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We present the results of a Monte Carlo study of the surfaces (or "hulls" ) of percolation clusters in

three dimensions. The hulls were generated directly by a growing self-avoiding surface, called the smart
kinetic surface, which is a generalization of the smart kinetic walk from two dimensions to three. We
find that the fractal dimension of the hull at the percolation threshold is D'=2. 548+0.014. Two other
hull critical exponents were measured directly' we obtained ~'=2. 19+0.01 and y'=1.77+0.02. These
results are in accord with scaling laws which relate the hull exponents, and with a heuristic argument
which suggests that the bulk and hull critical exponents are equal. The properties of percolation hulls

determine the scaling behavior of transport, adsorption, and catalytic processes taking place at the sur-

face of sintered metal powders.

I. INTRODUCTION

Percolation theory has applications in such diverse
areas as electrical conduction in metal-insulator compos-
ites, Quid Aow through porous media, gelation, and the
spread of epidemics. ' Much interest has centered on the
structure of percolation clusters close to threshold, since
this is where universal behavior emerges. Over the last
decade, considerable progress has been made in determin-
ing the geometrical properties of percolation clusters in
two dimensions (2D). In particular, the bulk and sur-
face fractal dimensions have been determined exactly for
the infinite cluster at threshold and are distinct. The ex-
ponents characterizing the divergence of the mean cluster
size and the mean perimeter size are also known exact-
ly. ' The remaining geometrical exponents can be ob-
tained via scaling relations. '

This analytical work has in large measure been stimu-
lated by Monte Carlo results. In two dimensions, Monte
Carlo studies of the cluster perimeters (or "hulls" ) have
been greatly facilitated by the discovery of algorithms
which allow the direct construction of cluster perime-
ters. These algorithms use random walks to trace out
the hulls and are vastly more eKcient than the more obvi-
ous approach in which the lattice sites are randomly oc-
cupied with probability p, the clusters are identified, and
finally the hulls are obtained.

Considerably less is known about percolation in three
dimensions (3D). The bulk fractal dimension at threshold
has been computed by Monte Carlo simulations and
series expansions; the recent Monte Carlo results of Ziff
and Stell yield the value D =2.529+0.016, for instance.
A rough estimate of the hull fractal dimension at the per-
colation threshold, D', has been made in the course of a

study of "gradient percolation. "' The result D'=-2. 5

does not rule out the possibility that the bulk and hull
fractal dimensions differ in 3D as well as 2D.

The fractal dimension of the hull of the infinite cluster
at threshold determines the scaling behavior of several
directly measurable properties of disordered materials.
For example, consider the problem of heat Bow between
liquid helium and a refrigerated metal. At low tempera-
tures, there is a large acoustic mismatch between liquid
helium and the metal, resulting in a substantial resistance
to heat Aow through the interface between these two ma-
terials. " This surface resistance is known as the Kapitza
resistance and is the limiting factor in cooling He and
He below 100 mK using a solid refrigerant. The usual

method used to overcome this problem is to increase the
interface area by employing a sintered metal powder.
Measurements of the electrical conductivity and Young's
modulus of sintered silver powders have been made over
a range of metal fractions p by Deptuck, Harrison, and
Zawadzki' and clearly indicate the presence of a percola-
tion threshold at a critical value of p. These experiments
also gave critical exponents for the behavior of the elec-
trical conductivity and Young's modulus in the vicinity
of the threshold, and these are in reasonable accord with
the predictions of percolation theory. Thus, a sintered
metal can be modeled as a percolation cluster. The inter-
face area between a cubical sintered metal sample of side
L and a bath of liquid helium will therefore scale as
(I. /g')2(D, where the correlation length g diverges as

(p —p, ) as p approaches the threshold metal fraction

p, . At ultralow temperatures, the bulk thermal resis-
tances of the helium and metal can be neglected. There-
fore, the resistance to heat How goes to zero as

(p —p, )' ' as the metal fraction is reduced toward the
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threshold value. We conclude that the value D' deter-
mines the scaling behavior of the resistance to heat Aow
at very low temperatures. The fractal dimension of the
hull is also needed if we are to understand the scaling be-
havior of adsorption and surface-catalyzed reactions
occurring at the surface of sintered metal powders.

