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Systematic study of generalized Sux phases
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By using a mean-field Hartree-Fock treatment, models of strongly correlated fermions on a square lat-

tice are reduced to the problem of fermions propagating in a magnetic field. We compute the kinetic en-

ergy of the Fermi sea for any value of the fermion density, magnetic Aux, and frustration. From these we

obtain, among other things, the optimal Aux associated with the global energy minimum and the location
of the local energy minima. Every cusp corresponds to an integer number of filled Landau levels, and

the minimum-energy cusp corresponds to the one-level case. The breaking of time-reversal symmetry,
when the diagonal coupling is turned on, produces a family of asymmetric cusps around 4=+0/2, in the
one-particle energy. We use perturbation theory, valid for low fermion density, in order to analyze

quantitatively the behavior of the cusplike energy minima; these minima are due to the Landau-level

structure when the Aux is close to a rational value. We have derived a phase diagram indicating regions
of similar behavior and the points that exhibit anomalous dispersion induced by frustration.

I. INTRODUCTION

Recently, there has been much interest in the strong
on-site repulsion limit of the two-dimensional Hubbard
model on a square lattice. ' In particular, various
mean-field theories have been proposed to model the dy-
namics of a doped quantum antiferromagnet. One of the
main features of these theories is to treat the spin degrees
of freedom with spin- —, fermions even in the vicinity of
the metal-insulator transition, by contrast to the more
traditional spin-wave approach to quantum antiferromag-
nets. In order to minimize the magnetic energy, the sys-
tern self-consistently generates an effective magnetic Aux,
corresponding to half a Aux quantum per plaquette for a
half-filled square lattice. This is the Aux phase discussed
by Kotliar and ANeck and Marston.

More recently, it has been suggested that this approach
can be generalized to the case of finite doping. More
precisely, it has been argued that the optimal effective
Aux should vary linearly with the doping as N=n. (1—5),
where 5 is the hole concentration and N is the effective
Aux per plaquette.

These Aux phases appear in a natural way in variation-
al approaches studied by different groups. " The corre-
sponding wave functions are obtained by filling a Fermi
sea of electrons with the eigenstates of a noninteracting
tight-binding Hamiltonian on the square lattice in the
presence of a uniform magnetic field. Then a Gutzwiller
projection is performed in order to eliminate the doubly
occupied sites. The Hamiltonian we refer to is the widely
studied (t-g model on a two-dimensional square lattice,
defined by

H= —t g(1—n; )c;c (1—nj )
(l, j&

+J g (S;S,——,'n;n ).
(l,j)

Here, the c;~ operators are the bare electron-creation
operators. Furthermore, H is restricted to the subspace
where no doubly occupied sites are allowed, namely,(X~c~~ct~ —l.

In order to calculate the average energy of these Aux-

state wave functions, several approaches have been pro-
posed. One relies on the Gutzwiller approximation in or-
der to calculate expectation values of the hopping terms
in a state with no double occupancy. The other line of
approach involves a Hubbard-Stratonovich decoupling of
both the hopping and the magnetic terms. This type of
mean-field theory becomes exact in the large-NI limit,
where X& is the number of different types of fermions. '

It has been shown that both methods give qualitatively
the same estimate for the ground-state energy of these
Aux phases. ' The results can be summarized as follows.
I.et us consider the mean-field effective 'tight-binding
Hamiltonian

ip,HMF= g e ' c;CJ
(E',j)

Here P,. J. is related to a self-consistent vector potential A
by
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The mean-field free energy is then given by

1= ——(Jy +r5Qy) . (6)
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II. FERM-RMI-SEA GROUND-STATE ENERGY
LDSFOR ARBITRARY FILLINGS AND FIKL

