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This paper presents an extensive experimental and theoretical analysis of anisotropy effects in
superconducting niobium. It is concluded that anisotropy efFects, especially in the magnetic proper-
ties, are clearly discernible and that the theoretical analysis results in a mean-square anisotropy of
the electron —phonon interaction of 0.0335 + 0.0035 and of the Fermi velocity of 0.118+ 0.007. These
anisotropy parameters are in excellent agreement with previous de Haas —van Alphen experiments.

I. INTRODUCTION

Anisotropy eAects in superconducting niobium have
been well known for many years and are probably most
apparent in the angular dependence of the upper critical
magnetic field, H,2, in high purity single crystals as a
function of the orientation of the applied magnetic field
with respect to the crystal axis. However, they become
also apparent in the temperature dependence of the ther-
modynamic critical field H, ("deviation function"), the
temperature dependence of the specific heat, the func-
tional dependence of upper critical fields, H, ~, near T„
and the magnitude of the Ginzburg-Landau parameters,
especially at low temperatures. All of these features
were found to depend distinctly on the amount of im-
purity scattering prevailing in a particular superconduc-
tor and to approach the expected isotropic behavior at
a certain (low) impurity level. It is well understood that
this anisotropy is related to t, he anisotropy of the Fermi
surface of the real metal, which manifests itself in an
anisotropic Fermi velocity and in an anisotropic electron-
phonon interaction. Quite some effort was dedicated to
an unambiguous assessment of the existence and magni-
tude of the anisotropy in the pairing interaction, a task
which depends heavily on the theoretical interpretation
of experimental data.

The first important step in that direction was made by
Peter et e/. , who calculated the critical temperature of
niobium using band-structure results and an experimen-
tal phonon spectrum. In this study, the anisotropy in the
electron-phonon interaction turned out to be crucial for
the quality of the theoretical result.

Butler, on the other hand, concentrated on the up-
per critical magnetic field of niobium single crystals
using strong coupling equations by Eilenberger and
Ambegaokar. and extensive band-structure calculations.
His key assumption was that the anisotropy of the

Fermi velocity was the dominant feature and that the
anisotropy of the upper critical field directly reHected the
anisotropy of the Fermi surface. His results agreed very
well with experimental data reported by Ikerchner et al.

A diferent approach was presented by Teichler5 who
developed a theory of the upper critical field which is
applicable to all cubic type-II superconductors. In this
description the angular dependence of H, 2 is expressed in
terms of normalized cubic harmonics which makes an in-
terpretation of the results rather tedious. After an initial
quite reasonable agreement with experiment, improved
experimental techniques revealed that the agreement
was less satisfying, and in some cases the experimental
trends were inconsistent with theoretical predictions.

This paper presents extensive investigations of
anisotropy effects in the superconducting properties of a
very pure niobium single crystal and of niobium polycrys-
tals of various nitrogen content. The critical temperature
and its impurity dependence, the specific heat and the
temperature dependence of the upper critical magnetic
field were measured for all samples and the results were
analyzed later on using anisotropic Eliashberg theory in
an attempt to establish the mean-square anisotropies of
the electron-phonon interaction and of the Fermi veloc-
ity. Thus, Sec. II presents details of sample preparation
and of the measuring techniques, Sec. III discusses the
basic superconducting and normal-state properties. In
Sec. IV, an analysis of the experimental data in terms of
anisotropic Eliashberg theory is discussed in great detail
and the consistency of the derived anisotropy parameters
is checked against other experiments. In Sec. V conclu-
sions ale drawn.

II. EXPERIMENTAL
A. Sample preparation

Several polycrystalline rods and a single crystal, all
of nominally very high purity niobium (Materials Re-

7585 1991 The American Physical Society



H. W. WEBER et al.

search Corp. , New Yerk), were cut, into cylindrical form
(3-mm diameter, 40-mm length) using a spark cutter
and subjected to an initial heat treatment in an UHV
system, in order to remove residual gaseous impurities
(T = 2100'C, base pressure of the system: 10 mbar).
Special care was taken to remove carbon from the sam-
ples. This was achieved by exposing them to an oxy-
gen atmosphere (po, —10 mbar) at a temperature of
1690'C. After these preparatory steps, the polycrystals
were loaded with varying amounts of nitrogen in order to
achieve the desired impurity variation within this system.
The dissolution of nitrogen in niobium was achieved at a
fixed temperature (2100 'C) and for a fixed period of time
(4 h) under varying nitrogen partial pressures (6 x 10
to 1 x 10 rnbar), which led to impurity concentrations
between 0.01 and 0.5 at. % Nz. Special care was taken
to cool the samples to room temperature rather quickly
in order to avoid precipit, ate formation. The nitrogen
content of the samples was determined from their weight
increase under due consideration of niobium evaporation
losses. Next, the samples were etched briefly in a 1:1:1
solution of HNQs, HF, and HzQ in order to remove im-
purities from the surface. Finally, all samples were sub-
jected to a short heat treatment in air (400' C, 10 min), a
procedure which has been found to considerably reduce
irreversibilities in the magnetization.

sweeping rates (10—100 pTs i) to be employed and,
hence, to minimize eddy current contributions and to
achieve equilibrium conditions in the entire magnetiza-
tion cycle. All the data. were stored on a computer
and were available for numerical analysis. Two examples
of integrated magnetization curves are shown in Fig. l.
They demonstrate in fact that the magnetization curves
are suKciently reversible for a reliable evaluation of the
mixed-state properties, except for some irreversibilities
occurring invariably near H, ~ and, for the less pure sam-
ples, in the form of small peak effects near H, 2. The res-
olution for determining H, ~ from the diAerential curve is
in general better than +0.5 mT.

