
PHYSICAL REVIE%' B VOLUME 44, NUMBER 14 1 OCTOBER 1991-II

Rapid Communications

Rapid Communications are intended for the accelerated publication of important new results and are therefore given priortty
treatment both in the editorial once and in production A. Rapid Communication in physical Review B should be no longer than 4
printed pages and must be accompanied by an abstract Page. proofs are sent to authors

Existence of stable electronic energy levels in the presence of vibrational and off-diagonal disorder

Istvan Laszlo and Csaba Menyes
Quantum Theory Grouplns, titute of Physics, Technical University of Budapest, H 1521 B-udapest, Hungary

(Received 21 June 1991)

We have found that the topological arrangement of atoms can guarantee the existence of stable
electronic eigenvalues. These levels are stable in the presence of vibrational and oN'-diagonal disorder.

Graph theory is used to describe the topological structure of the Hamiltonian. The actual applications
are presented in tight-binding approximation. It was found that graph theory can be used even if the
atoms have more than one atomic orbital.

The Bloch theorem is a unifying mathematical principle
that considerably helps theoretical study of ordered sys-
tems. The advantages come from the application of
translational symmetry. There is no such unifying
mathematical principle in the case of disordered systems. '

As is demonstrated in this paper, there is a simple
mathematical principle that can be used for the study of
the electronic density of states (DOS) of disordered sys-
tems. As our statements will be expounded in a general
way they can also be used in other problems concerning
the eigenvalues of a finite matrix.

We consider a tight-binding Hamiltonian of the form

H = g It &H-« I+ g I t &H J (J I ~

where N is the number of atomic orbitals. As N is finite,
we call our system a cluster. This Hamiltonian can de-
scribe even a solid state, if N is su%ciently large.

We shall demonstrate that the topological arrangement
of the atoms can guarantee the existence of some eigen-
values of the Hamiltonian. Very often these eigenvalues
produce peaks in the DOS. These energy levels do not de-
pend on the H;j &0 oA'-diagonal elements. In the present
paper the topology of the Hami1tonian is described by
fixing of the H;J- =0 oA'-diagonal elements and by fixing of
some H;; diagonal elements. That is, the topology does
not change by changing those H;J elements that are not
fixed. Thus the topology of the Hamiltonian is a conse-
quence of the topological arrangement of the atoms.

In most applications the H;J =0 off-diagonal elements
are determined if the first-neighbor interactions are taken
into account in Eq. (1). The orthogonality of the atomic
orbitals can give several other H;J =0 elements, too.
The actual eigenvalues of the above-mentioned energy
levels are equal to some H;; diagonal elements of H.
These eigenvalues are topological invariants of the system
and are not affected by the off diagonal and vibrational

disorder. Graph theory is applied to describe the ei-
genvalue spectrum of the clusters under study.

Our statements about graph theoretical theorems are
either trivial or they wi11 be proved in a longer publication.
In any case the physical consequences can be verified very
easily.

In a previous paper" we studied the z-electronic struc-
ture of amorphous carbon. We used the following effec-
tive Hamiltonian:

a, ifi=j
H;~ = ' P, if j is the first neighbor of i

0, otherwise,

(2)

where a and P are the interaction parameters. The more
general standpoint of the present paper can be summa-
rized as follows: (I) H;; depends on i in the Hamiltonian
of Eq. (1), but it does not depend on i in Eq. (2). (2) In
the Hamiltonian of Eq. (1) we can use s, p„p~, and p.- or-
bitals, whereas the Hamiltonian of Eq. (2) is restricted to
the one-orbital one-site approximation. (3) There can be
an off-diagonal disorder in the Hamiltonian of Eq. (1),
whereas in the Hamiltonian of Eq. (2) 0;~ is a constant
value for the first neighbors.

Our discussion is concerned with weighted graphs of the
Hamiltonian 0, in which we assign to each edge, (t;,v~),
joining vertices, v; and i, an edge weighting, H;J =HJ;.
There is no edge between v; and vj if H;J =0. If H;J &Hj, ,
directed weighted graphs are used, and there is little
difference in the consequences. For the sake of simplicity,
and because in the case of cluster tight-binding calcula-
tions the H;J =HJ; condition is valid, we deal here with un-
directed graphs. The loop (v;, v;) will be weighted by H;;.

After Rigby, Mallion, and Day we now define a muta-
tion graph G of a graph, G, which has N vertices, as fol-
lows.

A mutation graph G is a subgraph of G, the com-
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n-1
Here we mention that the terminology Sachs graph is
often used for unweighted mutation graphs.

The characteristic polynomial of the Hamiltonian of
Eq. (1) reads as

N

D(c) -det ( ci —H
~

= g a„c~ ".
n 0

(3)

It is demonstrated that a„=O if the graph 6 of Hamil-
tonian H does not have mutation graphs G with n ver-
tices. So if there are not mutation graphs with N,
N —1, . . . , N —v+ 1 vertices, the following equations are
valid:

a~ a]y- ) a~-2 = - . =a~-,+ ) =0 .

Thus c=O is a v-fold degenerated eigenvalue of the Ham-
iltonian. As the existence and nonexistence of the muta-
tion graphs G does not depend on the actual values of
matrix elements H;z &0, the multiplicity of eigenvalue
c 0 is determined only by the topology of the graph 6 of
Hamiltonian H of Eq. (1). Thus these c=O energy levels
are stable under off diagonal and vibrational disorder if
the topology and the appropriate H;; diagonal elements
are fixed. In this case only those H;; =0 diagonal elements
that are important for the nonexistence of mutation
graphs must be fixed.