The Hamiltonian we will consider her here has the form

'&i; IM=t, g etc, e "+t2 g c, eke
} (1k)
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FIG. 2. Frustrated case: Fermi-sea total ground-state energy vs magnetic flux per unit cell for a 20X20 square lattice, obtained
through exact diagonalization. The filling factors are (from top left to right, row by row) 1/400 (top left frame), 1/4 (top right), 1/3
(bottom left), and slightly below half filling, 198/400 (bottom right). The values of the (t2, t3) parameters are equal to (a)
(t~, t3}=(1/2, 0), (b} large t2 limit: (5,0). From now on, the filling factors are the following: 1/400, i.e., one fermion (left), 1/3
(center), and slightly below half filling, 198/400 (right) ~ The different cases shown are (c) (t2, t3) =(1/4, 3/8), boundary
C AD flB AE, (d) (t2, t3)=(&2/4, &2/8), very anomalous case: flat dispersion, (e) (1/2, 1/2), (f) (1/10, 1), region D, limit case for
large t3, and t2%0. Other limiting cases analyzed in detail (but not shown in the figures) are the following: (i} (1/4, &2/8), which
lies at the boundary A 0 C, (ii) (1/5, 1/5), which is a marginal case with a k dispersion, (iii) (1,5), which is a limit case for large t3,
and t2&0, (iv) (5,1), which is a limit case for large t2, and t3%0.
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TABLE I. Ground-state degeneracies of N= 1/2 and N = 1 in each of the regions shown in Fig. 6.

Region

C
D
E

Ground state for @=2m

k=(m, m)
k=(m. , m)
k=(m. , m)

k=(+kp, +kp)
k=(+kp, +kp)

1
coskp =

4t3 —2t2

Ground state for N=n

k=(0,0) and k=(m, 0)
k =(+n/2, m/2)

k=(+a, +a) or k=(+(~—a), +~)
k=(~-', + ) - k=(+(---)', +-)

k=(+m/2, m/2)

2 1 1 —8t2
s~n 0'=

2
1 —2t3

4t2 4t3

high accuracy. Figure 1, corresponding to the t2=t3 0
unfrustrated case, exhibits two prominent features: (i)
The ground-state energy shows a global minimum as a
function of the fIux exactly at plus or minus one Aux
quantum per particle, C&=x (modulo one flux quantum
per plaquette) where x =M/N is the electronic density.
(ii) A set of harmonics is observed: There are local ener-

gy minima at @=x /m, +m2/m &, where m, and m2 are
arbitrary integers. It is important to point out that, away
from half-filling, the Fermi energy at one Aux quantum
per particle lies in the biggest gap of the spectrum, which
in the continuum limit is equivalent to the first Landau
gap. The presence of the lattice is crucial to lift the de-
generacy between cruxes corresponding to an integer
number m of filled Landau levels (4/@0=x/m ). In the
continuum, the energy has cusplike minima for 4=x /m,
with the same energy as in the absence of magnetic field.

This lattice effect is quite striking, and is responsible
for the stabilization of flux phases at large enough J/t, in
the mean-field approach to the t —J model. Because of
its importance, we investigated this eff'ect in the presence
of frustration. Other studies, focusing on the case
t2=t3=0 (i.e., no competing interactions) can be found
in Ref. 11, while 1/S expansions and Lanczos studies of
frustrated lattices can be found in Ref. 13. Results for
various values of t2 and t3, and for several fixed sets of
densities are shown in Fig. 2. The E(4) have been calcu-
lated for 0 ~ 4 ~ 24o, since in the presence of t2 the spec-
trum is periodic as a function of @ with the period 24o
instead of No for the unfrustrated case. Several striking
features are present in several of the plots in Figs. 2—6
and Tables I and II. For instance, the
(t2, t3)=(&2/4, &2/g) case has an anomalous flat
dispersion, to be described below. Another anomalous
example is the (t2, t3)=( —,', —,') case with a k marginal
dispersion. Many of the plots in the t2%0, t~&0 regime
were chosen precisely because they are located at boun-
daries in the t2-t3 plane. In them, the low-energy disper-
sion becomes mavginar because the k term vanishes at
either @= 1/2 or @= 1.

When t3 remains equal to zero, the one-particle ground
state is reached for C =Cp. This comes from the fact
that the one-particle spectrum for 4=0 is given by

&(&)=2t/(cosk +cosky)+4t2cosk cosk (e=O),
&(&)=2t

~ (cosk +cosk ) 4t2cosk cosk —(@=@0) .