In this paper we perform a Monte Carlo study of the
surface geometry of percolation clusters in 3D. We intro-
duce a technique in which the hulls are constructed
directly by growing a random surface. The gain in com-
putational efficiency obtained by direct construction of
the hulls is even greater than in 2D and allows us to
determine D' with considerably greater accuracy than in
previous studies. We find that D'=2.548+0.014. The
first estimates of two other hull critical exponents
(r'=2. 19+0.01 and y'=1.77+0.02) are also obtained.
Our values of the hull critical exponents are compared
with recent estimates of the bulk critical exponents '
and are consistent with the equality of the hull and bulk
exponents. We also present a heuristic scaling argument
which suggests that the hull and bulk exponents are iden-
tical. Finally, scaling relations among the various hull
exponents are developed and tested.

The paper is organized as follows: In Sec. II we intro-
duce our algorithm for the direct construction of percola-
tion hulls in 3D. Our Monte Carlo results are presented
in Sec. III. These results are discussed in Sec. IV, as are
the scaling laws relating the hull exponents. We also give
our heuristic argument for the equality of the bulk and
hull critical exponents in Sec. IV. Our conclusions ap-
pear in Sec. V.

II. SMART KINETIC SURFACE

Our algorithm for generating percolation hulls in 3D is
modeled on a procedure for directly constructing hulls in
2D. We will therefore briefly recall how 2D hulls can be
produced by a self-avoiding random walk. For further
details, we refer the reader to Refs. 4—8.

Procedures for the direct construction of percolation
hulls have been established for both site and bond per-
colation on a variety of 2D lattices. " Here we will only
consider site percolation on the triangular lattice, since
this is the closest analog to the problem we study in 3D.
A hull of a percolation cluster is made up of bonds on the
dual lattice that cut bonds joining unoccupied and occu-
pied sites. A hull is a connected set of these bonds on the
dual lattice. A given cluster has one external hull and
may have one or more internal hulls.

The smart kinetic walk (SKW) traces out the hull of a
site percolation cluster on the triangular lattice. It is a
kinetic self-avoiding walk on the dual lattice, which is
hexagonal (Fig. 1). At the outset, the occupancy of sites
on the original lattice is unspecified. The SKW begins by
traversing a given bond on the dual lattice. The site on
the original lattice to the right of the step is occupied,
while the site to the left is unoccupied. The first step in
the walk points toward a site on the original lattice. This
site is now specified to be occupied with probability p or
unoccupied with probability 1 —p. If the site is occupied,
the walk turns left; otherwise, it turns right. The walk

X /

/

y /

/
/

FIG. 1. SKW on the hexagonal lattice. The original triangu-
lar lattice is shown with dashed lines, while the dual hexagonal
lattice is shown with solid lines. Solid and open circles at the
vertices of the original lattice indicate sites which have been
specified to be occupied or unoccupied, respectively. The SKW
itself is shown with directed bold lines. This SKW occurs with
probability p (1—p) .

now continues in this way. If at any time the last step of
the walk points toward a site whose occupancy has al-
ready been specified, it turns left if the site is occupied
and right if it is unoccupied. The walk ends when it re-
turns to its point of origin.

This algorithm is particularly simple because the dual
lattice is threefold coordinated, and this is the lowest
coordination number a regular 2D lattice can have. In
addition, each site on the dual lattice can only be visited
once by the SKW. This is in contrast to the situation for
site percolation on the square lattice. In that case, a site
on the dual lattice can be shared by zero, two, or four
bonds in the hull. As a result, it is possible to define two
different hulls for site percolation on the square lattice. '

One of these hulls has sites in the dual lattice that are
shared by four hull bonds, while the other does not. This
difference is significant, because these two hulls have
different fractal dimensions. Site percolation on the tri-
angular lattice is appealingly simple because there is only
one possible definition of the hull.