A graph G is an induced subgraph of graph 6 if G' is
a subgraph and it contains all the edges from G which
connect the vertices of G '. If a graph of a Hamiltonian H
contains the induced subgraph of Fig. 1, then the a=0 ei-
genvalue is at least a (v —1)-fold eigenvalue. We can
take away at least (v —1) vertices from this graph to have
a mutation graph. As our present purpose is to show the
existence of topologically determined eigenvalues, we shall
deal with the consequences of the structure of Fig. l. (For

ponents of which can only be one or more of the following:
(i) the loop graph, 6 i.e., ~,
(ii) the complete graph of two vertices and one edge,

&.e.,
(iii) anycyclicgraph, 3~ n~N, i.e.,

other structures not having mutation graphs see Ref. 8.)
If the induced subgraph of Fig. I appears more than once
with different v values then the multiplicity of the c 0 ei-
genvalue is the sum of the multiplicity of different induced
subgraphs. If, for example, the graph 6 of a Hamiltonian
has the structure of Fig. 2, then the c 0 eigenvalue is at
least a (p+2)-fold eigenvalue of the Hamiltonian. That
Is%

(3 —I )+ (2 —1)(p —2)+ (3 —1) =p+2. (4)

Let us introduce the concept of the Hc shifted Hamil-
tonian,

H =H —Hpg I, (5)

where I is the unit operator (unit matrix) and H'q is one
of the diagonal elements of the Hamiltonian H. If the
c=O value is a v-fold eigenvalue of the Hamiltonian H
then the c=H~ ~value is also a v-fold eigenvalue of the
Hamiltonian H. The multiplicity of the c=Hk" eigenval-
ue will be at least v, if we fix the H;~ 0 nondiagonal and
H;; =Hei diagonal elements in H and change all the other
matrix elements. More precisely we have to fix only those
H;; =HI, I, values that influence the existence or nonex-
istence of the mutation graphs. If Fig. 1 is the graph of
the shifted Hamiltonian H, than we have to fix only the
diagonal elements H;; corresponding to vertices v ~,

v2, . . . , v, —~, v, . The above defined shifting of the Hamil-
tonian H annihilates the loops corresponding to the value
H(( ~

In the case of first neighbor interaction it is useful to
define the cluster graph G . The number of vertices in G
is equal to the number of the atoms in the cluster. The
(v;, v~) belongs to G if the atoms i and j are first neigh-
bors. There are no loops in G

Let us suppose that we are using a one-orbital one-site
approximation and the graph of the shifted Hamiltonian
has the form of Fig. 1 or Fig. 2. In this case the multiplic-
ty of the c=c, eigenvalue is at least (v —1) for Fig. 1 and
at least (p+2) for Fig. 2, where c, =H;; is the site energy
of the site orbitals.

If the atoms of our cluster contain s, p~, p~, and p, or-
bitals and the cluster graph G is shown in Fig. 1, then the
multiplicity of the c=c' eigenvalue is at least v, where
c„=H;; is the diagonal element for the orbitals p„,p~, and
p-. For tight-binding parameters, see Refs. 2 and 3. In
the special case of Fig. 2 the multiplicity of the c=c~ en-
ergy level is at least (2p+ 2). Namely,

3+2(p —2)+3 =2p+2,
when Fig. 2 is the cluster graph G of atoms with p orbit-
al s.

Vq V(„-t)

FIG. 1. Graph 6 and induced subgraph O '. The induced
subgraph 6 is described by the vertices vo, I I, v2,
(v&1) and edges (vo, v~), (vo, v~), . . . , (vo, v„). The graph G
contains the graph 6 ' and other vertices and edges that are
symbolized by dashed lines.
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FIG. 2. A special graph structure containing p times the sub-
graph of Fig. 1. The corresponding v values are vl 3,
v2 = '

v(pg —I) 2, and v„3.
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The proof of our statements concerning the p orbitals is
a little lengthy and we shall present it in another paper.
In special cases, however, it can very easily be verified nu-
merically. According to our numerical calculations there
are topologically determined energy levels for 1orbitals as
well.

Let us now turn to the applications. The one-site one-
orbital approximation is widely used in the study of locali-
zation and quantum transport. ' The nondiagonal ma-
trix elements are calculated by the formula

H;&
= Vpexp( —R;J'/ttH),

where R;J = (R; —R, ) is the distance between the sites i
and j. In such calculations the diagonal elements are kept
at a constant value and the range of exponential interac-
tion aH is changed with fixed site positions. !f aH is
sufficiently small, the large central peak of the DOS at the
site energy sf =H;; can be explained by the existence of
clusters that do not have mutation graphs. As the Fermi
level is usually at sy=H;;, the hopping conductivity' be-
tween the separated clusters can be regulated by the topo-
logical arrangement of the sites. Numerical calculations
for amorphous carbon' showed that these topologically
determined sites are mostly localized at the circumfer-
ences of the clusters.

Kirkpatrick and Eggarter' studied binary alloys A„B~

and they found a class of localization sites which are not
isolated from the bulk of the material. They presented
some possible configurations of atoms A which are not iso-
lated, but still possess a localized eigenstate. These
configurations can be described by the present graph
theoretical methods. We mention here that some
configurations of Kirkpatrick and Eggarter produce ener-
gy levels that depend on the H;~ oA'-diagonal values. In
their Hamiltonian the off-diagonal disorder was not taken
into account.

The induced subgraph of Fig. 1 often appears in the
cluster graphs G of carbon and silicon clusters. ' '

These clusters contain several electronic energy levels that
are determined by the topology of atoms with s, p, p~,
and p.- orbitals.

Summarizing we can say that in tight-binding approxi-
mation, and if the topology is determined by the first-
neighbor interaction there are stable electronic energy lev-
els that are determined by the topology of the structure.
The theory presented in this paper can be used for design-
ing clusters with the desired electronic structures.
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