TABLE II. Location in the t~-t, plane for all the systems
studied in detail.

t2

1

10
1

0.49

t3 Region

10
1

5
1

2
1

10
1

4
1

4
v'2

4
1

0
1

5
1

2

v'2

8
3
8

v'2

8
1

CADABAE

A ABAC

B
E

The ground state is then k=(n. , m. ) for 4=@0. In-
creasing x leads to two cusplike minima for E(4&), corre-
sponding to @=40(1+x ). This behavior is quite similar
to the pure t, case. However, when t2/t, becomes large,
this minimum disappears, and only the cusps at
4=@0(1+x/m ), m ~2 remain at t~~ oo. In this limit,
the square lattice can be decomposed in two inter-
penetrating uncoupled sublattices, each having only
nearest-neighbor hopping amplitudes, and a Aux equal to
24 per elementary plaquette. Then, E( 4& ) becomes
periodic with the period @o/2, and around these values
of the Aux the cusplike minima are given by 64=+ox /2.
This behavior is indeed observed very clearly for t2=5
and larger. The same figure shows that the local minima
which are created around @=No do not remain absolute
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minima at large density x. For instance, at x =—,', the ab-
solute minimum originates from C&=@0/2. Needless to
say, large values of t2/t& and t3/t& are not physical.
However, these limits are helpful to understand the struc-
ture observed at smaller values of t2 and t3. From our
graphs, for t2 ~2, a sharp cusp appears at @=Co/2, in
the one-particle energy. Upon doping, this cusp gen-
erates a series of local cusps, which have qualitatively the
same features as the N=Np family. However, we should
stress that these minima are asymmetric around
@=No/2 in contrast to what is found around @=iI&0.
The origin of this asymmetry comes from the breaking of
time reve-rsal symmetry at 0?=@0/2, when the t2 cou-
pling is switched on. Furthermore, the position of these
cusps is given by @=(40/2)(1+x/m ), to be compared
with 0& =No( 1kx /m ) for the vicinity of @0.

As will be shown in Sec. III, this different behavior
comes from the fact that the density of states in a Landau
level for 4-4o/2 is twice the corresponding value for
N-4p. The local rninimurn corresponds in both cases to
filling exactly one Landau level, but in terms of the densi-
ties, this leads to reducing the Aux variations by a factor
1/2 around C&=@0/2.

If t3 is now turned on, we observed that the E(N)
curves become Batter around N=Np. This is the result of
frustration, as can be seen from the dispersion relation
for 4=4:

e(k) =2(cosk„+cosk» ) 4t2cosk„—cosk»

+2t3(cos2k +cos2k») .

Here, the first two terms compete with the t3 contribu-
tion. If t 3 (—,

' + tz /2, the one-particle ground state
remains nondegenerate at k = ( n., m. ). When
t3 ) 1/4+ t2/2, the ground state becomes fourfold degen-
erate at k=(+ko, +ko), with ko given by

—1
coskp =

4t3 —2t2

For t3 =
—,'+t2/2, the dispersion of the low-lying states

is marginal, with e(k) —k, whereas c(k) —k elsewhere.
When 4 is slightly different from Np, the effect of this

marginal dispersion is quite striking and is illustrated by
the t2 = t3 =

—,
' case. For this model, E(@)remains nearly

flat around @=No up to x =
—,', in spite of the presence of

local cusps.
When t3 is further increased, Fig. 2 shows that the ab-

solute minimum of E(N) is at @=@0/2 for one particle
and moves with x, according to &=@0(1+x)/2. Note
that @=@0(1—x )/2 is a local minimum with a higher
energy. Here again, it is a manifestation of broken time-
reversal symmetry at N=@o/2. The behavior of E(N)
around +=+p/2 is quite analogous to what is observed
for t3 =0 and t, & 1. In the limit where t3 is large corn-
pared to t2 and t„ the model becomes equivalent to four
interpenetrating uncoupled square sublattices with a Aux
per plaquette equal to 44&. Then, the period of E(@) is
Np/4, and in this limit, the location of the cusps is given

by @=CO(p+x)/4, where p=0, 1,2, or 3. As a result,
the cusps corresponding to 4=@0(1+x/m)/2 at finite
t3 have to disappear progressively for m =1. This is
clearly observed in Fig. 2 for the large-t3 limit case
(t2, t3 ) =(1,5). Also, compare the x =1/6 concentration
between the figures corresponding to (t2, t3)=(1,1) and
(t„t, ) =(1,5).

