

In the present paper, we have mainly discussed the
electronic properties of the doped system. Transport
properties are yet to be investigated. The reasons are as
follows. Solitons are strongly pinned at the peaks and
bottoms of the spatial variation of the impurity potential.
They cannot participate in the electric conduction in the
framework of the one-dimensional model. Higher-
dimensional effects, i.e., electron-hopping processes be-
tween solitons in different chains, should be taken into
account. In addition, interfibril coupling might play an
important role because the high conductance is observed
over the whole sample. Further evidence, which indi-
cates that the three-dimensional couplings might be
necessary, is the fact that the wave functions around the
Fermi level are relatively strongly localized as seen in the
IPN data. These problems remain to be investigated in
the future.

In the present series of works, we have considered the
random arrangements of impurities. In highly oriented
polyacetylene films, there might be some correlation
among distributions of impurities. ' A metal-insulator
transition is observed also in these samples. A possible
origin for the correlated distribution is interimpurity in-
teractions. ' Even if the screening mechanism by elec-
trons in a chain were effective, long-ranged components
of the impurity potentials would still remain. An overlap
of the long-ranged components due to different impurities
would result in interimpurity interactions. This effect has
not been included in the present paper. The model (2.1)
can be generalized to include interimpurity interactions.
Numerical procedures described in Sec. II should be ex-
tended to obtain stationary impurity distributions as well
as lattice and electron configurations. This problem is to
be studied and reported in a separate paper. '
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APPENDIX: COMPARISON WITH THE
SHQRT-RANGED IMPURITY-POTENTIAL PROBLEM

As discussed in Sec. III, we have obtained numerical
data which indicate the disappearance of the energy gap
with the persisting bond alternation. These properties
were found also in the short-ranged site-type impurity-
potential problem. It would be interesting to find rela-
tions between short- and long-ranged impurity-potential
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(F ) = (( V„—I.„)(p„—p.„)), (Al)

where p,„=(1/N) g„p„. Equation (Al) is transformed

problems. In this appendix we make a quantitative corn-
parison.

In Ref. 8 we have shown that the energy gap vanishes
at the concentration between c=0.14 and 0.16 for the
site-type strength I, =0.8to. This result corresponds to
that of case B of this paper. Similarly, the energy gap
disappears at the concentration between @=0.08 and
0.10 for I, =1.2to. The critical concentration for case A
in this paper is a little bit smaller than that for I, = 1.2to.
The magnitudes of the local impurity strengths at the
center of an impurity of cases A and B are
V(i;i ) =0.67to and 0 44to., respectively. The ratio be-
tween the two values is 0.67to/0. 44to=1. 52. This is
very close to the ratio of the two site-type impurity
strengths, 1. 2t o/0. 8t o= l. 50. In the previous study, we
have discussed that the effective short-ranged site-type
strength may be a quantity integrated over several sites
around a center of an impurity. Therefore, the effective
value of the short-ranged strength can be several times of
the local value of the long-ranged potential. The above
comparison con6rms this speculation: The local strength
0.44to for case 8 corresponds to the site-type strength
I =0.8tp. The eff'ective site-type strength of the local
strength 0.67to for case 3 can be a little bit larger than
I, =1.2to.

The correspondence discussed in the previous para-
graph is based on a comparison of the electronic struc-
tures. For the order parameter, which measures the di-
merization amplitude, the corresponding impurity
strength can be different. In fact, the averaged order pa-
rameters of 3 and B in Fig. 4 are like those of the site-
type strength in the region 0.4&I, /to &0.8 in Ref. 8.
This can be explained in the following way. For the site-
type impurities, the impurity acts on electrons only at the
one lattice site, and thus the width of the pinned soliton
becomes much shorter than that of the free solitons.
Then the order parameter far from the impurity and the
soliton can become much larger. This results in the large
change of the averaged order parameter. On the other
hand, for the long-ranged impurity potentials, the soliton
width does not change so much as in the short-ranged
impurity-potential problem. Thus the averaged order pa-
rameter changes only weakly. In this way the average or-
der parameters do not necessarily take similar values,
even if the electronic structures of the long- and short-
ranged impurity-potential problems resemble each other.
This is the consequence of the fact that effective ranges of
impurities are different for both problems. However, the
remarkable feature that the bond-alternation pattern is
enhanced by the impurities is common to both problems.

Furthermore, we compare the two problems with the
help of a correlation function. We consider impurity-
potential etfects on the spatial distribution of electron
density. For the long-ranged impurity-potential problem,
we shall calculate a correlation (F), between the poten-
tial strength at the nth site V„and the electron distribu-
tion p„as follows:
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0 ~ ~ ~ ~ ~o o
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-0.1 5-
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FIG. 10. Concentration dependences of the correlation (F)
for the previous short-ranged impurity-potential problem. The
solid circles, open circles, and solid squares represent numerical
data for I, /to=0. 4, 0.8, and 1.2, respectively. Here, I, is the
strength of the short-ranged site-type impurity potential.

FIG. 9. Concentration dependences of the correlation (F)
for the present long-ranged impurity-potential problem. The
solid and open circles denote numerical data for cases 3 and B,
respectively.
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into

(A2)

Then the quantity (F ) also has the meaning of energy
difference per site of the impurity-potential terms be-
tween the energetically optimized electron distribution
and the ideal uniform distribution. Numerical results of
(F) are shown as functions of the concentration in Fig.
9. Results for cases A and B are denoted by solid and
open circles, respectively. The quantity (F) is negative.
This indicates that local electron density is small when
the potential strength is large. It is large when the poten-
tial strength is small. The decrease of (F) is almost a
linear function of the concentration c. The decrease is
stronger for case 3, because of the larger impurity
strength. In the same way, we define the quantity (F)
for the site-type impurity-potential problem as follows:

(A3)

Here the sum with respect to i is taken over all the im-
purity positions. Figure 10 shows the results calculated

from the numerical data given in Ref. 8. The quantities
(F) for I, /to =0.4, 0.8, and 1.2 are denoted by solid cir-
cles, open circles, and solid squares, respectively. Their
decrease as functions of c is nearly linear. Comparing
Figs. 9 and 10, we find that data for case B and I, =0.8to
remarkably agree. This suggests that impurity effects on
electron distribution in both systems are of the same ex-
tent. As discussed previously, the critical concentration
where the gap vanishes is common to the two systems. It
would be very interesting to point out that we can make
correspondence between the long- and short-ranged
impurity-potential problems by two quantities, i.e., the
correlation function (F) and critical concentration, al-
though the relation between the two quantities is not
clear in the present simulation work. The decrease of
(F) for case A in Fig. 9 is a little bit stronger than that
for I, =1.2to in Fig. 10. Thus the impurity effects on the
electron distribution are slightly stronger for case A than
for I = 1 2to ~ It is also interesting to point out that the
critical concentration of the electronic gap for case A is a
little bit smaller than that for I, =1.2to. In this way the
strength of disorder effects on the electron-density distri-
bution is closely related to the strength of impurity effects
on the electronic structure.
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