Finally, measurements of t,he specific heat have been
t, aken on Ave samples representing the entire range of im-
purity parameters covered in this study. The calorimeter
arrangement used for these measurements is of the "tray"
type, i.e. , the sample is placed onto a thick sapphire plat-
form which carries the thermometer and the heater on
its back. Thermal contact to t,he cylindrical samples has
been made by a small amount (mg) of silicone grease
and thin copper wires. The heat capacity of the entire
sample holder excluding the sample was measured sepa-
rately and subtracted later on. Its contribution amounts

B. Measuring techniques

In order to characterize the materials and to determine
the relevant superconductive parameters, several tech-
niques have been employed. Firstly, conventional four-
point dc measurements were made at room temperature
and at 4.2 K (H ) H, z), in order to determine the resis-
tivities (p„)and the residual resistivity ratios (RRR) of
the samples. Whereas the RRR values, which have been
corrected for magnetoresistivity in the clean samples, are
considered accurate, the accuracy of the normal state re-
sistivities is determined mainly by the extent to which
the actual geometry of the samples can be assessed. The
corresponding error margin is estimated to be +2%.

Secondly, ac susceptibility measurements were made
on some samples in order to determine the superconduct-
ing transition temperature T, andjor the upper critical
field H,2. However, because the results obtained from
this technique were found to be in excellent agreement
with those derived from magnetization measurements,
the ac susceptibility data. were used only as confirma-
tory evidence for the procedures employed to evaluate
the magnetization data.

Thirdly, the dc magnetization was measured on all
samples in the temperature range from 1.5 K to T, .
To do this, a differential technique employing a low-
temperature voltage chopper in connection with a two-
channel lock-in amplifieri was used. The advantages
of this system with regard to the evaluation of vari-
ous mixed state properties of superconductors has been
discussed in much detail recently; ' they are mainly
based on the excellentlong-term , stability and the low
drift of the entire system, which allows very low field-
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FIG. 1. Integrated (differential) magnetization curves of
samples Nbs and Nbq for the initial magnetization and for
decreasing f.elds.
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to less than 3% at 8 I& for Nb samples weighing 1.6—
2.3 g. The carbon thermometer was calibrated in situ
immediately before each measurement at 45 —60 equally
spaced temperatures (on a logarithmic scale) using both
vapor pressure (Tss) and gas thermometer scales. A me-
chanical heat switch was used during this phase of the
experiment rather than exchange gas in order to avoid
later heat leaks due to desorption. The measurements
are based on a semiadiabatic heat pulse technique which
yields an accuracy of the order of l%%uo. All the experi-
ments were performed in zero magnetic field.

$4-

12—

III. BASIC SUP ERCONDUCTIV'E
AND NQRMAI STATE PROPERTIES

os
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A. Impurity concentration and residual resistivity
FIG. 2. Residual resistivity p„asa function of nitrogen

content c '.

The first set of data to be presented in this section
pertains to the impurity dependence of the normal state
resistivity at 4.2 K, which is considered to be a rather
sensitive test of sample preparation with regard to an
interstitial dissolution of the nitrogen impurities. The
results shown in Fig. 2 confirm that p„increases linearly
with impurity concentration, at least within experimental
accuracy (the error bars associated with p„are smaller
than the symbols and the errors in the impurity concen-
tratxon, c', are not kxlowx'x).

If there is only 8-wave scattering by nonmagnetic im-
purities, it is possible to employ a "dressed" Drude the-
ory and thereby relate the normal state resistivity to the
transport relaxation time, 7x„,via the plasma frequency
Op.

4'
Pn =

vg„O~

Qz = 4z. (vF) N(0) e~/3,

where N(0) denotes the experimental density of states at
the Fermi surface and (v~) is the Fermi surface average
of the Fermi velocity. The results of these calculations
(for a more detailed description we refer to Sec. IV) are in
very close agreement with the actual experimental data,
as can be seen in Table I, thus indicating that 8-wave
scattering is indeed prevailing. The same conclusion has
been drawn recently from an analysis of phase boundaries
in superconducting tantalum. ' (Table I also defines
unique sample numbers which identify the samples with
their nitrogen content. )

Finally, based on these considerations, the electron
mean-free path E can be calculated by assuming that
the product (p„t') will remain unchanged upon adding
the impurities ((p„E)= 3.75 x 10 Am for niobium).
The corresponding results for 8' are also included in Table
I.

TABLE I. Characteristic data, of the various samples. c; is the nitrogen content in at. %, RRR is the residual resistivity
ratio, p„the experimental value of the residual resistivity at T = 4.2 K in nAm, pth, , the theoretical value of the residual
resistivity, calculated from Eq. (32), T, the bulk critical temperature in K, r(T, ) the Ginzburg-Landau parameter, a the
impurity parameter, E the mean-free path in nm, (a ) and (b ) are dimensionless, and (vp) the Fermi surface average of the
Fermi velocity in 10 m/s.

Sample

Crystal
ci

RRR

Ptheop

T.

(u')

(v~)

Nbs

Single

2080
0.069
0,093
9.301
0,720

+0.007
0.011

5149

Nb7

Poly
0.01

385
0.257
0.381
9.289
0.725

+0.01
0.02

1459
0.037
0.112
0.585

Nb4

Poly
0.10

57
2.433
2.44
9.218
0.883

+0.049
0.278

154
0.037
0.118
0.573

Nb3

Poly
0.15

38
3.815
3.587
9.187
0.917

+0.015
0.421

98
0.037
0.125
0.560

Poly
0.22

26
5.637
5.429
9,146
1.090

+0.015
0.616

67
0.034
0.125
0.558

Poly
0.30

20
7.076
7.325
9.112
1.153

+0.045
0.719

53
0.036
0.125
0.560

Nb6

Poly
0.50
11

12.972

8.989
1.453

+0.027
1.208
29
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B. Transition temperatures
and C inzburg-Landau parameters

