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The transient behavior of superAuid turbulence is studied theoretically and experimentally with the

aim of understanding the disagreement between vortex-tangle theory and past measurements of free

vortex-tangle decay in superfluid He. Scaling theory is extended and large-scale simulations based on

the reconnecting-vortex model are carried out. These imply that the Vinen equation should be a reason-

able approximation even for rather large transients, and predict definite values for the Vinen parameters.
Direct measurements of the vortex-tangle response to a sudden change in the driving velocity are seen to
be in reasonable agreement with these predictions. It is found, however, that when the vortex tangle is

allowed to decay farther toward zero, it eventually crosses over into a state of anomalously slow decay,
which appears to be that observed in previous experiments. We argue that this regime should be inter-

preted in terms of a coupled-turbulence state in which random superAuid and normal-Auid motion in-

teracts with the vortex tangle, the whole system decaying self-consistently at a rate controlled by the

normal-Quid viscosity. Several additional qualitative observations which may be relevant to the question

of how the vortex tangle is initiated are also reported.

I. INTRQDUCTIGN

SuperAuid He at absolute zero acts like an irrotation-
al, frictionless Auid, the motion of which can be charac-
terized by a velocity field v, . At finite temperatures, the
fiuid also contains a gas of thermal excitations (the nor-
mal fiuid} capable of moving with its own drift velocity
v„and having a temperature-dependent efFective mass
density p„. Under various circumstances, when the rela-
tive velocity v„, =v„—v, is made large enough, the
superAuid enters a new dynamical state characterized by
the appearance of a dense tangle of quantized vortex lines
in the v, field. This vortex-tangle state is driven and sus-
tained by the frictional forces exerted by the normal Auid

as it Aows past the quantized vortices. A particularly
easy way of generating a sizable U„, in a channel is to seal
off one end of the channel and place a heater there (Fig.
1). The normal iiuid produced by the heater fiows out of
the channel with an average velocity U„=Q /3 pST,
where Q is the heat input to the channel, A is the channel
cross-sectional area, p is the total Auid density, S is the
specific entropy, and T is the temperature. The normal
Auid moving away from the heater is replaced by
super Auid Ao wing in the opposite direction, the
superAuid velocity being determined by the condition of
zero net mass transport p„v„+p,v, =O. Since the nor-
mal and superAuid densities p„and p, are known func-
tions of temperature, U„, can then be varied in a con-
trolled way simply by adjusting the heater input Q.

Beginning with the seminal work of Vinen, the prop-
erties of superAuid turbulence have been extensively in-
vestigated, mostly in capillaries of diameter 0.02 cm or
less, but also occasionally in large channels with cross-
sectional dimensions on the order of a centimeter, ' and
in open geometries. The properties of the steady, homo-
geneous, fully developed turbulent state observed in these

experiments are now well understood on the basis of a
Auid dynamical treatment of the quantized vortex tan-
gle. This approach is expected to provide a sound basis
for the investigation of more complicated phenomena
such as the onset of superAuid turbulence, the propaga-
tion of turbulent fronts, and the response of the vortex
tangle to time-varying driving velocities.

The present paper reports a variety of observations on
the transient behavior of superAuid turbulence in a large
counterAow channel. The work was motivated by several
unresolved questions concerning the time-dependent be-
havior of the vortex tangle. Of primary interest to us was
the response of the fully developed, homogeneous state to
sudden changes of the driving velocity U„,. As we will
show below, the theory of this state indicates that the
well-known phenomenological equation of Vinen should
provide a reasonable approximation to the resulting be-
havior, with the same scaling coeKcients describing both
growth and decay transients. In contradiction to this, the

FIG. 1. Schematic rendering of the counterflow channel (not
to scale). The details are discussed in the text.
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early measurements of Vinen, as well as later measure-
ments, seem to show a very anomalous slow decay of the
vortex line density when the driving velocity is suddenly
reduced to zero. The question then is whether this
disagreement indicates a serious fiaw in the theory, or
whether it implies that some interesting new physics is
going on.

A secondary aim of the present experiment was to gain
insight into how the turbulent state is initiated when the
driving velocity is suddenly increased from zero. Previ-
ous large-channel experiments seem to show homogene-
ous growth of the vortex tangle along the entire channel.
Indeed, in his initial work Vinen included a phenomeno-
logical vortex-growth term which he interprets as
describing the nucleation of quantized vortex lines at the
channel walls. This idea has no apparent basis in the
context of the modern theory. Instead, our present phys-
ical picture suggests, roughly speaking, that the tangle
can grow uniformly throughout the channel only if there
exists a reasonably high, uniform density of quantized
vortex lines to start with. If this is not the case, tur-
bulence can only propagate in from vortex mills located
at special points of the channel, such as the channel
ends. In support of this view, it has long been known '

that in capillaries turbulence establishes itself by means
of propagating fronts. It is of interest, therefore, to in-
quire why this phenomenon has not been observed in
large channels, and why instead the turbulence appears to
develop everywhere at once.

II. THKORETICAI. CONSIDERATIONS

dius of a quantized vortex. Although it can usually be
treated as a constant, P has a logarithmic dependence on
the tangle density since ~s"

~

increases as the tangle densi-
ty increases. This can be important when comparing ex-
periment and theory over a wide range of conditions.
The primes in Eq. (1) denote derivatives with respect to
the arc length, and n, a' are known temperature-
dependent friction coefficients which characterize the
effect of the normal Quid on the vortex motion. Equation
(1) is supplemented by the condition that when a vortex
approaches another vortex or a boundary sufficiently
closely, a reconnection occurs.

