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Virial theorem and Abrikosov s solution of the Ginzburg-Landau equations
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Using the virial theorem discovered recently by Doria, Cxubernatis, and Rainer [Phys. Rev. 8 39, 9573
(1989)], we rederive Abrikosov s solution of the Ginzburg-Landau equations near H„ in a very sitnple

way. We stress the importance of the virial theorem for an intuitive understanding of the vortex state
and report a generalized version of it, which is valid within the framework of the quasiclassical theory of
superconductivity.

I. INTRQDUCTIQN

The following remarkable relation has recently been
derived for a superconductor in the mixed state by Doria,
Gubernatis, and Rainer' using the invariance of the
Ginzburg-Landau (GL) free energy under an appropriate
scaling transformation:

H 8=4'(F„;„+2F„„~) .

Here H is the external field, 8 the macroscopic induction,
and Fk;n and Fz, ld denote the kinetic-energy term and the
field energy term of the GL free energy, respectively (if
not stated otherwise, we use in this Brief Report the nota-
tion of Ref. 2). Equation (1) has been termed a "virial
theorem" because it is a consequence of the same invari-
ance principle that leads to the standard virial theorem of
classical mechanics. Another essential point entering the
derivation of Eq. (1) is the quantization of magnetic fiux
in the superconducting state. It is astonishing that a rela-
tion as simple and fundamental as Eq. (1) has not been
discovered during so many years of theoretical work on
the GL equations of superconductivity.

As pointed out in Ref. 1, Eq. (1) defines the relation
H(8) in a relatively straightforward manner. The fields
entering the right-hand side (rhs) of Eq. (1) have to be cal-
culated for a fixed value of the induction B. The associat-
ed external field H, belonging to this fixed value of 8, is
then directly given by Eq. (1). This fact presents an im-
portant potential applicatio~ of the virial theorem. Up to
now, one had to calculate —either analytically or numeri-
cally with a sufhcient degree of accuracy —the complete
induction dependence of the free energy F in order to ob-
tain the required relation H(8) from the derivative of F
with respect to B. Consequently, the importance of Eq.
(1) for numerical studies on type-II superconductors has
been stressed in Ref. 1.

The general purpose of the present work is to point out
that the virial theorem may be useful in several other
respects as well. We erst show, in the remaining part of
the Introduction, that the virial theorem leads naturally
to the notion of a field H, (x), which may be considered as
a spatially varying generalization of the thermodynamic
critical field H, . In our opinion, this notion might be use-

ful for our intuitive understanding of the mixed state. In
Sec. II we present the (generalized) virial theorem of the
quasiclassical theory of superconductivity. As an exam-
ple for the usefulness of the virial theorem in analytical
calculations we report in Sec. III a very simple deriva-
tion of Abrikosov s fundamental identities, which consti-
tute the main part of his famous solution " of the GL
equations near the upper critical field H, z. Section IV is
devoted to conclusions.

The quantities Fk;„and Fs,&z, referred to in Eq. (1), are
given by

F =— dx-1 3 1
kin

—V — A A(x)
2e

I C

Fs ig= f d x 8 (x)1

The complete Helmholtz free energy of GL theory is then
given by

Fcond +Fkin +~ fiel

with the condensation energy F„„ddefined by

(4)

x +ax z+ ax1

H, (x)6=—f d'x—
V 8~

8(x)
8~

(7)

where a spatially dependent field H, (x), defined by

H, (x)
=~/~(x) f'+ —/~(x) ]'

Sm 2

has been introduced.
The Gibbs free energy of the mixed state as given by

Eq. (7) takes a very simple form which, to our knowledge,

Inserting Eq. (1) into the Ginzburg-Landau Gibbs free
energy 6, which is given by

G =F— HB,1

4n

one obtains 6 = Fcond Field
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has never been reported prior to Ref. 1. The appealing
feature of Eq. (7) is that it consists of two well-defined
terms which both have a simple physical meaning (and a
well-known qualitative behavior). The Gibbs free-energy
difference between the homogeneous (Meissner) super-
conducting state and the normal state is given by

H,—/8rr+H /8' Eq. uation (7) shows that the factor
—H, /8~, which favors the superconducting state, is split
in the mixed state into two parts (both favoring supercon-
ductivity); a magnetic field energy and a spatially varying
condensation energy, defined by Eq. (8). In contrast to
the approximate way the notion of condensation energy
is commonly used, when applied to a spatially inhomo-
geneous situation (a well-known example is "condensa-
tion energy pinning" of Aux lines by normal conducting
inclusions), Eqs. (7) and (8) now give a precise meaning to
this term.