The superconducting transition temperatures of all the
samples were determined by extrapolating the upper crit-
ical fields H, 2 obtained from the dc magnetization to
zero. To do this, several measurements (usually about
10) were made very close to T, (0.97T, ( T ( T,) and
the corresponding results extrapolated by fitting them
to a H, 2(T) versus T2 temperature dependence. The
agreement with ac susceptibility measurements was very
good, The error in T, is basically determined by the cali-
bration error of the Ge thermometer and is estimated to
be +4 mIZ. The results are shown in Fig. 3. The smooth
dependence of T, on impurity content again seems to
confirm that the impurities have been dissolved intersti-
tially, with the exception of the sample with the highest
impurity content (Nbs) whose T, falls considerably be-
low the expected value. The reasons for this deviation
are unclear, especially in view of the fact that weighing
uncertainties become rather small at higher nitrogen con-
centrations. In addition, if precipitate formation, which
becomes more lil~ely at higher impurity levels, is assumed
to be responsible, the opposite trend, i.e. , a higher T„
would be expected. A detailed discussion of the results
in terms of anisotropy removal by impurity scattering will
be presented in Sec. IV.

With regard to an experimental assessment of the

Ginzburg-Landau parameters aq(T), r2(T), and ~,

H, 2(T)
~2H, (T)

a = ~g(T, ) = az(T, ),

the following procedures were adopted. In a differential
magnetization measurement, both H, 2(T) and the slope
of the magnetization at H, ~ are directly accessible to ex-
periment and can, therefore, be determined with high
accuracy. On the contrary, the thermodynamic critical
field H, must be determined by a twofold integration
of the experimental data, which can result in substan-
tial error margins. In addition, H, (i.e. , the area under
the integrated differential magnetization curve) is most
sensitive to residual hysteresis effects. Hence, once the
demagnetization factor D has been established in a sat-
isfactory way, z2(T) is certainly the quantity which can
be assessed from experiment with the highest accuracy.
It turned out [Fig. (4b)j, tha, t ~& varied linearly with
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FIG. 3. Critical temperatures of niobium samples as a
function of nitrogen content c;.

FIG. 4. (a) ~q as a function of the reduced temperature
t = T/T~ for various samples. (b) The same for ~2.
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temperature close to T, in all the samples investigated.
Hence, to determine the Ginzburg-Landau parameter K

for each sample, a similar procedure to that described
above for the evaluation of T, was employed. The corre-
sponding results are listed in Table I.

The temperature and impurity dependence of the
Ginzburg-Landau parameters (Fig. 4) has been discussed
in much detail recently, ~ brief reference to a comparison
of the experimental vq data with anisotropic Eliashberg
theory will be made in Sec. IV. In the following we will
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FIG. 5. Ginzburg-Landau parameters s as a function of the residual resistivity p„(a),and impurity parameter o (b).
(a) Dashed line: linear regression through the experimental data to determine xo, solid line: Gor kov-Goodman relation. (b)
Dashed line: Gor'kov function, solid line: Gor'kov-Goodman relation.
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restrict ourselves to a discussion of the impurity depen-
dence of r in terms of the Gor'kov-Goodman relation
and the Gor'kov function y(n). is The experimental re-
sults correlating the Ginzburg-Landau parameters with
measured normal state resistivities are shown in Fig. 5(a).
In order to determine the clean-limit (p„=0) value of
K, a linear regression was fitted through the four data
points pertaining to the samples with the lowest resistiv-
ities. This results in a clean-limit value of Kp ——0.713,
which is just barely above the limiting value (0.707) for
type-II superconductivity. It should be noted that the
determination of zp as decribed above is a purely ex-
perimental procedure and based on the availability of a
series of samples with varying impurity content at very
low impurity concentrations. This result fol' Kp together
with the expel. ime~xtal value for the Sommerfeld constant
(y = 720 3 K m, cf. below) can be used to evaluate
the Goi '1&ov-Goodman relation

p + 2.37 x 10 (6)

r. = Kp/y(n), (7)

(y in J I& 2 iri s, p in Qm), which is shown by the solid
line in Fig. 5(a). Clearly, the overall agreement between
experiment and Eq. (6) is very good (maximum devia-
tion: 3%%uo), and even better than the theoretically esti-
mated accuracy (6%%uo) of Eq. (6).

As the next st cp, the llllpu rity par arne tcr n
0.882(0/l ((0 is the clean-li111it coherence length and E

the electron mean-free path) can be calculated, which
may be done in three ways. Firstly, the 1 values ob-
tained from the resistivity (cf. Sec. III A) and (0 (= 38.9
nm, cf. below) can be used directly to calculate n. This
is shown by the symbols in Fig. 5(b). Secondly, n can be
evaluated numerically from the Gor'kov function

an overestimation of Kp. Therefore, the results presented
in Fig. 5(b) explain the consistently higher values of zo
for niobium published so far.

Finally, we wish to summarize briefly the data on
clean-limit parameters for niobium, which were obtained
by employing standard BCS relations. From the mea-
sured slopes of the critical fields H, q and H, at T„

dpp Hg2

dg

= 395+2 mT,
t= 1

where t is the reduced temperature, t, = T/T„we obtain
the Fermi velocity

&((;)')~'"
= (2.768 + 0.008) x 10 m/s

and the clean —limit coherence length (0

/ (( +)2) )
(0 ——0.18 = 40.9 6 0.1 nm,

(14)

where the *'s indicate that the energy dependence of the
gap function according to Butler, leading to an enhance-
ment factor esp ——1.104 in the slope of H, 2, has been in-
cluded in the evaluation. The corresponding values with-
out this correction are g(v&2) /(1+ A)2 = 2.634x10 m/s
and (0 ——38.9 nm, respectively. Furthermore, the zero-
temperature penetration depth AL, (0) is obtained from
the slope of H„A (L)0= 29.0 + 0.2 nm, in excellent
agreement with the clean limit result for ~p,

8 1
x(~) =

7((3) - (2n + I)~(2n + 1 + n)
' (8) Al, (0) = = 28.9 + 0.1 nm.