Neglecting an unimportant logarithmic variation of the
critical reconnection distance, this model has the feature
that if one takes any solution of Eq. (1) and multiplies all
distances by a scale factor A, , all velocities by A, ', and all
times by A, , one obtains another solution of the equation.
Any property P (r, up tp ~ . . ) evaluated on any particular
solution of Eq. (1) will relate to P evaluated on the scaled
solution according to

P(Ar, up/k, , tpl, , . . . ) =f (A, )P(r, up, tp, . . . ), (3)

where the form of f (A. ) depends on the particular com-
bination of distances and times represented by I', and is
usually obvious by inspection. To take a simple example,
the evaluation of the line-length density at some point in
the tangle involves measuring the length of quantized
vortex line contained in some sampling volume and divid-
ing by the sample volume. These scale as A, and A, , re-
spectively, so that f (A, ) =A. for the line-length density.
Equation (3) can be written in the generic form

A. Dynamical scaling revisited
P(A, 'x„.. . , A, "x„)=f(A,)P(x„.. . , x„) . (4)

The theory of steady-state superAuid turbulence can
be extended to describe the response of the vortex tangle
to a change in driving velocity. It will be assumed that
the turbulence remains spatially homogeneous at all
times, a condition which is likely to be a good approxi-
mation under many circumstances, ' but which will
clearly be inappropriate when, for example, there are
propagating fronts. In contrast to the steady-state situa-
tion, the transient problem involves more than one im-
portant independent variable, and a generalization of the
scaling arguments presented in Ref. 6 is needed.
Representing the tangle by the curve s(g, t), where g is
the arc length, the basic equation for vortex motion in
the local approximation is'

=s'Xs"+v, p+as'X(v„, p
—s'Xs")

Bto

—a's'X[s'X(v„, p
—s'Xs")] .

Here tp is the reduced time Pt, and v, p, v„, p are the re-
duced velocities v, /P, v„, //3. The coefficient P is defined
by

P=(~/4ir)ln(cI ~a" ~ap),

where ~ is the quantum of circulation, c is a constant of
order one,

~

s"
~

is the average curvature of the vortices in
the tangle, and ao = 1.3 X 10 cm is the effective core ra-

Suppose now that one knows the value of P(x„.. . , xk)
for only one particular value x;* of one particular vari-
able, but all values of the remaining variables. Then one
can find P (x„.. . , xi, ) for other values A, 'x,.* of x; by us-
ing the scaling condition

P(A, xi, . . . , A, x;, . . . , A, xk)

=f(A, )P(x„.. . , x;*, . . . , xk) .

Renaming the variables A, 'x, ~x &, . . . , and using
n,.

A, 'x; =x,. to define X, one then finds

P(x, , . . . , xk)=f (A, )P(x, /A, ', . . . ,x, . . . , xk/A, ")
(1/n, . ) n& /n, . nk /n, .=f[x, ']g(x /x, ' ', . . . , x lx, " ').

Thus, the scaling symmetry allows one to write any prop-
erty P (x„.. . , xk ) evaluated on a solution of Eq. (1) as a
known function of any of the independent variables times
a reduced function g of k —1 variables constructed as
shown.

The relation (6) operates most potently when P de-
pends on one variable only, since the variation can then
be made to reside entirely in f (X). Such is the case for
the steady-state, homogeneous vortex tangle discussed at
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length in Ref. 6. To recall just one important example,
suppose that the ensemble-averaged" line-length density
L =0 ' Jdg depends only on U„, . Then f (A, )=A, and

n, = —1, and Eq. (6) implies a relation of the form

(7)

Numerous other examples relevant to the steady-state
case are discussed in Ref. 6 and will be invoked here as
needed.

B. Vinen's equation

The ensemble-averaged rate of change of line-length
density was shown in Ref. 6 to be

=—v„, o f s'xs"dg' ——f ~s'xs"
~ dg,

dtp Q
(8)

and is thus seen to depend crucially on how the local
self-induced vortex velocity s'Xs" is distributed within
the tangle. Suppose the tangle has achieved steady-state
behavior. Then the ensemble-averaged integrals in Eq.
(8) are functions of just one independent variable, most
conveniently L, and scaling gives

0 'f s'Xs"dg=IiL i v„, , (9)

' f is' Xs"i'dg =c',I, ' . (10)

Inserting these relations into Eq. (8) leads to

dL =ar U ~'" ac'L'. —
I ns, 2

0

This has the form of the equation originally proposed by
Vinen'

3/Py, v„,L — y2Ldt 2p
"' 2m.

(12)

except that the Vinen coefBcients y, and y2 are now ex-
pressed in terms of quantities that have a clear micro-
scopic interpretation and that can in fact be calculated
from Eq. (1). One sees that the steady state is established
by a competition between a growth term which depends
on the self-induced velocity being distributed so as to
point preferentially in the vns direction, and a decay term
that depends only on how the magnitude of the self-
induced velocity (i.e., the curvature) is distributed. From
Eq. (7) one concludes that cL =I&lc2, allowing the reex-
pression of c2 or II in terms of cL if so desired.

In the simplest instance we are interested in the situa-
tion where the vortex tangle is initially at some steady-
state equilibrium L; at a driving velocity vns p, and the
driving velocity is then suddenly changed to a different
value vns 0 corresponding to a new equilibrium line length

Lf =(II lc2) (Uf o) . It does not appear to be widely ap-
preciated that Eq. (11) then has an analytical solution

'~' —In~1 l '"~+c otn—s,

where I =L /Lf and ~=acptpLf /2. This solution, which
embraces both growth and decay behavior, is graphed in
Fig. 2. In truth, however, things are not quite as elemen-

0
—10

FIG. 2. Analytical solution of Vinen s equation when starting
away from the steady state. The lower branch represents
growth to the final steady state when L;/Lf (1; the upper
branch shows the decay when L;/Lf &1. The time origin is
fixed by the initial condition.

tary as Eq. (13) suggests: although Vinen's equation was
originally proposed as a phenomenological description of
just this kind of transient behavior, there are in fact no
theoretical arguments to support such an interpretation
comparable to those which have been developed for the
steady-state case. In particular, Eq. (11) as derived from
the theory is a steady-state equation, and to apply it as a
transient equation is to assume that at each instant in its
evolution the vortex tangle adjusts itself so that s' Xs" on
average assumes the steady-state distribution appropriate
to the instantaneous value of L(t). Clearly, there is no a
priori reason to expect this to be true. The issue to be de-
cided, therefore, is how good an approximation to the
transient behavior Eq. (11) represents under various cir-
cumstances of interest.