To summarize these numerical results, we find a large
variety of behaviors for E(i'), as t2 and t3 are varied.
However, some major features remain unchanged. More
precisely, E(4) always exhibits cusplike minima which
position moves linearly as a function of the fermion den-
sity x. Frustration may induce a competition between
different local minima. Indeed, most of the qualitative
features can be understood by first considering the local
minima of E(4) for one particle only. These occur for
simple values of @ such as 0, @0, No/2, 3@o/2, and oth-
er rational fractions of @p. Changing @ slightly away
from these values gives a Landau-level structure for the
one-particle spectrum. As will be shown in Sec. III, such
a spectrum leads to a family of cusps which move away
from the original flux value as x is increased. These
cusps correspond to an integer number of filled Landau
levels, the minimum being for one level exactly.

III. FERMI-SEA GROUND-STATE ENERGY:
PERTURBATION THEORY

Let us now turn to a quantitative analysis, to describe
the behavior of the cusplike rninirna at low densities x.
The cusps originate from the Landau-level structure
when N/@0 is close to a rational value p /q. For
@/40=p/q, the spectrum is split in q subbands. Then,
for @/@0 slightly away from p/q, each subband gen-
erates a secondary Landau-level structure, and the con-
struction of the complete spectrum obeys this recursive
scheme. It has been shown' how to set up a semiclassi-
cal approach to calculate the Landau-level spectrum
around any rational value of the Aux. Here, we compare
the results obtained in this formalism with the exact diag-
onalization results.

For the sake of clarity, let us first concentrate on the
nearest-neighbor case (tz=t3=0) at small fields. From
now on, 4p will be set equal to unity. The tight-binding
Schrodinger equation in the usual Landau gauge leads to
Harper's equation'

sg(n) = —2 cos(yn+k„)g(n ) —g(n —1)—g(n+1) .

Here y=2m@. In the low-field regime, the magnetic
length scale is proportional to y ', so we can take a
continuum limit. This is achieved by expanding the
cosine in the power series around its minimum. Choos-
ing the origin so that k =0, one obtains

( v+4)g( n)=y n g(n) —g"(n)+[g"(n) —g(n —1)

g(n+1)—2+g(n)] —
—,', y n g(n) .

We now introduce a reduced variable x=ny' and
define F such that g (n) =E(n y' ) =E(x).

In the continuum limit, the lattice difference operators
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become difFerential operators and expanding to order y,
the Harper equation becomes

CO/
2

E„=E(ko)+ (2n+1)+ b. E(ko)[(2n+1) +1]

v+4 F(x ) =x F(x ) F"—(x )
1

12
y[F""(x)+x F(x)] .

2

[9(3n + 3n + 1) I ~a«ko) I'
288m

+(3n'+3n+2)l~'e(ko)I']+O(y'), (10)

This is the Schrodinger equation for a perturbed harmon-
ic oscillator. The spectrum is obtained to the order y by
nondegenerate perturbation theory. This leads to the fol-
lowing Landau level spectrum:

where

= a' a'—i and 6= +
ak.' ak,'

e„=—4+(2n+1)y — y [(2n+1) +1]+0(y ) .1

16

E(k„,k )=E(ko)+ —(k„+k )+O(IkI ) .
2

(9)

It has been shown' that for small fields (y «1), the
Landau-level spectrum is given by

A similar spectrum is actually found in the presence of
frustration, in the vicinity of %=1. It is completely
determined to order y from the dispersion relation up to
order k for the low-lying states in the absence of Aux.
Assuming that near its minimum at ko, E(k„,k ) has the
following Taylor expansion in k —

ko= (k„,k» ):

—tkk—2 2
2 X J1

1 t2 4 4 4

12
+ —t ——(k +k ) . (11)

The corresponding Landau-level spectrum is

4 4t—&+4—t, +y(1+2t2 4t, )(2—n + 1)

16
y'(1+4t, 16t, )[(2n+—1)'+1] . (12)

(b) t3) —,'+2t2. The ground state is fourfold degen-
erate, with k = (+k0, +ko ), and cosko = —1 /(4t 3

—2t z ).
Expanding around k=(ri„ko, ri ko), g =+1,ri» =+I, we
find

In the presence of t2 and t3, two situations have to be
distinguished.

(a) t3 & 4+2tz k=. (m., m) is the nondegenerate ground
state at N = 1. The low-lying states are then given by

E(k„,k, ) = 4 4t—, +4—t, +y(1+2t, —4t, )(k„'+k,')

e(k„,k )= 4t3 — —+4t3(sin ko)(k +k») 4t2(sin k—o)g ri»k„k»+2t3sin(2ko)(g„k~+g k )
1

2t, —t,
—tocsin(2ko)(g„k„k +ri k„k )+t3(1—

—,'sin ko)(k„+k ) —tz(cos ko)k k»+ —,'t2(sin ko)ri, g (k, k +k, k ).