0.96 (15)

using the clean-limit, result foi' Kp (=0.713). This data is
shown by the dashed line in Fig. 5(b) and listed in Table
I. Thirdly, the mean-free path 1 can be calculated from
Eq. (6) in a slightly modified form " and used again in
conjunction with (0 to evaluate n:

1 1 ro(0= "+
.3»e (9)

with

pKp

1.327(~ —ro)
' (10)

This data, is shown as the solid line in Fig. 5(b). Clearly,
all of these procedures yield results which are very close
together and, thus, basically confirm the validity of the
approaches outlined above. Note, however, that slightly
diA'ercnt slopes of the K-n dependence are obtained.
Hence, if only one sample is available for the analysis and
if the Gor'kov-Goodmann relation is employed to extrap-
olate the Ginzburg-Landau para, meter to n = 0, then the
Ratter slope of this approximation will invariably lead to

C. Specifi heat

The single crystal (Nbs) was measured in the tempera-
ture range from 1.3 to 50 K and four polycrystalline sam-
ples (Nb7, Nb4, Nb5, and Nbs) were measured from 1.2 to
20 Ik. The results are shown in Fig. 6. They demonstrate
that the nitrogen doping results in a bulk depression of
the critical temperature T, and in limited smearing of
the transition width.

Quantities given by the theoretical anlaysis (e.g. , con-
densation energy) are related to diA'erences between the
normal state and superconducting state data. Since
only zero-field measurements were performed, a detailed
description of the procedures employed to obtain the
normal-state data is in order. A straight extrapolation
of C/T versus T from above T, would lead to erroneous
results, since an anomaly is known to occur near 3 K
in the slope of the lattice specific heat. 2 Therefore, we
have to allow for some curvature and fit a more general
curve, using numerous constraints to secure extrapola-
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I'IG. 6. Specific heat t divided by the temperature T as a function of T for the samples of Table II. Inset: same quantities,
expanded scale near the superconducting transition temperature.

tion. Such constraints (to be detailed below) are given
by the continuity of the normal-state specific heat and its
first derivative at T,', by the entropy balance, by the ini-
tial Debye temperature at T = Q, and by the requirement
that the curvature should be consistent with a positive
phonon density of states. After having so determined the
normal-state specific heat, we shall obtain information

on the electron density of states, on the phonon spec-
trum, on the condensation energy and its variation with
temperature, and we shall be in a position to follow the
changes in the above quantities as a function of the ni-
trogen content.

Practically, the elaborate analysis outlined above re-
quires the following three steps.

TABLE II. Calorimetric data: results of the fitting procedure. T„bulk superconducting critical temperature, in K, r,
rms residual of the least squares fit, in 'Yo (T, —20 K), 7, Sommerfeld constant, in mJ K mole, AC (expt. ), experimental
value of the jump in the specific heat at T„in m3 K mole, AC (iso.), theoretical value for AC (isotropic model), 6C
(aniso. ), theoretical value for AC (anisotropic model, (a ) = 0.0335), O(0), initial Debye temperature in K, yoH, (0) (expt. ),
thermodynamic critical field at 7 = 0 in mT derived from experiment, poH, (0) (iso.) and poH, (0) (aniso. ), theoretical values

for an isotropic and an anisotropic model, respectively, u„,nth moment of the PDOS in meV as defined in Eq. (18).

Sample

T (calc.)
y

DC(expt. )
AC (iso.)

AC (aniso. )
e(0)

paHc(0) (expt. )
yoH, (Q) (iso.)

poHe, (0) (aniso. )
p, on, (o)

+C
CaP2

Nbs

0.4
9.31
7.80

137.2

276.6
202.5

21.76
19.08
18.39
15.92
13.36

Nb7

0.7
9.29
7.76

138.4
137.4
128.9
276.6
200.2
201.03
197.88
21.56
19.07
18.38
15.88
13.24

Nb4

0.7
9.26
7.40

133.0

276.6
197.0

21.27
19.10
18.43
15.97
13.36

Nbg

0.6
9.09
7.45

131.4
129.9
123.9
276.6
193.5
194.03
192.04
21.29
19.09
18.41
15.92
13.27

Nb6

0.4
8.96
7.75

125.7

276.6
193.0

21.54
19.10
18.43
16.03
13.52

Note that the most likely value of poH, (0) for sample Nbs as determined from integration of the magnetization curve is 198.5
mT.
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1. The specific-heat anomaly is idealized to show a true
discontinuity at T„in order to compensate for the smear-
ing resulting both from experimental resolution and pos-
sibly from material inhomogeneity. This requires short
extrapolations from the regions just below and just above
T, . The idealized step temperature is determined from
t, he requirement that the small entropy added just be-
low T, in the peak exactly balances the entropy removed
just above T, in the tail. This correction is useful in de-
termining T„the specific-heat jump, and the shape of
the deviation function close to T, (cf. Sec. IV C). It does
not affect the internal energy at T, (and therefore the
condensation energy) within 4(6T/T, ), where bTis t'he

transition width.
The data of Fig. 6 are shown before this idealization

process. The result, s for T, defined in this way differ
somewhat from the data determined from the magneti-
zation curve (cf. Table II).

2. The data at the low end of the superconducting
range are fitted to a polynomial, C = aT + bT, up
to a temperat, ure T~ (& T, . The entropy at the low-
est measured temperature Ti is then given by S~
(1/3)aTI + (I/5)bTI . The entropy is then obtained by
numerical integration of the data from Tq to T, . The
initial choice of the fitting range (T2) does not affect the
result by more than 0.01% (1.5 & T2 & 1.8 K).