C. Beyond Vinen's equation

The variations in the internal structure of the vortex
tangle when vns changes quickly and by a large amount
cannot be addressed by scaling arguments alone, requir-
ing instead a detailed dynamical study of how the tangle
structure evolves. Such a study can be carried out by ex-
tending the numerical simulations of Ref. 6 to the tran-
sient case, the difference being that now we must calcu-
late scaling functions g rather than just constants like cL,
II, and c2 from the microscopic model. That is, the prop-
erties of the tangle now depend on the initial condition,
the final condition, and the time; thus, the more general
scaling analysis embodied in Eq. (6) comes into play in
deciding what to calculate. It is convenient to choose tp,
L;, and Lf as the independent variables. It then follows
from Eq. (6) that any property associated with the tran-
sient behavior can be written as f (Lf)g(toLf L lLf),
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The second part of the integral is easily seen to be pro-
portional to (9), but the first part becomes

vns 0 j I
1 (s rll ]dg'= II~ILv o— (15)

where r~~ is the unit vector in the direction of v„, . Equa-
tion (14) therefore involves a new structural scaling con-
stant I~~ representing a somewhat difFerent aspect of the
vortex-tangle geometry. Steady-state scaling then pre-
dicts

where f is known and g is a function that must be evalu-
ated from the microscopic calculation.

The transient behavior is described by Eq. (8), not by
Eq. (11). It is, however, still convenient to decompose the
two integrals in Eq. (8) in a way which relates naturally
to the steady-state theory. Accordingly, we assume that
L(to) is still to be described by Eq. (11), which is
equivalent to reinterpreting II and c2 as time-dependent
functions, now defined at each instant by Eqs. (9) and
(10). These quantities must have their steady-state values
at the beginning and end of the transient, and their devia-
tion from these values during the transient provides a
convenient measure of how much the vortex tangle devi-
ates from the equilibrium distribution as it evolves. Since
II and c2 are dimensionless, they can be interpreted
directly as g functions. Thus, we need to determine
L(to)=LggL(tpLf L /Lf ) II(toLf L /Lf ) and
c~(toLf, L, /Lf). In addition, the actual experimental
determination of the line-length density often proceeds
indirectly through a measurement of the friction force ex-
erted by the normal fluid as it Aows past the vortex tan-
gle:

p, zap
F,„=— ps'X [s'X(v„, 0

—s'Xs")]dg . (14)

1.0—

0.5

0.0
0 10 20 30

toL
40 50

FIG. 3. Calculated growth of the line-length density when
v„, 0 is suddenly increased from 40 to 120. The dashed line is the
prediction of Vinen's equation.

of individual vortex-tangle configurations. When applied
to transients, we mean by this that one must compute the
transient behavior for each member of a suitable ensem-
ble of starting configurations, and then average the re-
sults together. Second, we are really interested in testing
the accuracy of Vinen's equation for large transients,
since it is obvious that it becomes exact in the limit of
small changes in the driving velocity. Thus, we require
calculations which go from very small to very large line-
length densities. Third, in order to determine the g func-
tions fully, the transients must be determined for the
whole range of L; /Lf. Finally, all of this should in prin-

F,„=p,~ap[U„, OI~~~L IIL ], — (16a)

which, making the substitution (7), can also be written in
the alternate forms

1.0

F,„=p, al( c I
I~~ cL I& )v„,/P-

,F„= p~a(Iii cL Ii )LU„, . —
(16b)

(16c)

If again we retain the form (16a) for the transient behav-
ior, it also becomes of interest to determine
I~~~(toLf, L;/Lf). At the beginning of the transient, F,„
changes discontinuously as v„, o jumps from its initial to
its final value. Remembering that cl U„, o =L f, the sub-
sequent development is then described by the dirnension-
less function

0.5 (b)

(c)

I~~ (toLf, L; /Lf )
F,„/p, ~aPL F~ =

CL

0,0
0 10 20 30

t() Lf

40 50

Ii( to Lf L /Lf )gt (17)

To determine the g functions of interest completely is a
large task for several reasons. First, the equations above
are to be interpreted as averages over a suitable ensemble

FIG. 4. Variation of the tangle-structure parameters during
the growth transient of Fig. 3, showing (a) I(~~, (b) I&, and (c)
cz/20. The horizontal lines are the steady-state values given in
Ref. 6.
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FIG. S. Variation of the mutual friction force during the
growth transient shown in Fig. 3. The dashed line is the behav-
ior predicted assuming Vinen's equation and steady-state values
for the structural parameters.

ciple be repeated for every temperature (i.e., a, a') of in-
terest. The problem is not sufficiently interesting to war-
rant such a massive computational effort, and we have
therefore focused on a more modest calculation aimed at
getting a feeling for how good an approximation Eq. (11)
is expected to be theoretically. To this end we have cal-
culated transients for the largest and smallest value of
Lf/L; that are computationally convenient, choosing
just one representative temperature of 1.6 K (a=O. 100,
a'=0. 016). The point, of course, is that values of Lf /L;

closer to unity are certain to agree more closely with Eq.
(11) than this worst case which we can investigate
without too much difficulty.

The g functions L/Lf, I, , c~, I~~, and I',„/p, ~~PL f '
were computed for L;/Lf =1/9 and for L;/Lf =9 by
switching v,„o between the values of 40 and 120. The
computational procedures have been described in Ref. 6.
For each transient, five initial vortex-tangle
configurations were randomly chosen from an appropri-
ate steady-state run, and the individually calculated tran-
sients were then averaged together to obtain the results
shown in the figures. The calculations (Figs. 3—8) show
that, immediately after the driving velocity is changed,
the integrals I& and I~~~, which measure the directional an-
isotropy of the tangle structure, begin to deviate substan-
tially from their steady-state values. The tangle becomes
transiently more anisotropic if v„, 0 is increased by a large
amount (Fig. 4), and less so if U„, o is decreased (Fig. 7), as
might be expected since it is the driving velocity which
forces the anisotropy to occur in the first place. On the
other hand, the integral c2 remains relatively undis-
turbed, implying that the kinkiness of the tangle depends
primarily on the instantaneous value of L, and is read-
justed efficiently by the line-line reconnections as the
line-length density evolves. When v„, o is suddenly in-
creased by a large amount, the growth behavior is dom-
inated by the first term in Eqs. (8) or (11). Hence, the
growth transients are seen in Figs. 3 and 5 to exhibit rela-
tively large deviations from the quasiequilibrium theory.
If v„, o is decreased by a large amount, however, the
second term in Eq. (8) or (11) dominates. The relatively
weak variation in c2 then implies that Vinen's equation
should be more closely obeyed, as is indeed demonstrated
in Figs. 6 and 8.

10.0

1.0

5.0

0.5

(c)
A AAAW z I

0.0
0

to

0.0
0 2 4 6 8 10

t() Lf

FIG. 6. Calculated decay of the line-length density when v„, o

is suddenly decreased from 120 to 40. The dashed line is the
prediction of Vinen's equation.