The SKW is "smart" because it can only terminate by
returning to its point of origin —it cannot enter a cul-de-
sac from which there is no escape. The SKW is also
strictly self-avoiding. Finally, note that these two obser-
vations can be combined into the single assertion that
each site in the completed walk belongs to precisely two
occupied bonds.

We now use these ideas as a basis for obtaining an algo-
rithm for the direct construction of site percolation hulls
in 3D. We consider two sites S and S' to be members of
the same cluster only if there is a sequence of occupied
sites S,S&,Sz, . . . , S„,S in which each consecutive pair of
sites are nearest neighbors. Since a percolation hull in
3D is a surface, we must seek a randomly growing sur-
face, rather than a growing walk. Following the termi-
nology used in 2D, we will call this randomly growing
surface the smart kinetic surface (SKS). In 2D a percola-
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The growth of the SKS proceeds as follows: We begin
with a NN pair of sites, one colored black and the other
white. The hexagonal plaquette between these two sites
is occupied. All other sites in the original lattice are ini-
tially uncolored, and the remaining plaquettes are unoc-
cupied. Now consider the growth of the SKS after an ar-
bitrary number of plaquettes have been added sequential-
ly to its perimeter. We choose one of the active edges at
random. Following the notation introduced in the previ-
ous paragraph, we label this edge using the ordered trip-
let [S„Sz,S~ ]. If site S3 is uncolored, it is colored black
with probability p and white with probability 1 —p. If S3
is already colored, its coloring is left unchanged. The
plaquette (S2,S3) is now occupied if site S3 is black. If
S3 is white, the plaquette (S„S3)is occupied. In either
case, the edges of the newly occupied plaquette must be
added to or removed from the lists of active and inactive
edges. Another active edge is now chosen at random,
and another plaquette is occupied using the rules just
stated. The growth process continues until there are no
more active edges remaining.

When all the active edges have been exhausted, inac-
tive edges may remain. If there are any such inactive
edges, they must occur in sets of four that surround
square plaquettes, as will be shown in the next paragraph.
These plaquettes are now occupied. This final "patch-
up" phase of the SKS algorithm yields a closed surface of
occupied plaquettes in which each bond is shared by pre-
cisely two occupied plaquettes. The SKS is therefore
both "smart" and self-avoiding.

To see that the remaining inactive edges must occur in
square loops of four, consider a particular inactive edge,
labeled [S,, S2,S3] (Fig. 3). This is an edge of the square
plaquette (S, , S3). Let site S4 be one of the two sites
which is a NN of sites S, and S3 and a NNN of site S2.
The edge in question must belong to a closed loop of
inactive edges because no active edges remain. Thus one
of the bonds (S„S3,S4), (S~,S3,S4), or (S, ,Sz,S4) must
belong to the loop. We claim that it is in fact the first of
these bonds that is in the loop. Since sites S, and S4 are
NN's, the edge [Si,S2,S~] cannot be an inactive edge
and does not belong to the loop. Since this edge cannot
be active either, the bond (S„S~,S4) must be shared by
two occupied plaquettes and site S4 must have been
colored during the growth of the SKS. If S4 is white, the
edge [S„S4,S3] is inactive, as claimed. If S4 is black,
the edge [S&,S2,S3 ] cannot be inactive since sites S4 and
S3 are NN's. The bond (S, , S3,S4 ) must therefore be an
inactive edge, and the claim is established. Applying this
argument twice more, we see that all four bonds on the
perimeter of the square (S, , S3 ) must be inactive edges, as
required.