One can try to improve our understanding of the
mixed state with the help of the local quantity H, (x)/8'
[H, (x) playing the role of a local thermodynamic field];
when doing so, it should be borne in mind that thermo-
dynamic equilibrium is still determined by averaged
values of the local quantities. Of course, a quantitative
knowledge of the Gibbs free-energy density g(x), as given
by Eq. (7), still requires solving the coupled GL equa-
tions. However, since the qualitative behavior of the
fields entering Eq. (7) is known, it now becomes—
without contributions of unknown behavior, from gra-
dient (and other) terms —simpler to understand the inter-
play between magnetic Geld energy and condensation en-
ergy near a Aux line. We mention, without going into de-
tails, that the decrease of the magnetic field B(0), at the
center of an isolated Aux line, with increasing GL param-
eter ~ is one of the qualitative results which can be read

off immediately from Eq. (7). Another example is the re-
lation [B(x) /H, ] =(1—~g(x) ~

) [here, the order param-
eter itj is measured in units of ( —a/P)' ], which holds at
i~= 1/&2 and H=H„where g(x) is locally equal to its
Meissner state value.

II. VIRIAL THEOREM
OF THE QUASICLASSICAL THEORY

An appropriate theoretical framework for a quantita-
tive description of superconductors well below T, is given
by the quasiclassical or Eilenberger equations. ' The
variables to be determined in this theory are the order pa-
rameter 6, the vector potential A and, in addition, the
Green's functions f, ft and g. A free-energy functional
whose stationarity conditions lead to the quasiclassical
equations has been constructed by Eilenberger. It may
be written in the form

field +Fgrad ++ord + im

Here, Ffiefd is defined by Eq. (3). The term Fs„d, contain-
ing first-order derivatives of f and f, is given by

F „d=—fd x X(0)gISd y

X g f d kp(k)gv(k)

X —V ln(f /f ) —i A, (10).2e
2 C

the term I";,describing scattering at nonmagnetic im-
purities, is given by

F; =—f d x X(0) g f d kp(k) —,
' f d qp(q)W(k, q)[ —,'ft(k)f(q)+ —,'f(k)ft(q)+g(k)g(q) —1],

V e i=a

and the remaining part of the free energy, denoted somewhat arbitrarily by F„d, is given by

F„d=—f d x X(0) ln(T/T, )+ g co(
'

~h~ + X(0) g f d kp(k)[Af +6'f+2roi(g —1)]
V

(12)

Eilenberger's free energy is stationary with respect to
variations of b, , A, f, and ft but not of g; in Eqs.
(10)—(12) the quantity g is to be understood as an abbrevi-
ation for (1 ff )' . The Green—'s functions depend on
the spatial coordinate x, on the quasiparticle wave vector
k, and on the Matsubara frequency coI. Not all of these
variables are written down explicitly in Eqs. (10)—(12).
For all other details of notation used in Eqs. (10)—(12),
the reader is referred to the original article by Eilen-
berger.

In GL theory, a translation along each one of the prim-
itive vectors b, of the unit ce11 of the fIIux-line lattice can
be written as a gauge transformation of the variables A
and 6:

A(x+b, )= A(x)+Vy, (x), (13)

b, (x+b; ) = b, (x)exp i y, (x). 2e
Ac

(14)

Equations (13) and (14) are the (periodic) boundary condi-
tions for the GL equations when applied to the mixed
state.

The basic point in the derivation of the virial theorem
of the GL theory was to show that the periodic boundary
conditions of the GL equations determine the averaged
magnetic field 8 in a unique way. ' It is an easy matter,
and will not be repeated here, to show that the same is
true in the quasiclassical theory. We note that, in this
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theory, the above equations (13) and (14) remain valid
(they have to be supplemented by gauge transforma-
tions of f and f"). The periodic boundary conditions
of the quasiclassical theory have recently been extensively
used in numerical calculations. '

The remaining steps in the derivation of a quasiclassi-
cal virial theorem are also completely analogous to the
derivation reported in Ref. 1. One performs a scaling
transformation

x'=x/A, ,

6'(x') = b, (x'A, ), A'(x') =X A(x'A, ),
f '(x', k, co) =f(x'A, , k, co),

ft'(x', k, co) =ft(x'A. , k, co),

(15)

(16)

(17)