FIG. 7. Variation of the tangle-structure parameters during
the decay transient of Fig. 6, showing (a) I~~, (b) I&, and (c)
c2/20. The horizontal lines are the steady-state values given in
Ref. 6.
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FIG. 8. Variation of the mutual friction force during the de-

cay transient shown in Fig. 6. The dashed line is the behavior
predicted assuming Vinen's equation and steady-state values for
the structural parameters.

800 A thick, deposited on a sapphire substrate in a
meander-line configuration to guarantee uniform heating.
The heater presents a planar face to the channel and is
connected in a four-wire configuration to allo~ an accu-
rate measure of the power injected into the channel. Be-
cause of the large size of the channel, heater powers of
hundreds of mW are required to generate the desired lev-
el of turbulence. In order to avoid the disruptive effects
of switching such large heat loads on and off, the desired
excitation power is switched between a compensating
heater in the bath and the counterAow heater. This
scheme allows the net power applied to the bath to
remain constant. For certain measurements it was
suspected that ambient vorticity in the bath was drifting
into the channel and affecting the results. Some of the
measurements were therefore done with a 100-lines-per-
inch, 82% transmission, electroformed copper mesh
placed across the open end of the channel.

The level of turbulence in the channel is determined in
the conventional way by measuring the temperature gra-
dient arising from the frictional force F,„exerted by the
normal Quid on the vortex tangle'

7T=F,„/p, S, (18)

We conclude that it is possible to extend the reconnect-
ing vortex-tangle model of Ref. 6 to determine the
theoretical transient behavior of homogeneous superQuid
turbulence. It is found that Vinen's equation provides a
not unreasonable approximation to the computed tran-
sient behavior even for relatively large transients, with
decay being modeled more accurately than growth. It is
interesting for our purposes to ask how closely one can
estimate the steady-state constants II and cz by fitting
Vinen's equation in the form of Eq. (11) to the observed
transient behavior. Even for the large growth transient
shown here, II and c2 as estimated in this way turn out to
be accurate to within 25%. From a theoretical perspec-
tive, therefore, one expects to be able to obtain the
steady-state coefficients II and c2 to within a few percent
if one limits oneself to fitting transients much smaller
than those studied here.

where S is the entropy per unit mass. As is obvious from
the previous discussion, measuring F,„ is not quite the
same thing as measuring L, directly, a comparison with
theory requiring the inclusion of certain factors rejecting
the anisotropic tangle geometry. To determine V'T with
some degree of spatial resolution, four matched, unencap-
sulated germanium resistance thermometers are mounted
at intervals of S.08 cm along the channel as indicated in
Fig. 1. To ensure as ideal an interior channel surface as
possible, each thermometer is recessed into a 0.38-cm-
diam hole in the channel wall and the surface of the hole
is covered with 40-lines-per-inch electroformed nickel
SCIeen.

The temperature difference between any two resistors
is measured by placing them into the arms of an ac
bridge as shown in Fig. 9. BrieAy, the ratio transformer

III. EXPERIMENTAL PROCEDURES

Our eounierQow channel is immersed open-end down
in a pumped helium bath approximately 30 L in volume.
The temperature in the bath is measured and maintained
by a Lake Shore DRC-82C temperature controller using
a calibrated germanium resistor as a sensing element.
With 60 mW applied to the bath-control heater, the bath
temperature oscillates slowly and irregularity with an
amplitude of 10 pK. Better short-term stability (2 pK) is
achieved without the controller, but a slow steady drift of
the bath temperature cannot then be avoided.

The counterAow channel (Fig. 1) consists of bronze
waveguide tubing 1.00 by 2.32 cm in cross section and
24.0 cm in length, and is similar to that used in previous
ion-trapping experiments. The driving heater at the top
of the channel consists of a copper-gold alloy film about

///
FIG. 9. Schematic rendering of the di6'erential resistance

measurement apparatus. This somewhat unconventional ar-
rangement was found to give the best signal-to-noise ratio.
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L, 1-L,2 and a small trimming capacitor are adjusted to
balance the bridge when there is no heat input to the
channel and VT is zero. Power is then supplied to the
channel heater to generate the vortex tangle, the resulting
temperature changes 5T& and 5T2 unbalancing the
bridge as R

&
and R2 change. It is easy to show that, to

first order, the out-of-balance signal is given by

5T, +5T2~=G (ri —r2) 2

1.0—

~ 0.8—

0.6—

0.4—
CL~ 0.2—

Q Q

71+V2+ (5T, 5T2—) V, (19)
I

4 6

TIME (s)
10

where y; stands for (dR,-/dT)/R;, V is the amplitude of
the drive oscillator, and the coefficient G depends on the
bridge parameters, on lock-in detector settings, and on
many other factors. If the y's are closely matched and
the overall temperature rise is small, the observed signal
will be directional proportional to the temperature
difference hT that develops between the two resistors. In
practice, the net sensitivity Gy; V of each individual ther-
mometer is calibrated by first balancing the bridge at the
working temperature, then replacing one of the resistors
with an equivalent fixed dummy resistor, and then chang-
ing the bath temperature slightly to determine the
response of the other resistor. A typical calibration al-
lows us to determine the sensitivity to better than 0.5%.
Since the net sensitivity depends on many factors, a new
calibration is performed each time conditions are
changed significantly. The variation in the sensitivity be-
tween individual thermometers, measured under identical
conditions, is found to be about 2%, so that the
common-mode error arising from overall temperature
changes at the two resistors is reduced by a factor of
about 50. The remaining common-mode error appears to
be negligible in our experiments.

Since the measurements are done in a large channel at
relatively high temperatures, and because thermometer
self-heating effects are largely canceled by the differential
nature of the measurement, it is possible to gain in sensi-
tivity by applying quite high drive voltages (of order 0.15
V) to the bridge. With a lock-in response time of 10 ms,
the typical fluctuations in the measured temperature are
then of order 0.2 pK. In addition, the output of the
lock-in detector is recorded by a signal-averaging digital
oscilloscope interfaced to a computer. We find that, with
a modest amount of signal averaging, a temperature sen-
sitivity of order 0.02 pK can easily be achieved. A typi-
cal experimental signal is displayed in Fig. 10. Taken
over the T& to T4 distance, a sensitivity of 0.02 pK
represents a temperature gradient of order 10 K cm
While this appears quite sensitive, one can estimate from
Eqs. (16c) and (18) that at 1.6 K it requires a line-length
density of order 250 cm to generate such a temperature
gradient. This is still more than an order of magnitude
above the critical line-length density characteristic of the
turbulence onset. ' Thus, the onset regime cannot be
studied directly in our experiment, a characteristic disad-
vantage of large-channel experiments.