(13)

The associated Landau spectrum is detailed in the Appendix. Figure 3 shows a few examples of Landau-level spectra
obtained from the second-order perturbation theory presented above. We have plotted the first nine Landau levels,
each one labeled by n (where n =0, 1,2, . . . , 8) and small values (up to 0.1) of the magnetic field. Our small parameters,
as the reader will recall, are the magnetic field and the fermion density. From the figures it is clear that the larger the
value of n, the smaller is the magnetic field for which perturbation theory becomes inapplicable. For instance, let us
focus on Fig. 3(a), corresponding to the (tz, t3)=(0,0) case. The n =0 Landau level, starting at E= —4 for zero field, is
a straight line. When n grows, the levels bend and eventually go downwards. This trend becomes more pronounced for
the large-t2-limit case, (tz, t3) =(2,0), shown in Fig. 3(b). The other examples that follow behave differently because, as
noted below, they are somewhat anomalous. For instance, Fig. 3(d), corresponding to (t2, t3)=(1/2, 1/2), is a marginal
case because the dispersion relation goes like k instead of k . Also Fig. 3(c) corresponds to a flat dispersion Figures.
3(e) and 3(f) correspond to points that belong to "boundary lines" between the regions A fl C and C fla AB AE, re-

spectively. These regions correspond to the di6'erent possible behaviors of the dispersion relation at low energy for
@= 1/2 and N = 1. These regions, shown in Fig. 6 and Tables I and II, will be described below.

Let us now consider a system with a finite density of fermions x. For a small field, y «1, the Fermi sea is obtained
by filling v Landau levels. The total number of states in a given Landau level is proportional to the number of Aux

quanta in the system. As a result, x =v4=vy/2m. Let us denote by m the number of Landau levels which are com-
pletely filled (m & v & m + 1). The energy of the Fermi sea is obtained by

m —1—E(&b,x ) = g s„(N) + (v —m )E (@) .

Using the previous expression for E„(4)and reexpressing y as a function of x and v, this leads to
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FIG. 3. Landau-level spectrum for a square lattice in a uni-
form and small magnetic field obtained from second-order per-
turbation theory. Frustration is induced by the second- and
third-nearest neighbor couplings. The values of n, labeling
different Landau levels, shown are n =0, 1,2, . . . , 8, in ascend-
ing order. The values of the (t&, t3) parameters are equal to (a)
(0,0), (b) (2,0), (c) ( &2/4, &2/8), (d) ( 1/2, 1/2), (e)
(1/4, &2/8), and (fl (1/4, 3/8).

FIG. 4. Energy of a filled Fermi sea vs magnetic field ob-
tained from perturbation theory, for the following fermion den-
sities (from top to bottom): x =0.1, 0.15, 0.2, 0.25, and 0.3.
Only (b) has a different ordering (from top to bottom at zero
field): x =0.3, 0.1, 0.25, 0.15, and 0.2. Our choice of (small) fer-
mion density and (small) filling factors is dictated by the fact
that these are the small parameters of the perturbation. The
values of (t&, t3 ) are the same as in Fig. 3.

1 q[(m+1) —m ](v—m)+m m 3m +[(m+1) —m ](v—m)—E N, x =xEO+comx + X
V +12 V

1»"(0)— [91&Be(0)I'+ lB"(o)I'] + ~"(0)—
6CO 24 ~2 3co

(14)

When the filling factor is an integer, v= m, the formula becomes

—E(v=m, x)=xeo+conx + x b, E(0)— [9lbBe(0)l + lB e(0)l ]12 6co

2 3

(15)

where so=E(0)=e(ko). The last term lifts the degeneracy between different values of m, and, since 5 e(0) is usually
negative on a lattice, the minimum of E(v=m, x ) is obtained for m =1, in agreement with Anderson's conjecture.
The E(C&,x ) vs 4 curve exhibits a cusp at every integer filling factor m. More precisely,

1 BE(@,x)
N By

x 3b, s(0)— 3+
24 2co m

2 1
EBE(0) — 3—

6cO

2
B c,(0)

1 BE(C,x)
N By

=—x+ x 3b, e(0)— 3—CO 7T 3
2 24 2CO

1 1
~Be(O) — 3+

6CO Pl
B"(o) (17)