We now show that the SKS generates the hull of a site
percolation cluster on the bcc lattice. More precisely, we
will demonstrate that the probability that the SKS gen-
erates a particular closed surface configuration C is equal
to p '( 1 —p) '~( C) where ~( C) is the probability that a
given hexagonal plaquette is contained in the hull
configuration C in site percolation on the bcc lattice.
Consider the active edge [Si,Sz,S3]. If site S3 is un-

III. RESULTS

We constructed 30000 SKS's at each of the following p
values: p =0.115, 0.165, 0.195, 0.215, 0.22, 0.23, 0.235,
0.24, 0.245, 0.2455, 0.246, 0.2465, and 0.247. If a SKS
still had active edges remaining when 5000 sites had been
colored black, the growth process was terminated and the
sheet was left open. On the other hand, if all active edges
were exhausted when fewer than 5000 sites had been
colored black, the sheet was closed in the "patch-up"
phase.

At the percolation threshold p =p„ the fraction of
hulls that have N neighboring occupied sites scales as
N '. Thus the fraction F(N) of SKS's which have N or
more black sites must scale as N . Close to the per-
colation threshold, F (X) has the scaling form'

F(N)=F (p)+N 'f(lp —p, lx ) . (3.1)

The scaling function f (x) approaches a finite, nonzero
constant as x ~0 and decays exponentially to zero as
x~oo. F (p) is the fraction of SKS's that grow to
infinite size and is nonzero for p, (p (1—p, because the
hull of the infinite cluster has fractal dimension 3 in this
regime. ' ' F (p) is zero for p ~p, and p ~ 1 —p, .

Figure 4 is a log-log plot of F(X) for several values of

colored, it is colored black or white with the appropriate
probabilities. If S3 has already been colored, its color is
left unchanged. If S3 is white, the hull must cut the NN
bond between sites S& and S3. Accordingly, the pla-
quette (S„S3) is occupied. If S3 is black, the occupied
NN sites S& and S3 are members of the same cluster.
The hull therefore cannot cut the bond between S& and
S3. By definition, the completed hull can have no edges,
and so the plaquette (Sz,S3 ) is now occupied.

Growth cannot occur at inactive edges in our definition
of the SKS. The reason we adopt this rule is that sites 1

and 3 are NNN's in this case, and occupied NNN sites
may or may not be in the same cluster. Any inactive
edges remaining at the end of the growth process are in-
stead dealt with in the patch-up phase.

Now consider the eftect of the patch-up phase. Once
the active edges have been exhausted and growth has
ceased, we are left with a connected sheet composed of
hexagonal and square faces. Consider an arbitrary pla-
quette (Si,Sz) in the sheet, and take Si to be inside the
hull. Site S, is black and site S2 is white if the sheet is an
external hull. If the sheet is an internal hull, on the other
hand, S, is white and S2 is black. As shown above, the
sheet can have holes in it, but these must be square pla-
quettes with four inactive edges. Consider one such pla-
quette, labeled (S3,S4). Sites S3 and S4 cannot both be
white —at least one of these sites must be black. Suppose
S3 is black. S4 cannot be a member of the cluster, since
there is no path of occupied NN sites joining it to S3.
(Note, in particular, that S3 and S~ are NNN's. ) There-
fore, the plaquette (S3,S4) belongs to the hull and must
be occupied. This is just what is done in our patch-up
phase. We conclude that the SKS does indeed produce
the hull of a site percolation cluster on the bcc lattice.
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FIG. 4. Log-log plot of the fraction I" (N) of SKS's which
have X or more black sites vs X. Results are shown for
p =0.245, 0.2455, 0.246, 0.2465, and 0.247.

FIG. 5. Log-log plot of the mean radius of gyration of a

closed SKS in the ith bin (R, ) vs the mean number of black sites

in a sheet in the bin (X;).

p. The plot for p=0.246 is very close to being straight,
and the deviations from linearity are comparable in size
to the statistical errors. On the other hand, the plots for
p ~0.2455 and p )0.2465 have small but discernible cur-
vatures. We therefore adopt p, =0.2460+0.0003 as our
best estimate of the percolation threshold for site percola-
tion on the bcc lattice. ' Our result is in good agreement
with the result obtained by Gaunt and Sykes' using a
low-density series expansion p, =0.2464+0.0007. Both
our result and that of Gaunt and Sykes are consistent
with the estimate of Sykes, Gaunt, and Glen, '

p, =0.245+0.004.
A straight-line fit to the log-log plot of F(N) versus X

was performed at p =0.246. The first 200 values of N
were omitted in producing this fit, since the log-log plot
deviates significantly from linearity in this regime. This
yielded the estimate ~'=2. 1884+0.0005 for the exponent