The idealized experimental goal is to change U„,

FIG. 10. Typical experimental signal, taken at T = 1.60 K by
stepping g/A between 0.0427 and 0.0487 Wctn . The tran-
sient signal was acquired with a 30-ms time constant and aver-
aged for 100 sweeps. The thermometer excitation was 0.1456
V rms, and the thermometer sensitivity 0.197 V/K.

discontinuously, and to detect the temperature variations
as they occur. It is found that both the heater and the
thermometer respond on time scales short compared to
the 5-ms minimum response time of the lock-in detector.
Since this time is short compared to the measured tran-
sient times, the ideal experimental conditions are well
enough approximated as regards signal detection. The
generation of the discontinuous change in U„, is less well
realized because of Helmholtz oscillations which occur
when the heater is switched. ' The ringing can be largely
eliminated by Vinen's trick of applying the heat pulse in
two out-of-phase steps. However, this means that, in
practice, it takes about 30 ms to effectuate a large change
in the driving velocity.

IV. RESULTS

A. Steady-state measurements

Steady-state turbulence levels have been measured in
many previous experiments and, in general, accord well
with the steady-state theory described in Ref. 6. There
have, nevertheless, been some claims' that turbulence
levels in large channels are in strong disagreement with
the theory. Since our channel is unusually large, we have
reexamined this question by doing careful measurements
of the steady-state levels. An additional purpose in carry-
ing out these measurements was to allow direct compar-
ison with ion-trapping measurements. These will be dis-
cussed elsewhere.

The force density F,„was determined from Eq. (18) by
measuring the temperature difference between T, and T4
using the procedures described above. Most measure-
ments were taken with the grid covering the open end of
the channel, although the steady-state results were in fact
not sensitive to the presence of this addition. Compar-
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isons between theory and experiment must be based on
Eqs. (16a)—(16c). We first estimate L in the traditional
way, that is from Eq. (16c) by assuming I~~

= ,', I—
&
=0, as

would be appropriate for an isotropic tangle L li2 plo
ted against U„, then exhibits the familiar nonzero inter-
cept shown in Fig. 11, which is nowadays recognized as
arising from the logarithmic variation of P with L T.he
values of L so obtained are accurate enough to estimate p
from Eq. (2), using the theoretical relationship ~s"

~

=ciL
derived in Ref. 6. A more careful analysis based on
Eq. (16b) can then be carried out by plot-
ting p(I',„/p, eau„, )' against u„, to determine
(cl I~~ clI&—)' . As shown in Fig. 11, this gives the
straight line extrapolating through zero predicted by the
scaling theory. The values of (cLI~~ clII) o—btained in
the present experiments are compared with theory and
with values obtained by other workers in Fig. 12.

The homogeneity of the turbulence in the How direc-
tion was also investigated by measuring temperature
di6'erences between each pair of resistors along the chan-
nel. We find that VT appears to be constant along the
channel to within a few percent, which is the accuracy of
our measurements. This is true whether or not a grid is
placed across the open end. Previous experiments have
shown that the line-length density is also approximately
constant in the spanwise direction, except, possibly, very
near the walls. All of these measurements are, of course,
done at large line-length densities, where homogeneity is
a reasonable expectation. As we will discuss later, the sit-
uation may be quite di6'erent in the onset regime.

The overall conclusion to be drawn from the steady-
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FIG. 12. Comparison of the mutual friction force coefBcient
measured in our experiment (open circles) with selected previ-
ous experiments and with the theory of Ref. 6. Crosses
represent. pure superflow in a 0.0057 by 0.057 cm channel (Ref.
14), dots represent counterflow in a 0.0366-cm capillary (Ref.
15), triangles are counterflow in a 0.240 by 0.645 cm channel
(Ref. 1), and squares represent counterflow in a 1.0 by 1.0 cm
channel (Ref. 4). The line is the theoretical prediction.
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state measurements is that F,„measured in our large
channel agrees with theory and with other experimental
observations to about the same degree as all previous ex-
periments. Although there is some indication in Fig. 12
of a tendency toward lower values of L as the channel
size increases, there is no evidence for the large devia-
tions claimed by Barenghi et QI. ' The degree of homo-
geneity in the developed limit is quite high so that the
transient behavior measured there should, in fact, be
characteristic of the homogeneous state.

B. Small-amplitude transients

0.0
0.0 1.0 2.0 3.0

Vns CI7l S

0
4.0

FICx. 11. Steady-state line-length density as a function of rel-
ative velocity, measured at 1.6 K. The dots indicate nominal
values of I. ' derived in the traditional way from Eq. (16c) by
assuming I~I

=
3 and II=0. Triangles indicate the quantity

/3(V'TS/Iruu„, i' which by scaling theory should extrapolate
through zero and equal cL /U„, . The lines are least-square fjts.

As discussed in Sec. II C, small- or moderate-amplitude
transients offer the best chance of relating the observed
transients to the microscopic theory in a simple way. In
particular, for Lf/L; =1, all of the transient behavior
should be described by Eq. (11) with II and c2 taking
their steady-state values. True to the dictates of our ex-
periment, we consider the modified density
L =(I~~ cl II)L as the quantity w—hich can be directly
extracted from the signal, assuming homogeneous tur-
bulence and a known value of u„, . From Eqs. (16c) and
(18), L is then just equal to SVT/~au„, Equation (11).
can now be written in the form
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dLm
a lm "n m m

Cl.m
(20)

6.0
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where

and

c~ =cl (II cl I( )—'

I, =r, y(1 —c, )'"lm I /I

(21)

4,0—

3,0—
C3

2,0—

1.0—
are the modified scaling constants that can be used to fit
the data. The latter of these is of course just the quantity
already determined from the steady-state measurements
and plotted in Fig. 12 as discussed above. Hence, at a
given temperature a sing1e additional constant II should
suf5ce to fit transients at all power levels and of all ampli-
tudes (provided that they are not too large).