3. The total specific heat in the normal state is as-
sumed to originate from an electronic term C, = pT (no
variat, ion of y is allowed which is certainly an approxi-
mation in view of the temperature-dependent renormal-
ization) and from a lattice contribution due to the sum
of three partial Debye-type phonon spectra, F, (cd):

( )
3Dqcd cd', 0(cd &cd', 2= 1, 2, 3
0 elsewhere. (16)

Dicdi + Dqcdz + Dscds = h kz 8 (0) (17)

is made consistent with the result based on the elas-
tic constants, zs i.e. , O(0) = 276.6 K. Of course, the
parametrized form of the phonon density allows for a
variation of 8 with T.

The final rms difference between the parametrized fit
and the normal-state data above T, amounts to 0.37% (T,
—20 K) and to 0.57% (T, —50 K) in the case of the single
crystal. For the sake of consistency in the comparisons,
Table II contains the results of the fits up to 20 K only,
even for the single crystal. A previous publication24 using
the same data was focused primarily on the properties of
"ideal" niobium and the information given by the full
fit (T, —50 K) was retained. This explains the minor
discrepancies (& 1%) with the present data.

Some properties of the phonon density of states
(PDOS) obtained by this procedure should be mentioned.

A nonlinear least-squares program refines all seven pa-
rarneters y, cd, , and D, under three constraints: (a)
the entropy above T, should match the measured en-

tropy as determined in point 2 above; (b) the compos-
ite phonon density of states F(cd) is normalized, i.e. ,

Di + D2 + D& ——1; and (c) the initial Debye temper-
ature e(0) given by the composite spectrum, i.e. ,

Firstly, it reproduces the "kink" in the normal state heat
capacity data near 3 K, which has been observed by direct
measurements under suitable magnetic fields. Secondly,
the main feature of the substitution spectrum F(cd) is a
broad excess PDOS, geometrically centered at, = 3 meV
and cont, aining about 14% of the modes. This causes a
minimum in the effective Debye temperature near 8 K.
Thirdly, the fitted spectrum F(cd) has the correct weight,
i.e, , the moments of nth order, defined by

poV H2(T)
2

Tc

where V„, = 10.825cm /mole. A selection of data is
listed in Table II. Ot, her data, for the single crystal are
given in Ref. 24.

For the purpose of t, his paper we emphasize the fol-
lowing results. (1) The sharpness of the specific-heat
jump before idealization indicates that interstitial nitro-
gen is distributed homogeneously within the sample vol-
ume. (2) The moments of the PDOS are remarkably
coilsfal'lt (+1%) throughout the series. Significant hard-
ening is found only in the most heavily doped sample.
The T, depression is not an effect of phonon shifts. (3)
The variation of the Sommerfeld constant p through the
series is small (p = 7.6+ 0.2 mJ K ~ mole ) and uncor-
related with the variation of T, . Since p is obtained by an
extrapolation technique rather than by a direct measure-
ment, these variations cannot be considered significant.
Furthermore, the thermodynamic critical field H, (0) de-
creases monotonously with doping, and closely follows
the variation of T, which is expected in the BCS limit,
since po V H, /(yT, ) is a universal constant. The scaling
observed between H~ and T, (within +1.2%, see Table II)
indicates again, that p is indeed constant throughout the
series. H, is less affected by extrapolation errors than y
for technical reasons. As can be seen from Eq. (19) and
from the approximate two-Quid behavior, the major con-
tribution to H, (0) comes from the upper half of the range
of integration where a continuation of the normal-state
data is most reliable. We can safely conclude that the
T, depression is not due to a variation of the electronic
density of states at the Fermi level.

IV. RESULTS, ANALYSIS, AND DISCUSSION

A. Critical temperatures

As variations in the electronic density of states were
ruled out as an explanation for the T, depression with

fd~ ~"I"(~))Cd~ = Cd
dcd F(Cd)

agree with results based on neutron scat tering
experiments2s to within 2% (—2 & n & 2).

Once the normal-state specific heat has been deter-
mined by the procedure outlined above, various function-
als of the specific-heat difference, C, —C„,between the
superconducting and the normal states are readily ob-
tained, e.g. , the thermodynamic critical field H, (T):
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[n F(~)]k k
—(1 + at, )n F((u) (1 + at, ), (20)

where k and k' are the incoming and outgoing quasi-

increasing nitrogen content, we find another plausible ex-
planation in the smearing out of the anisotropy in the
electron-phonon interaction. This possibility has been
investigated theoretically by Markowitz and KadanoA'
using a separable model to describe the anisotropy of the
BCS coupling potential. AVe have expanded this model to
describe an anisotropic electron-phonon interaction spec-
tral function:

particle momentum vectors in the electron-phonon scat-
tering process and ap is an anisotropy function which
describes the deviation of the anisotropic spectral func-
tion, [n F(u)]kg~, from the isotropic one, o( F(cu), in the
direction of k. ag has the important feature

(21)

where ( ) indicates a. Fermi surface average.
The critical temperature is then calculated from a set

of anisotropic Eliashberg equations in an imaginary-axis
representation

oo

wg(n) = w„+wT,' ) A» ~ (m —n) + 6 „'sgnwv (m))
tA =—OO

(22)

for the renormalized quasiparticle frequencies ut, (n) and
the Matsubara, gaps 6k(n). ur„= AT(2n + 1) with

n = 0, +1,+2, . . . , p& k, is the anisotropic Coulomb in-

teraction pseudopotential, u, is the cutoff frequency, t& &,

is defined by

+ 1

2z(7.g„)t,t,
'

+ a2a= 0.037

9.3 1.0— 10-

Y
0

o
E
+

9.2 0 5~

0.0 I I

0.1 0.2
c;(at.o )

0.3 0.0 0.1

(
)0.2 0.3

FIG. 7. T depression as a function of nitrogen content c;.
The symbols with error bars represent the experimental data
while the two full curves represent theoretical results from the
solution of Eq. (22) for two values of (a ).