The uncertainty in this estimate is the error in the
least-squares fit and does not take into account the uncer-
tainty in the value ofp, . To gauge the size of the error in
~' coming from the latter source, we carried out least-
squares fits to the linear portions of the log-log plots of
F(X) at p=0.2455 and 0.2465. We found that the uncer-
tainty in p, is the dominant source of error in our esti-
mate of ~'. Our final estimate of the exponent ~' is
w' =2.19+0.01.

We next computed the fractal dimension of the closed
and open SKS's at the threshold. Let us first consider the
results for the closed sheets. Because there was a com-
paratively small number of large sheets, the data were
binned as follows. A closed SKS with N black sites be-
longs to the ith bin if

X = AR (1+BR '+CR + ), (3.3)

where A, 8, C, and 6 are constants. We next define the
finite-size estimator

in%, +4
—lnN; 4

D,'=
lnR, +4

—lnR, 4
(3.4)

Employing the finite-size ansatz (3.3), we see that for
large i the estimator D scales as

D' —=D' —BR ' —ACR +l 1 1
(3.5)

provided that 0 & 6 ~ 2. Our data for D are plotted
versus R; ' in Fig. 6. Extrapolation to the limit R '=0

CU

CO

this plot indicates that a finite-size analysis is needed to
obtain an accurate estimate of the fractal dimension. We
assume that the corrections to scaling have the form

n, (N & n,-+&, (3.2)
l

0.2 0.3

where n, —=[5(1.2)'] and [x ] is the least integer greater
than or equal to x. The mean number of black sites in a
sheet lying in the ith bin will be denoted by N;, while the
mean radius of gyration of a SKS in this bin will be
denoted by R, . A log-log plot of N; versus R, is shown in
Fig. 5. The small but appreciable curvature present in

FIG. 6. Finite-size estimator D,' for the fractal dimension of
closed SKS's plotted vs 1/R; (crosses). R; is the mean radius of
gyration of a closed SKS in the ith bin. The linear least-squares
fit to the data is also shown (solid line). This fit yields the esti-
mate D'=2. 548+0.014 for the fractal dimension of the closed
SKS's.
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is problematic in models with 6 & 1, but a simple linear fit
works well here, indicating that 6 is probably greater
than 1. Accordingly, we performed a least-squares fit to
the form (3.5) with C =0 and so obtained the estimate
D'=2.548+0.014 for the fractal dimension of percolation
hulls in 3D. Our result is comparable to the rough esti-
mate D'=2. 5 obtained by Gouyet and co-workers in
their study of gradient percolation in 3D.' '

We next turn to the open sheets. Consider the growth
of a particular sheet. At each time step, we computed the
number of sites colored black (N) and the radius of gyra-
tion of those sites. If N satisfied the inequality (3.2), the
SKS was classified as a member of the ith bin at this time
step, and X was added to a running total of the number
of black sites in this bin, T;. The radius of gyration of the
sheet was also added to a running total of radii for this
bin, X, . Once all 30000 sheets had been grown, we com-
puted the number of entries E, in each bin. The mean
number of black sites in a SKS in the ith bin was defined
to be X,'"'"=T, /E, , and the mean radius of gyration of a
sheet in this bin is R,'"'"—:X;/E;. The finite-size estima-
tor (3.4) was then computed with N; and R, replaced by
N "'" and R "'", respectively. Our data for D are plot-
ted versus 1/R '" in Fig. 7. A linear least-squares fit to
the data (omitting the points with 1 ~ i 10) yields the es-
timate D,',„=2.544+0.002 for the fractal dimension of
the open sheets. The uncertainty quoted here is simply
the error in the least-squares fit and does not take into ac-
count the uncertainty in the value of p, or possible
difficulties with the finite-size extrapolation.

