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Phase-dependent energy spectrum of quasiparticles in a superconducting superlattice
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The energy spectrum of the quasiparticle state in a superconducting superlattice is investigated based
on the Kronig-Penney superlattice model. Andreev reAection which originates from the multilayered

structure is completely taken into account. The energy spectrum of quasiparticles is strongly influenced

by the lattice period and the pair-potential phase increment (P) over one period. From the energy spec-
trum, the presence of the three states, i.e., the superconducting state, the gapless superconducting state,
and the normal state is elucidated and the phase diagram is obtained in the parameter space of the lattice
period and the phase difference. If the unit period is short, the reduction of the pair potential is caused

by the proximity effect and the difference (P) of the phase. In such a case, the P dependence of the su-

percurrent is very different from the prediction of previous perturbational theories.

I. INTRODUCTION

Nowadays, because of the development of microfabri-
cation techniques, various kinds of artificial atomic-scale
superconducting system can be designed for device appli-
cations. Superconducting superlattices are interesting
from this view point. However, it is often not known in
detail as to how the superconducting properties are
afFected by the construction of a multilayered structure.

There exist many kinds of superconducting superlat-
tice. ' But superconducting superlattices realized so far
have been mostly dirty due to the efFect of atomic
difFusion near the interface. Thus the interference of the
wave function due to the multilayered structure cannot
be expected to be fully operative. There are several
theories of superconducting superlattices and layered ma-
terials. Klemm, Luther, and Beasley treated layered
material with the use of tunneling Inodel in the limit of
weak interlayer coupling. On the other hand, Takahashi
and Tachiki investigated superconducting superlattices
coupled by the proximity effect in the dirty limit. In or-
der to treat the interference of the electron wave function
due to the multilayered structure from the strong-
interlayer-coupling regime to the weak-interlayer-
coupling regime in a unified formalism, we have
developed a theory of superconducting superlattice based
on the Kronig-Penney model. It is found that the criti-
cal temperature oscillates as a function of the length of
the unit period a. The origin of the oscillation is ascribed
to the oscillation of the density of states (DOS) with lat-
tice constant a. The interference of the wave function
due to the multilayered structure can be seen in the varia-
tion in the critical temperature.

However, the validity of the above theories" is re-
stricted to a region near the critical temperature and the
nature of multilayered structure in the superconducting
system has not been fully investigated. In this paper,

basic properties of a superconducting superlattice at tem-
peratures below the critical temperature is discussed. In
particular, we will discuss how the periodic distribution
of the finite pair potential and its phase variation
influences the energy spectrum of quasiparticles.

The quasiparticle state in a nonuniform superconduct-
ing system has been investigated since the discovery of
superconductivity, and many important features have
been clarified. For example, in the superconductor—
normal-material junction in which the pair potential
abruptly changes, Andreev reAection occurs. The
Tomash effect, Rowell-McMillan oscillations, and de
Gennes —Saint James bound states' all result from in-
terferences between the electronlike and hole-like quasi-
particles.

A powerful technique for investigation of the electron-
ic state of the surface, called STS (scanning tunneling
spectroscopy), has been developed. " Recently STS has
been applied in the case of superconductors, and the en-
ergy spectrum of quasiparticles have been obtained. ' '
So at this time it is interesting to clarify the energy spec-
trum of quasiparticles in a superconducting superlattice.
In this paper, we investigate the energy spectrum of
quasiparticles using the Kronig-Penney superconducting
superlattice model. This is a simple model which enables
us to solve the quasiparticle state in a microscopically
correct way. We consider the case with finite phase
difFerence of the pair potential between the adjacent su-
perconductors, i.e., the case in which a finite super-
current Bows perpendicularly to the layer. For thin su-
perconducting layers, the superconducting proximity
efFect becomes significant, and the amplitude of the pair
potential in the superconductor region is reduced. This
value is also iniluenced by the phase difference P of the
pair potential between the adjacent superconductors. So
we determine the pair potential b, (x) self-consistently
with the use of the Bogoliubov equation. '
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This paper is organized as follows. In Sec. II the
method of self-consistent calculation of the pair potential
in the multilayered system is expressed. In Sec. III, the
energy spectrum of quasiparticles is discussed. From the
energy spectrum, the presence of the three states, i.e., su-
perconducting state, gapless superconducting state, and
normal state, will be elucidated. How the supercurrent
depends on the difference P of the phase in the layered
structure is also discussed.