Figure 13 and 14 show typical fits of Eq. (20) to a very
small transient and a rather large transient, respectively.
The spikes arise partly from real switching transients and
partly from the fact that the program which extracts L
from F,„assumes that U„, is switched on discontinuously,
whereas in reality it is turned on over a period of about
30 ms. The agreement is very sensitive to the value of
elm and moderately sensitive to Iim, the former typically
being determined to 0.5% and the latter to 10%%ue. We find
that the entire experimentally accessible range of tran-
sients is similarly well modeled by Eq. (20), with values of
cl that agree well with the steady-state value, and with
a single value of II . It is noteworthy that the same value
of I& fits both the observed growth and decay behavior,
and does so for all kinds of transients. %e do not see any
convincing evidence for the kind of finite-amplitude devi-
ations described in Sec. II C.

Values of II are predicted as a function of tempera-
ture by the microscopic theory of Ref. 6. Figure 15 com-
pares our experimental determinations against these cal-
culations. The agreement is seen to be quite reasonable,

0.0
0.0 0.5

I

1,0

TIME (s)
1.5 2.0

FIG. 14. Fit of Eq. (20) to a much larger transient in which
the heater power is switched from 0.0654 to 0.1294 Wcm ',
also at T =1.6 K. The fitting parameters here are eL =0.0937
and II =0.65. The value of cL determined from Fig. 11 is
0.096+0.003.

although the measured values of Iim and cLm indicate a
vortex tangle which is somewhat more strongly polarized
with respect to the local binormal while at the same time
being somewhat more kinky than the theoretical tangle.
We conclude that Eq. (11)provides a satisfactory descrip-
tion of all aspects of moderate-amplitude transient behav-
ior, and that the required fitting parameters are satisfac-
torily predicted by the underlying theory.

It is preferable to use Vinen's equation in the form of
Eq. (11), which relates much more directly to the under-
lying physics of the vortex tangle than Vinen's phenome-
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FIG. 13. Fit of Eq. (20) to the transient shown in Fig. 10.
The fitting parameters are cL =0.0928 and II =0.65.
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FIG. 15. Values of II obtained from fitting the transient
response of the vortex tangle to a sudden change in U„,. The
linc is the theoretical prediction of Ref. 6. The 1.4-K point may
be unreliable because of equilibration problems.
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nological formulation [Eq. (12)). The original Vinen pa-
rameters y„y2 can be extracted from our measurements,
but this can only be done approximately because the mea-
surement determines the modified parameters II and
cl defined in Eqs. (21) and (22), rather than I& and
cl =II/cz, which appear in Eq. (11). To sufficient accu-
racy for present purposes, the conversion can be made us-
ing the homogeneous-tangle approximation I~~

—cL II =—', .
By studying the growth of the vortex tangle, Vinen de-
duced a y& roughly constant at 0.29. Noting that
pi=( —,

')' I&, we see from Fig. 15 that our values are
about twice as high as those obtained by him. Once y,
has been established, Vinen uses the relation
gi/f2=2m. ap/i~cL to deduce g2 from the steady-state
determination of cL. Primarily because of our higher
value of y„but also because our measured values of cI
are somewhat smaller than Vinen's, we extract y2's that
are about two to three times larger. The origin of these
discrepancies is not clear, but they should perhaps serve
as a warning against an excessively quantitative applica-
tion of the Vinen phenomenology, and an indication that
there may remain some channel-dependent effects that
have not yet been well understood.
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hJ
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I— 0.0 5.0
I

10.0

TIME (s)
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FIG. 16. Typically family of recovery curves generated by
switching the heater back on after the vortex tangle has been al-
lowed to decay for various lengths of time. Here the steady-
state heat Aux density was 0.064 Wcm, corresponding to
v„, =1.15 cms ' at T=1.6 K, where these curves were taken.
The decay times vary from 0.40 to 2700 s.

C. Anomalous decay

In addition to the above method of finding y& and y2,
Vinen determined g2 directly from the free decay of the
vortex tangle when the driving velocity is turned off. Us-
ing this approach he finds values of g2 which are much
lower still, and this has been confirmed by Milliken
et al. The results we have presented in the previous sec-
tion, on the other hand, show no evidence for any such
anomalously slow decay, and clearly contradict the idea
that the decay of superAuid turbulence is governed by a
ratio II~ /cL~ =cz~ that is much smaller than suggested
by the theory. What is the origin of this discrepancy?
Previous experiments showing slow decay established a
vortex-tangle state at a rather high initial level, then sud-
denly reduced u„, to zero and monitored the resulting
time variation in L. Since in our experiment the signal is
proportional to u„„we cannot use this direct procedure
and must resort to a more indirect "waiting time"
method first introduced by Vinen. Suppose Eq. (20) is as-
sumed to describe the growth of the vortex tangle; then
the time needed for the tangle to achieve equilibrium
when u„, is applied is a strong function of the initial value
of L . Thus, the value reached by L after some decay
time td can be estimated by reapplying u„, and fitting Eq.
(20) to the resulting recovery curve. Any series of such
measurements, such as the one reproduced in Fig. 16,
does indeed exhibit the expected qualitative behavior.

An interesting feature exhibited by Fig. 16 is that, for
the longer wait times, the growth is not accurately de-
scribed by Eq. (20), becoming considerably more
stretched out as td increases and L(td) accordingly de-
creases. We speculate that the origin of this phenomenon
lies in an increasing amount of spatial inhomogeneity in
the growth process as it starts from lower and lower lev-
els, leading to a recovery rate which is different in

1 1 +
PL PL

(23)

where the i subscript refers to the initial condition. The
slope of the experimental curve in Fig. 17 is about 0.09.

different parts of the channel, We do not find any evi-
dence for such inhomogeneity in the streamwise direc-
tion, the recovery curves having the same stretched-out
shape when measured between any two thermometers in
the channel. Thus, we surmise that the deviations from
Eq. (20) which gradually develop as td becomes large
reflect the fact that the driving velocity u„, becomes more
and more nonuniform across the channel at low line-
length densities. It is known experimentally that at high
turbulence intensities the normal-Quid velocity profile ad-
justs itself to be practically uniform over the cross section
of the channel. It is to be expected, however, that as the
line-length density becomes small, the normal-quid veloc-
ity profile will approach the Poiseulle profile of a classical
fluid in the absence of mutual friction. There is no satis-
factory model which would allow us to calculate the
profile and the line-length density self-consistently.
Hence, our explanation is offered here only as a reason-
able speculation inviting further study.