This result warrants some discussion. We showed in
Sec. II that the SKS constructs the hull of a percolation
cluster. Thus a closed sheet has the same fractal dimen-
sion as the hull. An open sheet need not have the same
fractal dimension as the hull because it could spread out
rapidly over the cluster's surface, leaving large regions
uncovered. Since a particular open sheet is a subset of a

CU

CO

N)
I

0.2
/ p OPell

0.3
I

a.4

FICs. 7. Finite-size estimator D for the fractal dimension of
open SKS's plotted vs 1/R "'". R '" is the mean radius of
gyration of an open SKS in the ith bin. Also shown is a linear
least-squares fit to the data with i ) 10 (solid line). This fit gives
the estimate D,'p 2 544—0 002 for the fractal dimension of
the open SKS's.
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FIG. 8. Log-log plot of the mean number of occupied sites in

a hull (g) vs p, —p. The data points are indicated with crosses.
The linear least-squares fit to the data is shown using a solid
line. This fit yields the estimate y'=1.77+0.02 for the ex-

ponent y'.

hull, however, we must have D,',„~D', and so our com-
putation of D,',„gives us a lower bound on D'. This
lower bound is consistent with our result
D ' =2.548+0.014.

Next, consider the behavior of the hulls for p &p, . The
mean number of occupied sites in a hull, g, diverges as p
approaches p, . For p close to the threshold,
y-(p, —p) ~. The critical exponents r', y', and cr' are
related through the scaling relation

y'=(3 —r')/o' . (3.6)

This relationship is readily derived using the scaling form
for F(N) [Eq. (3.1)].

The mean number of black sites in the SKS's, ( N ),
was computed for each value of p &p, we studied. For
the p values 0.115, 0.165, 0.195, 0.215, 0.22, and 0.23, no
open sheets remained when the cutoff size of 5000 black
sites was reached. Thus (N ) should provide a good esti-
mate for y for these values of p. At the points p =0.235
and 0.24, on the other hand, an appreciable proportion of
SKS's still had active edges when the cutoff was reached.
For these values of p, we performed an exponential fit to
the tail of F(N) and used this to extrapolate F(N) to
values of N greater than 5000. Our data for F(N) were
then used for the first 5000 terms in the sum
y=gg, F(N), and the extrapolated values were em-

ployed for the remainder. Although the exponential fit to
the tail of F(N) worked well at p =0.235 and 0.24, it was
not sufficiently accurate to be used at p=0.245 and
0.2455. Figure 8 is a log-log plot of our data for y as a
function of p, —p. A linear least-squares fit to the data
yields the estimate y'=1.77+0.02. The error quoted in
this estimate is due almost entirely to the uncertainty in
the value ofp, .

Let P, = [F( n; ) —F ( n, + I ) j /( n; n, +I ) be the probabil-— .

ity that a closed SKS lies in the ith bin, divided by the
length of the bin. From Eq. (3.1) we have the following
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As already noted, this number must be of order 1; i.e., it
scales as L . We therefore have the scaling law

+1D' (4 1)

0.2 0.4
(J ~ —s)N,'

a.6

FIG. 9. Scaling plot of P;. The quantity P;X; ' is plotted vs

(p, —p)X; for p =0.115, 0.165, 0.195, 0.215, 0.22, 0.23, 0.235,
0.24, 0.245, and 0.2455.

a relation first written down by Ziff for percolation hulls
in 2D. Employing our measured value of D' in dimen-
sion d=3, we have d/D'+1=2. 177+0.007. This is in
reasonable agreement with our estimate ~'=2. 19+0.01,
and so our values for D' and ~' are consistent with this
scaling relation.