Setting A, = 1 and using the thermodynamic relation

and differentiates the free energy F—expressed in terms
of the new variables —with respect to A, . The dependence
of F on the boundary conditions must be taken into ac-
count. These boundary conditions are changed by the
above scaling transformation. The A, dependence of F im-
plied by the changing boundary conditions may be ex-
pressed in terms of a dependence of F on the scaled in-
duction. The latter is given by

B'=A, B .

which holds for solutions of the GL equations fulfilling
the boundary condition

n —V — A 5(x)=02e
C

(22)

at the surface (n is the vector normal to the surface) of
the considered volume. Equation (21) may be derived in
a straightforward manner from the first GL equation by
means of a partial integration. For the present vortex-
lattice solutions, Eq. (22) is clearly fulfilled. Using Eq.
(21), the viral theorem (1) takes the form

8 2

H = d
V 4~

(23)

Now, the relation between the induction and the applied
field near H, 2 may be calculated by means of a very sim-
ple perturbation expansion. We write B(x)=H —P(x),
H=H, z (H, z

—H), an—d assume that P(x) and H H,z-
are small, of order [b,(x)], where A(x) is a solution of
the (linearized) GL equation near H, &. Inserting these ex-
pansions into Eq. (23) and selecting terms of order b, and
6, one obtains, after a short calculation, the two desired
relations

one obtains, as a Anal result, the relation

H 'B=4ir(
& F«zd +2Fye~d ), (20)

and

(25)

which is the virial theorem of the quasiclassical theory.
Near T„ the term F „d/2 reduces to the GL term Fk;„.
Clearly, the numerical effort required to obtain a vortex-
lattice solution of the quasiclassical equations is rather
large. Consequently, the virial theorem should be par-
ticularly useful in simplifying such calculations.

III. A SIMPLE DERIVATION
OF ABRIKOSOV'S IDENTITIES

An essential part of Abrikosov's celebrated solution '

of the GL equations consists in the derivation of two
identities which also bear his name. With the help of
these two fundamental identities, one immediately ob-
tains, apart from the remaining task of determining the
geometrical constant p (see below), the desired solutions
for the magnetization and the free energy near H, 2. In
this section we show that Abrikosov's identities may be
derived with the help of the virial theorem with much
less mathematical effort than required by the usual
derivations. '

The virial theorem, Eq. (1), may be simplified further
with the help of the well-known identity

2

A b, (x)2e
C

1= ——J d x[a~6(x)~ +p~b(x)~ ],
V

v —0 1

(2i~ —1) P
(26)

which may easily be obtained from the above relations.
The numerical value of the geometrical constant P,
defined by

(27)

cannot, of course, be obtained by means of the present
simple approach (the result for a triangular vortex lattice

first found by Abrikosov by means of much more in-
volved computations. In Eqs. (24) and (25) and below,
magnetic fields are measured in units of i/2H, and the
order parameter g is measured in units of (

—a/p)'
The overbar denotes spatial averaging and B is the mac-
roscopic induction. In deriving Eq. (25), Abrikosov s first
identity, i.e., Eq. (24) without spatial averaging, has been
used. Equation (24) is equivalent to a local relation,
which one obtains from Abrikosov's first identity by add-
ing an unknown function z)(x) fulfilling z)=0. We set
z)(x) equal to zero since a nonzero value of z) can be easily
shown to yield an induction curve with an infinite slope
at a value of ~ diff'erent from 1/&2 (the value of ~
separating type-I from type-II behavior).

For completeness, we quote Abrikosov's final expres-
sion for the magnetic induction near the upper critical
field,
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is f3=1.16). Finally, we mention that Abrikosov's ex-
pression for the Gibbs free-energy difference (measured in
units of II, /8m) between the mixed state and the normal
state,

2(H —Ir)

(2' —1)P
(28)

IV. CONCLUSIONS

In this report we derived a quasiclassical version of the
virial theorem of superconductivity valid for arbitrary

can also be derived with the help of the virial theorem, by
using Eqs. (7), (24), and (25). The possibility that the viri-
al theorem might be useful in other analytical calcula-
tions as well, should be taken into account.

temperature. By means of this relation, one should be
able to achieve a considerable reduction of the computa-
tional effort required for microscopic calculations of ther-
modynamic quantities. Secondly, we demonstrated the
usefulness of the virial theorem in analytical calculations
by reporting a very simple derivation of Abrikosov s solu-
tion of the GL equations near the upper critical field.
Most likely, the range of potential applications of the
virial theorem in analytical calculations is not exhausted
by the particular example reported here.
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