FIG. 8. t+ and p„asa function of impurity content c,
for (a ) = 0.037. This graph clearly shows the linear relation
between the scattering parameter t+, the residual resistivity
p„,and the nitrogen content.
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where (7«)k k is tl'ie anisotropic transport relaxation
time, due to impurity scattering, and

Ai, i,I(m —n) = 2
[~'F(~)]k,i

~~+ (~ —~ )2' (24)
+OO

For weak anisotropies, the k, k' dependence of pk k,
)

and I,&+k, can be neglected and the anisotropy of the Mat-
7

subara gaps is described by the ansatz

Ak(n) = Ao(n) + akEi(n), (25)

with Au i(n) being isot, ropic.
Equation (25) is applied to Eq. (22) and only terms of

the order of (a ), the mean-square electron-phonon inter-
action anisotropy, are kept, . Furthermore, the isotropic
Coulomb pseudopotential and the isotropic transport re-
laxation time are described by t,he parameters p* and
t+ = 1/(2irii„), respectively.

The experimental data describing the depression of T,
with increasing nitrogen content are then used to fit the
value of (g2). For this procedure we assume the clean
limit (t+ = 0) critical temperature of niobium to be 9.305
Ik, slightly higher than the critical temperature of the
high purity single crystal sample Nb8. Furthermore, we
use the n I" (~) spectrum measured by Arnold e$ al.
which has a mass enhancement, factor A = 1, and we
choose the cutofI' to be 6~D ——174 meV.

Figure 7 shows the result of such a fitting procedure
and it becomes obvious that (a ) = 0.03 and 0.037 fit
the data equally well. Thus, we can assume that these
two numbers establish a lower and an upper limit for
the mean-square anisotropy of the electron-phonon cou-
pling. Of course, for each value of (a2) we find a differ-
ent value of p* to give the clean limit T, (p' = 0.204
for (a~) = 0.037) and each impurity concentration re-
sults in a particular value of t+. Figure 8 shows this for
(a ) = 0.037 and it is essential that f+ nl, the ni-

trogen concentration. The same holds for the residual
resistivity.

300—

100'—

B. Upper critical fields, H 2

It has already been observed by Sauerzopf et al. that
the high purity single crystal sample Nbs exhibits a pro-
nounced anisotropy of the upper critical field H, 2 as a
function of the orientation of the crystal axis with respect
to the applied external magnetic field. Furthermore, Ho-
henberg and N~erthamer pointed out that anisotropy
effects in polycrystalline samples manifest themselves in
an upward curvature of H, 2(T) near T„which is clearly
observed by experiment (cf. Fig. 9 below).

The theory of H, q(T) for anisotropic polycrystalline
superconductors in a separable model scheme was devel-
oped by Prohammer and Schachinger. It employs the
separable ansatz (20) for the anisotropy of the electron-
phonon interaction and the ansatz

FIG. 9. Results of a fitting procedure for theoretical re-
sults calculated from Eqs. (27)—(30) to the experimental data
of sample Nb7. Full line: (a ) = 0.037, (b ) = 0.111, dashed-
dotted line: (a ) = 0.03, (b ) = 0.13. v~ is in both cases
0.57 x 10 m/s. The dashed line represents the results for an
isotropic system with v~ = 0.42 x 10 m/s.

which describes the anisotropy of the Fermi velocity. bp
is again an anisotropy function defined in the same way
as Qk.

The upper critical field is then determined by the fol-
lowing set of equations:

uk(n) =u„+xT ) (1 + ag) A(m —n) sgnug(m) + mt+sgnuk(n), (27)
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(
' g+

K~I~) = ») (I + ~~) &(~ —n) (I+ ~~ ) &k (~)Xk (~) —» ) l

V' —I, — &» i~)Xk (~))
~c ~c

2
x~(&) = g /Ia, 'k )

&l~~(n)ly
'

all d

ak = '
H, ~(T) (t)~)' (I + bk)'. (30)

Clearly, this introduces two new parameters, the Fermi
surface average of the Fermi velocity (i)~} and its mean-
square anisotropy (b2).

These two parameters can be found by fitting the the-
ory to the H,2(T) da, ta measured for one sample, for
instance, sample Nb7, using the values of p', t+, and
(a ) found earlier, as an input for the calculations. Nev-
ertheless, there is still some ambiguity left in defining
bk, which could be in phase with ak or not. This prob-
lem is resolved by the experimental de Haas —van Alphen
results reported by Crabtree et at. ~ who convincingly
showed (in their Fig. 14) that bk and ai, have opposite
signs on the Fermi surface, making v~ small where the
electron-phonon coupling is strong and vice versa.

The fitting procedure is very sensitive to the choice
of the anisotropy parameters, as is demonstrated in Fig.
9. The values for (v~} and (b ) for a given set of data.
for (a ), ))j', and t+ are chosen to reproduce in an opti-
mal way the high temperature tail of the H,2(T) curve.
It becomes quite obvious that the low-temperature part
of the H, 2(T) curve can then be used to find the best
set of parameters in order to reproduce the temperature
dependence of the upper critical field over the whole tem-
perature range. This results in one set of data, (a ), (b ),
(tI~}, and p describing the intrinsic normal state proper-

D, (t) = 100 (;. —I); t =T/T,

H, 2(t) is the upper critical field of the anisotropic poly-
crystal and H,'2(t) is the upper critical field of a fheoret-
icat isotropic system having the same T„t+, (v~), and
n F(~) as the real anisotropic system. Figure 10 shows
the results of such a procedure for the deviation function
and Table I quotes the results which suggest the following
limits:

(u'} = 0.03m + o.o035,
(b ) = 0.118+ 0.007,

(vp ) = 0.57 6 0.01 x 10 m/s.
(32)

If we recalculate D (t) using the average values quoted
above we get the results presented in Fig. 11. The maxi-
mum deviation between theory and experiment of about

I

ties of niobium, which should not, change by changing the
impurity content of the sample. Thus, using the appro-
priate value for t+, the theory has no further adjustable
parameter and should, in principle, reproduce the exper-
imental H, 2(T) data of all the other samples.