The scaling form for P(N) [Eq. (3.7)] shows that the
number of black sites in the hull of a typical finite cluster
scales as ip

—p, i

' for p close to p, . This number also
scales as g —ip

—p,i, since the correlation length g
is the typical linear dimension of a finite cluster. We
therefore have a third scaling relation,

scaling form for P,. :

P, -N, ' 'g(ip —p, iN; ) . Combining this with Eq. (3.6) yields

(4.2)

Here g (x ) is a scaling function which decays exponential-
ly for large x and tends to a nonzero constant as x ~0.
To test this scaling form, the estimate o'—=0.46 was ob-
tained from Eq. (3.6) and our computed values of r' and
y'. We then plotted P; N;

' versus p —p, i N; for
several values of p (Fig. 9). These plots fall on a common
curve to a good approximation, and thus our estimates of
the value of p, and the hull critical exponents seem to be
consistent.

IV. DISCUSSION

Just as in the case of 2D percolation hulls, several
scaling laws can be derived which relate the exponents
characterizing 3D hull percolation hulls. We have al-
ready given one such scaling relation [Eq. (3.6)]. We now
construct two more.

Consider site percolation in d dimensions at the per-
colation threshold p =p, . The average number of hulls
with X black sites lying within a hypercubical volume of
side L will be denoted by Q(N). If L and N are large, but
N((L", then Q(N)-L N '. Conversely, the number
of sites in a hull that lies entirely within the volume can-
not exceed L", and so Q(N)=0 for N) L". We now
combine these two observations to give the scaling form
A(N)=N '+'h(N/L") which holds for arbitrary large
N and L. The scaling function h (x) diverges as x ' for
small x and is zero for x ) 1. At the percolation thresh-
old, at least one cluster spans the system; thus, at least
one hull must extend across the volume. More precisely,
the number of clusters —and hence the number of
hulls —that span the system must be of order 1. A typi-
cal hull which extends across the volume contains at least
L black sites, since the hull fractal dimension is D'.
Thus, employing our scaling form for Q(N), we see that
the number of hulls which span the volume scales as

'V

(3—r')D' (4.3)

Inserting our measured values of D', ~', and y' into this
relation, we obtain the estimate v=O. 86+0.03 for the ex-
ponent v in dimension d =3. Our value for v is in agree-
ment with the most recent Monte Carlo estimate
v=0. 875+0.008, and with the most recent series value
v=O. 872+Q 070

The Monte Carlo results of Ziff and Stell give the bulk
exponent values D=2.529+0.016, &=2.186+0.008, and
y=1.795+0.OOS. Similarly, the recent series expansion
study of Adler et ah. ' yielded D =2.54+0.07,
~=2.18+0.03, and y =1.805+0.020. In both cases, the
results lie within the error bars of our values for D', ~',
and y'. ' In the following, we will advance heuristic ar-
guments which suggest that the bulk and hull critical ex-
ponents are in fact identical.

We begin by presenting an argument for the equality of
the bulk and hull fractal dimensions that is valid for
p, ~p & 1 —p, . We say that a site is in the "perimeter"
of a black cluster if it is white and is a NN of a site in the
cluster. Let t, be the average number of sites in the per-
imeter of a cluster of s sites. For large s, the ratio t, /s
tends to (1—p)/p. ' Since the lattice coordination num-
ber z is finite, this means that a nonzero fraction of sites
in the infinite cluster of black sites are NN's of perimeter
sites. Now p &1—p„and so a white site has a nonzero
probability of belonging to the infinite cluster of white
sites. It is therefore plausible that a nonzero fraction of
the perimeter sites belong to the infinite cluster of white
sites. If this is so, a finite fraction of the sites in the
infinite cluster of black sites belongs to its external sur-
face, and the hull and bulk fractal dimensions must coin-
cide for p, ~p & 1 —p, . In particular, D and D' must be
equal, and the fractal dimension of the hull is 3 for
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This argument is not rigorous because a perimeter site
is less likely to belong to the infinite cluster of white sites
than an arbitrarily chosen white site. In fact, the fraction
of perimeter sites that belong to the infinite cluster of
white sites could vanish in the thermodynamic limit.
However, note that for p ~p„ the probability of growing
even a small internal hull is minute. For example, the
probability of growing an internal hull which is a truncat-
ed octahedron of 14 faces is p

' . At p =p„ this probabili-
ty is roughly 1.2 X 10 . The vast majority of the perim-
eter therefore belongs to the external hull, and we again
arrive at the conclusion D =D'.