Fitting Eq. (20) to a series of recovery curves produces
a decay curve such as the one shown in Fig. 17. For long
decay times, where the experimental recovery curves do
not coincide with the theory, the fit is made so that the
centers of the curves agree. This introduces uncertainties
of up to 30% at very long times, but insignificant errors
at the shorter times of primary interest here. The
method of plotting used in Fig. 17 is based on the fact
that the solution of Eq. (20) for free decay (v„, =0) can be
written in the simple form
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FIG. 17.Vortex-tangle decay curve, obtained at 1.9 K for an
initial heat Aux density of 0.108 Wcm, corresponding to
v„, =0.92 cms '. The point with the arrow was taken after a
decay time of 5880 s. The solid lines are drawn to guide the eye.
The dashed line is the decay behavior expected on the basis of
the direct transient measurements; the dotted line is the behav-
ior predicted by the theory of Ref. 6.

This is to be compared with the value 0.93 obtained by
fitting the small-amplitude transients or the value 0.66
predicted by the theory of Ref. 6. The value of II one
would deduce from Fig. 17 is about 0.06, in approximate
agreement with estimates that one can obtain from Ref. 1

and 3. Hence, we too observe the anomalously slow de-
cay. The apparent contradiction is clarified by examining
the regime very near td =0. Figure 18 shows that there
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FIG. 18. Blowup of Fig. 17 at short decay times, showing the
sharp crossover to the anomalously slow stage of vortex-tangle
decay. The dashed line is obtained from fitting the direct tran-
sient measurements. The point at zero decay time is the initial
steady-state value. p, (du, jdt) =p, ~ctL (u„—u, ), (24)

are in fact two distinct decay regimes, the vortex tangle
switching from the rapid decay characteristic of the
homogeneous state to a regime of much slower decline.
It is very interesting to note that this rather sharp transi-
tion was also observed by Vinen, although his interpreta-
tion focused on the slow stage as representing the charac-
teristic behavior of the homogeneous vortex tangle. It is
only now clear that it is in fact the initial period of fast
decay which is consistent with the well-understood prop-
erties of the homogeneous state, while the slow stage
must represent something else entirely.

What is a plausible physical explanation for the oc-
currence of slow decays During our extensive computa-
tional investigations, we have found no indication that
this kind of behavior can arise within the context of the
vortex-tangle model, as might be possible, for example, if
strong internal correlations were to develop within the
tangle. Consider, on the other hand, what would happen
in an infinitely long (or toroidal) channel if the driving
mechanism were turned off and the vortex tangle were al-
lowed to relax together with v„and v, . The mutual fric-
tion is initially large so that v„and v, are quickly en-
trained to almost the same velocity. In the special case of
counterQow this velocity is zero, but in general it can be
large, the two Auids moving together. In either case one
would expect L to decrease as predicted by Eq. (20) with
v„, set to zero. As this is happening, however, the nor-
mal Quid continues to slow down because of its viscous
interaction with the channel walls. Since v, can only
slow down by transferring its energy to the normal Auid
via the mutual friction mechanism, it lags behind in its
deceleration and a certain mismatch between v„and v, is
maintained. This mismatch is capable of sustaining the
vortex tangle, but at a much lower level. Consequently,
once L, has decayed down to this level, the system will
cross over to a different dynamical regime wherein I., v„,
and v, all decay together in a self-consistent fashion. At
this stage, the decay of the vortex tangle is controlled,
not by vortex-tangle dynamics, but by the normal-Quid
viscosity.

Our contention is that our channel experiment reflects
a complicated version of this sequence. Although the sit-
uation is obviously not well controlled or characterized,
it is suggested that the act of switching off the heater does
not reduce v„and v, everywhere to zero in an instant, but
rather leaves behind some kind of large-scale random
motion in u„and u, . These fields will now relax (together
with the vortex tangle) in the manner just described, lead-
ing to a crossover from the vortex-tangle decay governed
by Eq. (20) to a self-consistently coupled decay limited by
the normal-Quid viscosity.

The interpretation offered here may seem somewhat
speculative, but it allows one to construct a very simple
one-scale model which reproduces many of the features
we observe. We assume Eq. (20) to apply, but now inter-
pret v„and v, , as representing the typical magnitudes of
the random fields. The superAuid velocity is affected on'y
by the mutual friction force
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while the normal Quid is a6'ected both by mutual friction
and by viscosity:

p„(dv„jdt) = p,—~aL (v„—v, ) —gv„jd (25) 10-
The last term is an estimate for qV' v„, d representing the
typical scale over which U„varies. It could represent the
scale of normal-Quid turbulence or the e6'ect of the
viscous boundary in the channel. It is essentially an ad-
justable parameter, but should bear some reasonable rela-
tion to the channel size D in order for the argument to
make sense. We now start Eqs. (20), (24), and (25) off
from an initial state in which I. is assigned a value cor-
responding to some initial driving velocity. A large out-
of-balance value comparable to this driving velocity is as-
signed to U„while U„ is set equal to zero. In the actual
computations we have set the initial value of u, equal to
the rms sum of the driving velocity components v„and
U„and we have used d =D/15. Our results are not par-
ticularly sensitive to these choices, but it does appear to
be important to put the out-of-balance motion into the
superfluid component. The computation (Fig. 19) then
exhibits the predicted entrainment of the two velocities,
and gives rise to a well-defined crossover in the vortex-
tangle decay. Under certain circumstances the equations
give rise to an overshoot e6'ect as seen in Fig. 19. We
have not observed this effect, but it is interesting to note
that such eFects were observed by Vinen. ' These simple
equations are surprisingly successful in modeling the ob-
served behavior. Figure 20a shows data taken by starting
from various initial power levels at 1.9 K. It can be seen
from Fig. 20b that these measurements are, in fact, semi-
quantitatively reproduced. We have also obtained
waiting-time decay curves at various temperatures down
to 1.4 K. These represent a significant additional test of
the model equations, since e varies by a factor of 4 and

pip„by a factor of 6 over this temperature range. As il-

lustrated in Figs. 21(a) and 21(b), the same kind of semi-

E

0 I I

0 25 50 75 0 25 50 75 100
DECAY TIME (s)

FICs. 20. (a) Modified line-length density vs decay time mea-
sured at 1.9 K for three different initial states. The initial heat
flux densities are 0.065 Wcm (triangles), 0.108 Wcm (cir-
cles), and 0.237 Wcm (squares). (b) Predictions of the cou-
pled equations (20), (24), and (25) for the same conditions, com-
puted as discussed in the text.

quantitative agreement is obtained without any addition-
al adjustment of parameters.