II. THE METHOD OF CALCULATION

h(x+a)=b, (x) exp(iP),

o
—ds&x &O

(2.1)

In the above, Ao is the amplitude of the pair potential in
the S material. Since our system has translational invari-
ance in the y and z directions, the Bogoliubov equation'
is written as

H(x, k~~)u „(x)+b(x)u„k (x)=e „u,„(x),
(2.2)

H(x, kii)U k (x)—h*(x)u„k (x)= —E, k U k (x) .
il

'
ll

'
ll

The periodic square-well pair potential assumed in the
three-dimensional Kronig-Penney model of a supercon-
ducting superlattice is shown in Fig. 1. The system is a
periodic array of the material S and X, with respective
thicknesses ds and d&, which have the same single-
particle potential. Quasiparticles which travel in the x
direction are afFected by the spatial variation of the pair
potential, while this system is uniform in the y and z
directions. Under this assumption, the pair potential is
taken to be independent of y and z. In our model, the
phase of the pair potential b, (x) is considered to be con-
stant in each S region and obeys the following equations:

$2 d2
H(x, k )=— +U(x) —p-

2m d~' 2m
(2.3)

o "s&x &0

0, 0« d

(2.5)

Since Eq. (2.3) has translational invariance in the x
direction, eigenfunctions u, k (x) and U, k (x) satisfy

II II

u, k (x+a)=u k (x)exp(ika+iP/2),
II

U k (x +a) =U, k (x) exp(ika —iP/2) .
II II

(2.6a)

(2.6b)

The energy dispersions in this system are given as fol-
lows:

cos(ka) =cos(yds) cos, 5dz —+

where p is the chemical potential, U(x) is the electron-
ion potential, and kll is the momentum of the quasiparii-
cle parallel to the interface. The energy scale of U(x) is a
few eV, and the energy band of the normal state is deter-
mined by U(x). On the other hand, the order of b, (x) is
a few meV. Consider the energy spectrum near the Fer-
mi energy, namely, the excitation of quasiparticles with
energy of order several meV. The qualitative features of
this excitation do not depend on the shape of the energy
band in the normal state. So we choose U(x) =0 for sim-
plicity. The pair potential b, (x) is related to u, k and

II

U k as follows:
II

b(x)=TV(x) g u, k (x)U,'„(x)[1—2f(E k )], (2.4)
v, kll

where the interelectron potential V(x) is assumed to
satisfy

V(x +a) = V(x),

In the above, H (x, k~~ ) is given as sin(yds) sin 5dz —+ (2.7a)

cos(ka) =cos(yds) cos 5dN+ +

sin(yds ) sin Sdz+ +E
(2.7b)

Aoexp( —iy) Lp Aoezp(iy) where,

k =k„—kF k =k +kF
0 Ey=, 5=, n=+E' —S,',

«Fx &UFx

(2.8)

(2.9)

-ds Ak
II

2m UFx . (2.10)

N N To derive the above dispersion relations we have used the
relations

FIG. 1. The assumed spatial dependence of the pair potential
in the Kronig-Penney superlattice model (S =superconductor,
N =normal material).
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where kF is the x component of the Fermi wave number.
It should be noted that in the case of /=0 we reproduce
the results obtained by Gelder' and Gallagher. ' To dis-
cuss the electronic property of this system, it is con-
venient to use the Matsubara Green's function which
satisfies the following Gor'kov's equations

[ico„—H(x, kl )]G(x,x';ico„,ki)

is repeated to obtain the new average of the pair potential
in the S region, Az. These processes are repeated many
times until the difference between h„and 6„+,becomes
sufficiently small. Although this process includes approx-
imation of averaging over the spatial change of the pair
potential in S, the amplitude of the pair potential is ob-
tained self-consistently. A„denotes the converged value
of the averaged pair potential hereafter.