Nevertheless, we have already experienced some am-
biguity in determining (a } which resulted in an upper
and a lower limit of this parameter. Therefore, it is only
natural to apply the above procedure to each individual
sample in order to establish upper and lower limits of
(b ) and (t)~}. Maximum accuracy is achieved if this is
done using the anisotropy deviation function
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FIG. 10. The anisotropy deviation function D (t) for the
best possible fit for each individual sample. The correspond-
ing values for the anisotropy parameters and v~ are listed in
Table I.
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FIG. 1 j. . The anisotropy deviation function D for the
anisotropy parameters and v& according to Eq. (32).
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12 percentage points is found for sample Nb7 at low tem-
peratures. All the other polycrystalline samples show
deviations smallei than 5 percentage points. This corre-
sponds to a maximum error of less than 2% in the repro-
duction of the experiment, al H, 2(T) data for all samples
over the whole temperature range, if the parameters of
Eq. (32) are used.

Figure 12 finally shows how the upward curvature of
H, q(T) at T, is reproduced by theory and how this cur-

vature becomes less pronounced with increasing nitrogen
concentration as a result of smearing out the anisotropy.

C. Thermodynamics

The thermodynamics of a superconductor is calculated
from the free energy difference LF between the normal
and the superconducting states:

AI" = N(0)xT )
cue

~(n) + ~~(n) —1~k(n) I ~

l

~k(n)

Ak~(n) + ~~2(n) )
(33)

where the u&(n) and Ak(n) are the solutions of the nonlinear anisotropic Eliashberg equations:

OO +
~k(n) =~„+7rT ) A„„(m—n)+b

I
fTL

)

b.~2, (m) + ~k~, (m)

I
Ak (m)

)

A„',(m) + ~ks, (m)

(34)

and ~ku(n) is determined from

OO +
-0 t„k~„(n)= ~„y~T ) X„„(m—n) + b „sgn~ . (35)

200-

hOFy

OFy

The thermodynamic critical field is then given by

H, (T) = /2EI" (T)/po

and the specific-heat diAerence by

(37)

E

0

100-

Nb2

It is obvious from Eq. (33) that only (a2) matters and
as this parameter is already determined, there are no
adjustable parameters left.

From a theoretical point of view, it is certainly prefer-
able to compare theoretical thermodynamic critical field
data with experiment. This proved to be very successful
in the case of the type-I superconductor indium, where
the inhuence of the anisotropy in the electron- phonon in-
teraction was clearly observable. As niobium is a type-II
superconductor, H, (T) is not directly accessible to exper-
iment and has to be calculated either from an integration
of the magnetization curve or from an integration of the
specific heat data [Eq. (19)].

Nevertheless, we would like to present results for the
magnetic deviation function

DH(t) = ' —(1 —t )
H, (t)
H. (0)

(38)

10

FIG. 12. High temperature tails of the H,2(T) curves and
their reproduction by theory (solid line). The dashed lines
reproduce the best possible fit for an isotropic model calcula-
tion.

for at least one sample, the high purity single crystal sam-
ple Nbs. The extrapolation of the experimental H, (T)
data to T = 0 results in a H, (0) between 197.0 and 200.5
mT. Figure 13 compares the experimental data [open cir-
cles, ppH, (0) = 198.5 mT] with theoretical predictions.
Even with the large error bar attached to the experimen-
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FIG. 13. Magnetic deviation function Drr(t) according to
Eq. (38) for the pure single crystal sample Nbs. The open
circles represent experimental data. calculated for poH, (0) =
198.5 mT. The solid curves represent theoretical predictions
from BCS theory and anisotropic Eliashberg theory (labeled
by different values of (a )).

I'IG. 14. Temperature dependence of the generalized
Ginzburg — Landau parameter fez in pure (Nbs) and dirty
(Nbs) niobium. The solid lines represent the results of
anisotropic Eliashberg theory with (a ) = 0.037, (b ) = 0.112,
and v~ = 0.585 x 10 m/s for sample Nba, and (a ) = 0.034,
(5 ) = 0.125, and v~ = 0.558 x 10 m/s for sample Nbq.

tal data, it becomes obvious that the BCS result is far
oA. The other full curves labeled with diA'erent values for
(a. ) result from anisotropic Eliashberg theory and show
a reasonably good agreement with experiment. A mean-
square anisotropy of the electron-phonon interaction of
0.03 ( (az) ( 0.04 seems to be most likely.

This result is furthermore supported by a comparison
between experimental aq(T) [see Eq. (3)] and theoretical
predictions generated using the results of Table I, Figure
14 presents results for the two samples Nb8 and Nb5. The
agreement is excellent for the clean sample (Nbs), with
the experimental data falling slightly below the theoret-
ical predictions. This becomes more pronounced in the
case of the dirty sample (Nbs). For this sample, small
residual hysteresis eKects were found to become increas-
ingly more significant at low temperatures. Therefore,
the observed discrepancy between theory and experiment
can be related to the evaluation of the thermodynamic
critical field H, (T) from magnetization curves. Increas-
ing irreversibility near the lower critical field H, & shifts
the magnetization to higher fields and this in turn results
in higher H, values and consequently in smaller a&(T)
values.

On the other hand, the specific-heat difference can be
calculated from two successive diff'erentiations of the the-
oretical free energy dat, a, a procedure which makes the
convergence requirements for the solution of the Eliash-
berg equations (34) very stringent. It has, therefore, cer-
tainly some advantage to use the deviation function of
the entropy

(39)

where AS(t) is the entropy difference between the su-
perconducting and the normal state and t(t' —1) is just
the two-fiuid model prediction for the normalized entropy
difference. The calculation of AS(t) requires only a sin-
gle differentiation of the theoretical free-energy diA'erence
and a single integration of the experimental specific-heat
data where uncertainties can be greatly suppressed by
t, he use of the third principle.