These derivatives are taken at v=m. Therefore, the cusp
is not symmetric. This is not readily visible on the
figures, unless magnified. Figure 4 shows the energy of a
filled Fermi sea, for five values of the filling factor, ob-

tained from Eq. (14). The filling factors are (from top to
bottom) x =0.1, 0.15, 0.2, 0.25, and 0.3. Only Fig. 4(b)
has a different ordering (from top to bottom at zero field):
x =0.3, 0.1, 0.25, 0.15, and 0.2. Our choice of (small) fer-
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FIG. 5. Energy of a filled Fermi sea vs magnetic field ob-
tained from perturbation theory. In order to observe better the
cusplike structure, only one fermion density has been used:
x =0.2. We use the same values of (t2, t3) and present them in
the same order, as in Figs. 3 and 4.

E(k, k ) =2tz (cos2k +cos2k )

—2(cos k„+cos k +4t2sin k„sin k )'

(18)

where (k, k~) belongs to the reduced Brillouin zone:
&„km&. nad —m. /2 & k & m. /2.

We find three different regimes, in the (t2, t3) plane, for
the ground state of the one-particle spectrum.

v'2 v'2
(1) t3 &min

8
' 4 2

Here k=(0, 0) or k=(n. ,0) is a twofold-degenerate
ground state.

(2) t, &
8t2

v'2
and t2&

mion density and (small) filling factors is dictated by the
fact that these are the small parameters of the perturba-
tion. In order to observe better the cusplike structure,
the x =0.2 case is presented in Fig. 5. We use the same
values of ( t2, t3 ) and present them in the same order, as in
Figs. 3 and 4.

Let us now briefly discuss the vicinity of 4=1/2. As
for the @=1case, the behavior of E(C&,x) around &&=—,

'

for fixed x will depend on the one-particle spectrum for
N = 1/2. This spectrum is given by

The calculation of the low-lying Landau spectrum for
4-1/2 is more complicated than for 4-1, since here
the unit cell is doubled because of the presence of half a
Aux quantum per cell.

As already discussed in the general description of the
numerical results, each Landau level around %=1/2
contains a number of states equal to 2~4& —1/2~%. In the
case of the Hofstadter spectrum this property is a direct
consequence of the linear dependence of the integrated
density of states on the Aux. ' For instance, the gap
above the first Landau level, between @= 1/3 and
4=1/2, corresponds to x = —2&+1. This implies that
around N = 1/2, a Fermi sea with exactly m filled Landau
levels corresponds to

N =
—,'+x /2m,

by contrast to the previous

4=1+x/m .

We should stress that a similar analysis' can be done
in the neighborhood of any rational value N =p /q. More
precisely, a cusp in the E(@,x ) vs x curve is expected
when x and N are such that an integer number of sub-
bands are filled. For N =p /q, this corresponds to
x=n/q, where n,p, q are integers. However, the cusps
corresponding to larger values of q are more di%cult to
see numerically.

On Fig. 6 we have represented the regions in the t2-t3
space corresponding to the different possible behaviors of
the dispersion relation at low energy, for 4=1/2 and
4=1.The results presented above sample these different
cases. For convenience, Table I summarizes the ground-
state degeneracies for @=1/2 and @= 1 in each of the
regions. Furthermore, Table II provides the location on
the t2-t3 plane for all the systems studied. In general, the
low energy dispersio-n becomes marginal (i.e., the k term
vanishes) at either @=1/2 or &5=1 when a boundary is
crossed. An exception is the boundary between 2 and B,
given by t3=v 2/4 t2/2 and t2) v 2/4. Cro—ssing this
line, the ground state for N = 1/2 jumps from k = (0,0) to
k=(km. /2, n. /2), and the quadratic term in the disper-
sion relation remains finite.
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FIG. 6. Regions in the t2-t3 space corresponding to the
different possible behaviors of the dispersion relation at low en-
ergy, for @=1/2 and +=1. The boundaries between regions of
similar behavior E(@) are indicated. The shaded region
(t, & 1/St&+

~ t2 ~
/2 and t3 & 1/2) is where 4& = 1/2 is more

stable for the one-fermion energy. Tables I and II complement
the information presented in this figure.