(2.12)

b,(x)= —V(x)T g F*(x,x;ico„,kll )
n, kII

(2.13)

The quantities G(,x x'i c„o, k~~) and F(x,x';ico„,kl) are
expressed with use of u, k (x) and U, & (x) as follows:

II

G (x,x'; &co„,ki )

[ico„+H(x,kl )]F(x,x';ico„,kl )

5*( )G ( ' ' k~[):0
The self-consistent relation to determine b, (x) is given as
follows:

III. ENERGY SPECTRUM OF QUASIPARTICLES
IN A SUPERCONDUCTING SUPERLAl=l'ICE

p(x, E)= ——lim g Im[G (x,x;E+i5, kl )]
1

5~0 k
II

(3.1)

In this section, based on the obtained pair potential, we
discuss the energy spectrum of quasiparticles. In Figs. 2
and 3, the local DOS (LDOS)

u„k (x)u*„(x')
II

'
II

l&n Cv k
II

U„"k (x)U, „(x')
Vr

II
Vr

'~n+&v k

(2.14)

&av

F(x,x ', i co„,k

U~k (x)1l~k (x )
(I

LEO~ Cv k

u,'k (x)U k (x')
II

'
II

ECO~ +Gv k
II

Therefore, using Eq. (2.14), the following relations are ob-
tained:

G(x +a, x+;ai „co,
~k~

) = G( ,x'x;i „co, k)l

(2.15)

0.0
0,0

Ga p

s
I

1.0

Gap

Gap
r

g ~ 2.0

&/&o

F(x+a, x'+a;ico„'kll) F(x,x';ico„'kll) exp( —iP) .

Extending the method introduced by McMillian, ' Ishii, '

and Furusaki in the S-N-S junction to the present sys-
tem, we obtain G (x,x '; i co„,k l ), F(x,x ', i co„,k

~~

) analyti-
cally. With use of these Green's functions, b.(x) can be
obtained by Eqs. (2.12). The obtained pair potential does
not take a constant value in the superconductor region
and deviates from the assumed value. It is difBcult to
take full account of the spatial dependence of the pair po-
tential. Therefore we use the following iteration pro-
cedure. First, we calculate the averaged value of the pair
potential 6& in S region,

f b(x)dx
S (2.16)
ds

0.0'
ap

b'av

1.0

(b)

Gap

2.0

Fl&o ' '

and require the self-consistency condition

(2.17)

We replace ho in Eq. (2.1) for 6&, and the same procedure

FIG. 2. Typical LDOS in the normal region for
0

ds=d~=5000 A at (T/T&0=0. 1.). The energy is normalized
by Ao which is the value of the pair potential of bulk S material.
Tco is the critical temperature of bulk S material. (a) /=0. 0
and (b) P=m. .
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FICx. 3. Plots similar to Fig. 2 with d&=d&=2000 A., (a)
/=0. 0 and (b)P=n. .

is plotted with different d& and d& at T =0.1Tco in the X
region (full line) and in the S region (dashed line). The
quantity E is the energy of a quasiparticle measured from
the Fermi level in units of 60, which is the value of the
pair potential of the bulk S material. The quantity Tco is
the critical temperature of the bulk S material. The
LDOS p(x, E) is a periodic function of P with period 2m. .
The quantity P is chosen as (a) /=0. 0 and (b) P=rr, re-
spectively. In the N region, the interference between the
electronlike and the holelike quasiparticle does not occur
since the pair potential vanishes. For this reason, p(x, E)
becomes constant in N. On the other hand, in the S re-
gion where the pair potential takes finite value, p(x, E)
depends on x. Both in Figs. 2 and 3, x is chosen as
x = —ds/2 as a representative value. In the k direction,
quasiparticles form energy bands due to the periodic dis-
tribution of the pair potential, which generates multiple
Andreev rejections at the S-X interfaces. To see the
electronic structure of this system more clearly, the posi-

tion of the energy gaps in the one-dimensional dispersion
in the k direction are indicated in Figs. 2 and 3 for the
states wit k~~

=0
First, let us make some comments on Fig. 2, in which

the quantities dz and d& are chosen as dz=d&=5000
A=2. 3g, where the coherence length g in the bulk S ma-
terial is given as

g=AUF/b, o . (3.2)