An ordinary critical point is characterized by two in-
dependent critical exponents. Thus, the exponents D' and
y' are sufficient to describe the critical properties of the
hull. Let us suppose that D and D' are in fact equal.
Since y=(2D —d)v and y'=(2D' —d)v, the exponents y
and y' would then be equal as well. All the exponents
characterizing the hull would therefore be identical to
their bulk counterparts. As noted above, this conclusion,
although not based on rigorous arguments, is consistent
with our Monte Carlo results.

We close by comparing the properties of hulls at the
percolation threshold to those of other random self-
avoiding surfaces. Random self-avoiding surfaces com-
posed of plaquettes embedded in a regular 3D lattice
arise naturally in the high-temperature expansion of lat-
tice gauge theories and have been studied using the ex-
act enumeration method. These surfaces are believed to
belong to the same universality class as lattice animals,
which have fractal dimension 2 in three dimensions.
Kantor, Kardar, and Nelson introduced a model for the
equilibrium behavior of a polymerized membrane, the
"tethered surface. " In contrast to the plaquette model,
the internal connectivity is fixed in a tethered surface.
Flory theory arguments and initial Monte Carlo results
both suggested a fractal dimension of 2.5 for tethered
surfaces. However, more extensive Monte Carlo
work and molecular-dynamics simulations indicate
that these membranes are probably rough but flat and so
have an asymptotic fractal dimension of 2. Both of these
models of the equilibrium properties of self-avoiding
membranes appear to have scaling properties which diA'er

from those of percolation hulls at threshold. Fluid vesi-
cles have been predicted to have a high-temperature
crumpled phase, ' and recent Monte Carlo simula-
tions give a nontrivial fractal dimension of 2.5 in this
regime, in agreement with these predictions. The intrigu-
ing possibility that athermal Quid vesicles have a fractal
dimension equal to D' cannot be ruled out at this time.

Finally, note that we constructed our percolation hulls
using the SKS, which is a growing self-avoiding surface.
Only two other models of growing self-avoiding surfaces
have previously been studied, and these models both ap-
pear to have fractal dimensions which differ from that of
the SKS.

V. CONCLUSIONS

In this paper we reported the results of a Monte Carlo
study of percolation hulls in 3D. Hulls of site percolation
clusters on the bcc lattice were generated directly using a
growing self-avoiding surface, the smart kinetic surface.
The SKS is a considerably more efficient method of pro-
ducing hulls than the most obvious approach in which all
the lattice sites are randomly occupied, the clusters are
identified, and finally the hulls are obtained. We find that
the fractal dimension of the hull at the percolation
threshold is D'=2. 548+0.014. We also obtained the hull
exponent estimates ~'=2. 19+0.01 and y'=1. 77+0.02
and the value p, =0.2460+0.0003 for the site percolation
threshold on the bcc lattice. Three scaling laws which re-
late the hull exponents were proposed and found to be
consistent with our estimates of the exponents. Our
values of the hull critical exponents were compared with
bulk critical exponents obtained in the most recent
Monte Carlo and series-expansion studies and are con-
sistent with the equality of the hull and bulk exponents.
Finally, heuristic, nonrigorous arguments were advanced
which suggest that the hull and bulk exponents are
indeed identical.

As discussed in the Introduction, the critical properties
of percolation hulls determine the scaling behavior of
heat transport between sintered metal powders and liquid
helium at temperatures below 100 mK. The behavior of
percolation hulls near threshold is also relevant to ad-
sorption and catalytic processes taking place at the sur-
face of sintered metal powders. In the broadest context,
our work should apply to processes occurring at the sur-
face of a porous random medium when the medium is
close to its percolation threshold. We hope that this
work will stimulate experimental work on this fascinating
class of problems.
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