Figures 15(a) and 15(b) compare the experimental
data for the samples Nb7 and Nbs with theoretical pre-
dictions for the entropy deviation function. In both cases
the experimental data (full circles) are closer to the pre-
dictions for an isotropic system which is rather surpris-
ing. A possible explanation might be found in the fact
that the temperature dependence of the mass enhance-
rnent factor A (Ref. 35) is neglected in the analysis of the
specific-heat, data, because this would result in a temper-
ature dependent p. In the temperature range 0 & T & T„
A varies by about 8% which is probably enough to explain
t, he observed discrepancies. Further thermodynamic data
are compared for the two samples in Table II. It is inter-
esting to note that for both samples the calorimetrically
determined value of peH, (0) is just between the theoret-
ical predictions for the isotropic and the anisotropic sys-
tems. The error is in both cases 1% which gives quite
some confidence in the theoretical evaluation of the free
energy. Furtherrr;. ~re, it should be pointed out that the
most li!&ely values of H, (0) as determined from magneti-
zation measurements are consistently smaller than the
calorimetric ones and very close to the results of the
anisotropic theory (cf. above, Fig. 13 and the note in
Table II).

All this leads to the conclusion that magnet, ic mea-
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FIG. 15. The entropy deviation function Ds(t) for the samples Nb7 (a) and Nbs (b). The full circles represent the
experimental data, the full curve the results for the isotropic model, and the dashed line corresponds to the results of an
anisotropic model with (a ) = 0.0335.

surements are more sensitive to anisotropic features of a
superconductor than the specific heat measurements.

D. Summary of aa.alysis

AVe are now in a position to perform various consis-
tency checks. One obvious check would be to compare
the results of Eqs. (32) to the de Haas —van Alphen
measurements. s2 Figures 16(a) and 16(b) compare our
results for the variation of A and of v~ with the experi-
mental data. In both cases the agreement is exceptionally

good and confirms the results of our analysis. Our value
for (v~) of 0.57 x 108 m/s is also in very good agree-
ment with the result of Eq. (13) which gives a (v~) of
0.556 x 10 m/s for A = 1; band-structure calculationsss
predict (v~) = 0.62 x 10 m/s which is in excellent agree-
ment with our value. (In contrast, an analysis of the up-
per critical field data using an isotropic theory would
result only in a. (v~) of 0.47 x 10 m/s. )

A further consistency check concerns the comparison
of the residual resistivity data p„to theoretical predic-
tions which follow from a Drude theory. %e find for the
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FIG. 16. Comparison of the de Haas —van Alphen results on the anisotropy of (a) v& and of (b) A with the results of the
theoretical analysis according to Eq. (32). ("Ell" refers to the elliptic, "3G" to the jungle gym, and "Oct" to the octahedron
part of the Fermi surface. ) The black bar represents the uncertainty in the calculation of the mean value for the various parts
of the Fermi surface.
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plasma frequency fl„the value 8.83 ev and this allows to
calculate pt, he~, . frona the transport relaxation time and
thus from t+ according to Eqs. (1) and (23). Table I
compares theoretical (pth, ,.) and experimental (p„)val-

ues and we find again a very good agreement between
the theoretical predictions and the experimental data for
all samples investigated.

In summary, the theoretical analysis of experimental
data for T, and the upper critical field required a rather
moderate anisotropy of the electron-phonon coupling in-
teraction and a quite pronounced anisotropy of the Fermi
velocity. This is in contrast to an earlier analysis by
Butler~ who assumed that the anisotropy of the Fermi
velocity alone could account for the observed anisotropy
effects in niobium.

V. CONCLUSION

4Ve have presented results of a systematic study on
the impurity dependence of superconductive and normal
state properties in niobium, in order to clarify the role
of anisotropies in the electron-phonon coupling strength
and the Fermi velocity. The experimental investigations
were supplemented by an extensive analysis in terms of
anisotropic Eliashberg theory.

With regard to the thermodynamic properties, the im-
purity dependence of the transition temperature T, can
be assessed accurately from experiment and discussed ap-
propriately in terms of theory on the basis of a separa-
ble model for the coupling anisotropy. This has led to a
mean-square anisotropy parameter (a ) = 0.0335+0.0035
for clean niobium. On the other hand, both the thermo-
dynamic critical field deviation function and the specific
heat suffer from the small contribution of anisotropy to
the experimentally determined temperature and impurity
dependence and are, hence, much less suited for a quan-
titative discussion in terms of theory and, consequently,
an unambiguous assessement of anisotropy effects.

On the other hand, the temperature and impurity de-
pendence of H, 2 have been shown to be ideally suited
for this purpose. Based on the recent formulation3~
of an anisotropic Eliashberg theory of the upper criti-
cal field H, ~ and using the coupling anisotropy (a ) as
determined from the T, depression with impurity con-
tent, a mean-square anisotropy of the Fermi velocity
((b ) = 0.118+0.007) as well as the actual magnitude
of (v~) (= 0.57 + 0.01 x 10s m/s) have been deduced.
With these parameters, the temperature dependence of
8,& could be described in a most satisfactory way over
a wide range of impurity concentrations. The results re-
Aect the "smearing out" of anisotropies with increasing
impurity content, a picture, which has been confirmed by
the specific-heat measurements independently.

It is the main result of' this study that both the
anisotropy of the electron-phonon interaction and of the
Fermi velocity, can incleed explain the superconducting
properties of pure niobium and of impure niobium with
dilute impurity concent, rations. We conclude, that the
anisotropy of the electron-phonon interaction is rather
wealc and comparable to that of indium. The anisotropy
of the Fermi velocity is very pronounced and is compa-
rable to that of NbsSn single crystals. The theoretical
analysis proved to be consistent with other normal state
properties of niobium like the residual resistivity or the
anisotropy of the Fermi velocity as observed by de Haas-
van Alphen experiments.
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