Due to the proximity effect, and the destruction of the
pair potential by finite P, b,,„becomes smaller than b,o.
The ratio b,„/ho becomes 0.88 and 0.85 for cases (a) and
(b), respectively. In both cases, the LDOS in the S region
takes smaller value than that. in the X region when
E &6„is satisfied. However in the case of E & 6„, the
LDOS in the S region becomes larger than that in the X
region. It should be remarked that in the case of E & 5„,
the quasiparticle localizes in the X region. When E be-
comes larger than 6„, the amplitude of quasiparticle is
larger in the S region than that in the X region. With
further increases in E, the distribution of quasiparticles
becomes uniform in both the S and X regions. The
dashed line shows discontinuous jump at 6,„in each case.
The jump of the LDOS at E =A„arises from the follow-
ing fact. In the S region, a quasiparticle is sensitive to
the presence of the averaged pair potential 6„. There-
fore the LDOS of the bulk S material diverges when
E =6„ is satisfied. However, this singular behavior of
the LDOS is weakened by the proximity effect due to the
adjacent N materials, and only a discontinuous jurnp in
the LDOS remains.

Since the LDOS is an even function of the energy E,
the width of the first energy gap in the one-dimensional
dispersion centers around E =0.0, and is found to be
nearly 0.7b,o from Fig. 2(a). In this region the LDOS in-
creases with increasing E. In the lowest-energy band
(from 0.386o to 0.546o), the LDOS decreases with in-
creasing E. The second energy gap is situated at the re-
gion from 0.546O to 1.085o and the width of this gap is
smaller than that of the first gap. With the increase of E,
the width of the energy gap decreases, and finally van-
ishes. In such a case, the LDOS becomes 1.0, which is
the value of the normal state.

In the case of Fig. 2(b) (P =rr), the energy E =0.0 does
not lie in the gap, but locates at the one-dimensional
dispersion in the k direction. The energy dependence of
the LDOS is drastically changed from that in case (a).
The LDOS takes peak at E =0.0. It should be remarked,
that although 5„is finite, the energy gap does not exist
at E =0.0. This is a gapless state of the superconductivi-
ty. However there are also some features similar to (a).
When the LDOS increases with increasing E, E is in the
energy gap in the k direction, and when the LDOS de-
creases with increasing E, E is in the energy band in the
k direction. Also as E increases, the LDOS becomes
unity as in (a).

In Fig. 3 the quantities dz and d& are chosen as
dz =d& =2000 A=0. 92$(k~~ =0), while the other param-
eters are the same as in Fig. 2. As compared to Figs. 2(a)
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and 2(b), the qualitative features of the LDOS are similar.
However, since the length of the unit period a is smaller
in the case of Fig. 3 than in the case of Fig. 2, the prox-
imity effect becomes more significant. For this reason,
h,„becomes smaller as compared to Fig. 2, namely, '

b,,„=0.7bo and b,„=0.3bo for (a) (/=0. 0) and (b)

(P=m), respectively. Since the length of the unit period
becomes smaller, the band width of the one-dimensional

I

dispersion becomes larger. So, as seen from Figs. 3(a) and
3(b), the width between the nth peak and the (n +1)th
peaks is broader than that of in the case of Figs. 2(a) and
2(b).

It is interesting to clarify how the supercurrent de-
pends on the phase P. So we calculate the supercur-
rent I with use of the obtained Green's function
6 (x,x ', k i,i ru„) as follows:

I= g lim
eA . 8

2l f7' k
x' —+x c)x

2iekI, T
A„.(5d„,yds, ro„,h,„)exp(2n'5d„) sin(n'P)

n n'=0
(3.3)

In the above, 6, y, and co„are defined by

(3.4)

(c)

0.0 1.0

FIG. 4. The supercurrent I through the junction is plotted as
the function of P for various d~„with fixed dz (ds =5000
0A:2 3g) at ( T/Tco =0, 1 ). Tco is the critical temperature of

bulk 5 material and R„ is the resistance in the normal state. (a)
d~ =7500 A =3.45$, (b) d~ =5000 A =2.3g, (c) d~ =2000
A=0. 92/, and (d) d~ =1000A=0. 46('.

and R denotes (m%/e ). ' It should be remarked that the
supercurrent can be written with a series of sin(n'P) and
the n 'th term corresponds to the process of the quasipar-
ticle rejected at the S-N interface 2n' times. In the case
when dz is infinite, our theory reproduces the previous
theory of S-N-S junction by Ishii. ' In such a case, when

d~ is sufficiently large, the quasiparticle which refiects
many times at the S-N interface does not contribute to
the supercurrent and only the term proportional to sin(P)
remains in Eq. (3.3). This feature reproduces the previ-
ous results by Josephson, ' Ambegaokar and Baratoff.