In summary, through a mean-field Hartree-Fock treat-
ment, we have studied the energetics of fermions confined
to a two-dimensional square lattice. Our goal has been to
compute the kinetic energy of the Fermi sea of the spin-
less fermions for any value of the fermion concentration,
magnetic flux, and frustration. For the unfrustrated case,
we confirm the suggestion that the ground-state energy
y(4) is a minimum for N=m(1 —5), which corresponds
to one flux quantum per spin1ess fermion. We then
proceed to do a systematic study of frustration effects,
coming from longer-range couplings, which modify the
picture obtained for the unfrustrated case. These effects
constitute the main focus of this work. We find that, in
general, E(N) always exhibits cusplike minima, the posi-
tion of which moves linearly as a function of the fermion
density x. Frustration can induce a competition between
different local minima. By first considering the local
minima for one particle only, we can understand most of
the qualitative features of E(@). These local minima
occur at simple rational fractions of 40, and when the
flux slightly deviates from these values a one-particle
Landau-level structure develops. It is precisely such a
spectrum that generates a family of cusps that "move
away" from the original flux value as x is increased.
Every cusp corresponds to an integer number of filled
Landau levels, and the minimum energy cusp corre-
sponds to the one-level case. Furthermore, we use per-
turbation theory, valid for low fermion density x, in order
to analyze quantitatively the behavior of the cusplike en-
ergy minima, which originate from the Landau-level
structure when the flux is close to a rational value. If the
Aux is slightly away from a given rational value p/q, each
of the q subbands generates a secondary Landau-level
structure. We have derived a t2-t3 phase diagram indi-
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APPENDIX

Here we will consider the Landau-level spectrum
around @=1,for t3 & 1/4+2t2 Let us first c. onsider the
following change of coordinates:

g 'u+gv —g 'u+gvk= —;k= —;g= 2t3+ t2

2t3 —t2

This diagonalizes the quadratic part of the dispersion.
Furthermore, in the quantum problem, k and ky become
operators which satisfy [K„,K„]=iy The trans. forma-
tion above implies that [u, v] =i y as well. Before quanti-
zation (i.e., working with real numbers), one gets

cating regions of similar behavior [i.e., adiabatic con-
tinuations can be performed with each region, preserving
the E(N ) structure] and the boundaries between them.
We have studied several points belonging to those boun-
daries and found that anomalous behavior, induced by
frustration, can occur.

This work confirms that the stabilization of a Fermi
sea in the presence of uniform flux is intrinsically a lattice
effect. A quite dramatic consequence of frustration is to
modify the one flux quantum per particle rule for the op-
timal state, when t2 and t3 are large enough.

A natural interpretation for this rule is to say that if a
one-flux-quantum flux tube is attached to the spinless fer-
mions, they become hard-core bosons, which is expected
to give the lowest possible kinetic energy at a given parti-
cle density. Treating these flux tubes in a mean-field ap-
proximation leads to a uniform field with precisely one
flux quantum per particle. ' The breakdown of this rule
in the presence of a large frustration may indicate that
the energy of a many-particle system exhibits then a quite
complicated dependence as a function of the fractional
statistics parameter. Another possibility is that approxi-
mating flux tubes by a uniform flux gives a poor estimate
of the ground-state energy in the presence of frustration.

Our study suggests that some similarities exist between
the geometric frustration and the one which is associated
to a magnetic field. We think the results presented here
give some idea about the rich variety of behaviors that
can occur when these two sources of frustration are com-
bined.
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1
s(u, u)= 4t—3—

4t3 —t2
+2sin ko(4t& t z)' (u +u )+&2t&sin2ko(3g 'u u+g u )

+ —sin2k (g 'u u —g u )+—1 ——sin k (g u +6u u +g u )
2 7. 2

2 3

cos ko(g u —2u u +g u )+—sin ko( —g u +g u ) .

Here, we assumed g =g =1, since the spectrum is independent of q and q . Then, the Landau levels are given by
Eq. (10), with

co=4sin k (4tq t—)'

b, s(0)=12t3(1——', sin ko)(g +g ) —2tq(3g —2+3g )+tocsin ko(18g —4—6g ),
l&~«0) I

= l«2t3(g '+g')+&2t~(g ' —3g') ll»n2ko I,

(A3)

(A5)

lB s(0)l= &2t3(18g ' —6g )+ (6g '+6g ) lsin2kol .
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