In the three-dimensional system, there are many kinds
of quasiparticle which have different wave numbers. We
have divided RI by (I.~~k~) /4m, which is the number of
quasiparticles in the y, z directions. In Fig. 4, RI is plot-

ted as a function of the phase difference P for various dz
with ds=5000 A=2. 3$ at T/Tee=0. 1. In the case of
/=0 and P=m, the supercurrent becomes zero for all
cases of d&. This property can be seen from Eq. (3.4).
The quantity RI becomes maximum at a certain inter-
mediate value of P. This P is called Pc hereafter. The
qualitative features of Fig. 4 can be summarized as fol-
lows. With the decrease of d&, RI becomes larger. When
the unit period d~ is sufficiently large (a) (a =6.9g), the
supercurrent is roughly proportional to sin(P), and Pc is
0.5'. As the period d~ decreases (b) (a =4.6g'), P& devi-
ates from 0.5m. In cases (a) and (b), ds and d& is
sufficiently large, RI is roughly proportional to sin(P) as
discussed above. However in the case of (c) and (d),
where the quasiparticle makes Andreov rejections many
times, RI cannot be expressed by sin(P).

In Fig. 5, plots similar to Fig. 4 are made for various
values of the superlattice period a =dz+ d& with dz =d&
at T/Tco=0. 1. When the unit period a is sufficiently
large (a) (a =6.9g), Pc nearly equals 0.6m, and the super-
current is roughly proportional to sin(P). Comparing
Figs. 5(a) and 5(b), we can see that the quantity RI in-
creases with the decrease of a in this region. These
features are similar to the case of Figs. 4(a) and 4(b). As a
decreases further [(c) (a = 1.84$) ], Pc becomes smaller
than that in cases (a) and (b). In such a case, the interfer-
ence of the quasiparticle due to the periodic structure be-
comes significant and Pc becomes smaller than 0.5'
Furthermore, the coupling between the adjacent super-
conductors becomes significant, and b, (x) is much re-
duced when P exceeds Pc. When a decreases further to
2000 A [Fig. 5(d)], Pc becomes 0.20, and h(x) vanishes
when P is larger than 0.25. In this case the P dependence
of the supercurrent is very different from the previous
theories. ' To summarize the above features we get the
following conclusions. When the period a becomes short,
the width of the normal region decreases and this is
favorable to obtain larger value of R„I. But there is a
disadvantage for superconductivity in the case of short a;
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the GS state, while it is zero for the S state. Thus, we in-
vestigate the LDOS in the X region at E =0.0 which is
given as

pz= lim p(x EN, E)
E~O

=N(0) lim f Re[Z(y, E+i5)] . (3.5)
E~0,6~0 1 y

In the above, the quantity Z (y, O) can be expressed as

0, g(y)) 0,
' 1/2

Z(y, O) = CRe —,g(y) &0,
(3.6)

00 'l.0 withy =kF/k~„, and

FIG. 5. Plots similar to Fig. 4 with d&=d&(a =2d&), (a)
a =15000 A=6. 9g, (b) a =10000 A=4. 6$, (c) a =4000
A=1.84$, and (d) a =2000 A=0. 92$.

C:—[1+exp( —ydz /g) ] [1—exp(i P ) ]

D =—4 exp(iP) [1—exp( yds/g—) ] g (y),

g (y) —= 1 —coth (yds/g) sin (P/2) .

(3.7)

the amplitude of the pair potential in the superconductor
region decreases due to the proximity effect. Further, the
coupling between the adjacent superconductors becomes
significant, and the increase of P makes superconducting
state unstable. So, in order to obtain larger values of
R„I, the length of the unit period should be chosen prop-
erly.

Finally, we show the phase diagram (Fig. 6) at
T/TC0=0. 1 as a function of the unit period a and the
phase difference P. There are three phases; the supercon-
ducting state (S), the normal state (N), and the gapless
superconducting state (GS).

First, we discuss the boundary between the GS state
and the S state. The LDOS at E =0 takes finite value for

As seen from the above equations, g (y) is a monotonous-
ly increasing function of y. For this reason, if Z(y, O) is
zero at y =1, then it will be zero for any y ) 1. On the
other hand, when Z (y, O) takes finite value for y = 1, p&
does not vanish. Namely, when g(y =1)&0 is satisfied,
our system is in the GS state. Therefore, we can deter-
mine the boundary between S and GS by the sign of
g (y = 1). On the other hand, the boundary between the
GS and the X state is determined by the following linear-
ized Gor'kov's equation:

b (x ) = V(x )Tf y y K (X,X ', co„,k1 )b (x ')dx ',
n kll

(3.8)

I&: (x&x';co„&k~~ ) =G (x,x', iso„&k1)G (x,x'; ice„&k1) .—

We have solved Eq. (3.8) numerically as an eigenvalue
problem.

In the case of sufficiently large a (a )0.7$), a transi-
tion from S to GS occurs with the increase of P. The N
phase does not appear. When a becomes smaller
(0.2/&a &0.7$), the transition from GS to N occurs.
There are three phases: S, GS and 2V with the increase of
P from 0 to ~ In the case .of very short a, the region of
GS and S phase decreases. As seen from the phase dia-
gram, the ground state of the superconducting superlat-
tice strongly depends on P.

IV. CONCLUSIONS

FICr. 6. The phase diagram is expressed as the function of a
and P.

In this paper we have clarified basic properties of the
superconducting superlattice below the critical tempera-
ture. With use of Gor'kov's Green's function we have
determined the pair potential b, (x) self-consistently, when
the phase difference of the pair potential between the ad-
jacent superconductors exists. In our treatment, al-
though the spatial dependence of the pair potential has
been averaged out, and thus the pair potential has not
been obtained fully self-consistently, the essential point of
the energy spectrum of the superconducting superlattice
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is clarified. In our previous one-dimensional theory, we
have clarified that the quasiparticle consists of the energy
band which originates from the Andreev reInection.
The feature of this band structure also appears in the
LI3QS in the three-dimensional system as seen from Figs.
2 and 3.

There appear three states, i.e., the superconducting
state, the gapless superconducting state, and the normal
state depending on the value of parameters of the super-
lattice period a and the phase difFerence P. As P in-
creases from 0, the superconducting state becomes unsta-
ble in general. In the case of larger a, the superconduct-
ing state changes into the gapless superconducting state
with the increase of P. When a is reduced, h(x) vanishes
for larger P and the gapless superconducting state
changes into the normal state. It should be remarked
that the LDOS of the quasiparticle is influenced by P as
well as by the lattice constant of the unit period. So it is
interesting to observe the LDOS by STS when the super-
current is Aowing perpendicularly to the layer.

We have also clarified the 4) dependence of the super-
current in the superconducting superlattice. In general,
the supercurrent is expressed by an infinite series of
sin(nP), where n is a positive integer. In the previous
work in the weak-link limit by Ishii' and Kulik and
Omelyanchuk, the existence of the sin(nP) (n & 1)
terms are predicted. Since these theories treated the
infinite S system, the amplitude of the pair potential in
the S region is insensitive to the difference of the phase P
and the length of the normal region d&. In Ishii's
theory, ' only the bound state appears in the energy gap
region. We have developed a theory of supercurrent
which is valid for finite dz as an extension of Ishii s
theory, and which the band structure due to the Andreev
reAection is considered. As seen from our theory, when
the length of the unit period becomes shorter, the cou-

pling between the adjacent superconductors becomes
significant. In such a case, the destruction of the pair po-
tential due to the proximity effect becomes significant,
and the superconducting state is unstable for finite P.
When this effect becomes significant, the pair potential
vanishes and the P dependence of the supercurrent be-
comes very different from that of the previous
heorj

There are many limitations in our paper, which should
be considered as future problems. In the present formal-
ism, the spatial dependence of the pair potential is not
obtained completely except near the critical temperature.
Below the critical temperature, only the averaged value is
obtained self-consistently. For a more quantitative dis-
cussion, the spatial dependence of the pair potential
should be determined completely at any temperature.
Furthermore, the quantity U(x) is assumed to be zero. It
is desired that U(x) should be chosen as more realistic
function. We also did not consider the effect of the mag-
netic field on the supercurrent. The obtained tt depen-
dence of the supercurrent should be observed by the ex-
periment under the magnetic field. It is also interesting
to clarify how the supercurrent is influenced by the mi-
crowave. The interference of the quasiparticle in the
multilayered structure and the energy spectrum of the
quasiparticle may be observed by the Shapiro step, and
by STS, respectively.
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