Equations (20), (24), and (25) cannot be taken very seri-
ously as a description of what is going on in our channel.
It is not clear what the actual Qow states are, what the
choice of d signifies, or why putting all of the initial
motion into the superQuid velocity field gives the best fit
to the data. Nevertheless, the qualitative success of these
equations in predicting not only two distinct regimes of
decay, but also the rates of decay, the location of the
crossover point, the dependence of the decay shape on
the initial condition, and the variations of the decay
curves with temperature supports the correctness of the
basic physical idea. We wish to point out that our obser-
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FICx. 19. Model calculation corresponding to the experimen-
tal conditions of Figs. 17 and 18. Note how quickly v„and u,
become substantially entrained. The initial values of u„and u,
are indicated by dots.
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FIG. 21. (a) Modified line-length density vs decay time for
various temperatures. The temperatures and initial heat flux
densities are 1.9 K and 0.065 Wcm (triangles), 1.6 K and
0.065 Wcm (circles), and 1.4 K and 0.043 Wcm (squares).
(b) Predictions of the coupled equations (20), (24), and (25) for
the same conditions, computed as discussed in the text.
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vations have wider significance than just the resolution of
an old puzzle in vortex-tangle dynamics. Suppose the
superAuid is made turbulent in the conventional macro-
scopic sense, that is, by stirring it or by pumping it rapid-
ly through a pipe. Although this kind of turbulence is of
considerable interest both from a fundamental and a
technological standpoint, very little is known about it.
Pressure drop measurements made on high-velocity
superAuid transfer through relatively large pipes show
classical behavior, ' and it has been asserted that macro-
scopic turbulence in superAuid He is indistinguishable
from classical turbulence. The notion here is that a vor-
tex tangle is present and that the resulting mutual friction
couples v, and v„ together so strongly that they move as
one Quid. Of course, if these two components of the
motion were indeed locked together, there would be no
relative motion to sustain the vortex tangle. More funda-
mentally, v, and v„obey different equations, and, in par-
ticular, v, can exhibit macroscopic vorticity only as a
consequence of long-range correlations in the vortex-
tangle structure. The vortex tangle, however, has its own
internal dynamics. Thus, it makes more sense to think in
terms of a new dynamical state in which macroscopic
random motions in v, and v„ interact strongly through
the mutual friction, while at the same time the tangle mi-
crostructure is maintained by the mismatch between
these two macroscopic components of the motion. For
want of a better name, we call this new state coupled tur-
bulence. It presumably represents neither classical tur-
bulence nor the simple vortex tangle, but must rather be
thought of as a self-consistent, strongly interacting com-
bination of the two. The results we have reported, quali-
tative as they are, are the first to give a clear indication
for the existence of such a state. It is worth pointing out
that the coupled-turbulence state produced in channel ex-
periments is apparently rather weak. The method of
plotting we have chosen in Figs. 17—19 somewhat ob-
scures the fact that L has decayed to only a few percent
of its original value by the time the crossover occurs. In
contrast, it is interesting to note that the ultrasonically
generated vortex tangle of Ref. 3 does not show a cross-
over, but decays anomalously slowly right from its initial-
ly high line-length density state. Thus, ultrasonic agita-
tion seems to produce steady-state coupled turbulence
directly, and with a much higher intensity than is
achieved in our channel. It should prove of considerable
interest to study these issues further and to reinterpret
previous experiments from our new point of view.

D. Other observations

One of the unanswered questions in superAuid dynam-
ics is how the vortex-tangle state is initiated. Vortex-
vortex reconnection allows quantized vortices to multi-

ply, and thus permits the tangle to be initiated from a few
remanent vortices which may be there to start with.
There is some evidence' ' that such vortices are always
present, pinned metastably between irregularities on the
channel walls, and it has recently been shown how a few
such vortices can interact to create and maintain the

vortex-tangle state. The relevance of these conceptually
satisfying ideas to actual observations, however, remains
largely unexplored. In contrast to the fully developed
limit, where theory and experiment now seem to agree in
every important respect, it is proving more difficult to un-
derstand the rather complicated properties of the onset
regime. Some key ideas may still be missing, and it is in
this spirit that we report the following additional qualita-
tive observations.

First, we note from Fig. 17 that the recovery curves
eventually saturate, typically after the vortex tangle has
been allowed to decay for more than about 30 min. In
other words, the apparent vortex line-length density de-
rived by fitting Eq. (20) to these curves does not decay all
the way to zero. It may be of interest to note that the sat-
uration value of L obtained in this way is on the order of
10 cm, which is on the order of the critical line-length
density found by Tough and co-workers. ' It may also be
relevant that it is comparable to the remanent vortex line
density estimated by Awschalom and Schwarz, ' and that
the time required to reach it is of the same order of mag-
nitude as they observed. From the theoretical point of
view developed in Ref. 7, however, it does not seem that
the vortex tangle can develop homogeneously from an in-
itial distribution of pinned vortices. Furthermore, Tough
and co-workers do not, in fact, find that L saturates at
the critical value, but that it drops abruptly to zero there.
We suspect therefore that the saturation of L we observe
represents a low level of ambient vortex turbulence in our
Dewar, arising from the effects of heat leaks, the bath re-
gulation heater, and the experimental heaters. Some sup-
port for this is provided by the observation that the am-
bient value of L becomes considerably larger as T be-
comes smaller. If this picture is correct, then a true sub-
critical state is normally achieved only in smaller chan-
nels, where the critical line-length density is much larger
than any ambient contamination.

We feel it not unlikely that all large-channel experi-
ments, including those of Vinen' and of Donnelly and
co-workers, ' are subject to this ambient effect, and that
this is the reason why turbulence is always observed to
grow homogeneously in such experiments. In contrast,
when channels only a factor of 10 smaller are used, the
vortex-tangle state is found to develop by means of prop-
agating fronts originating at the channel ends or at spe-
cial interior points of the channel. ' We have spent con-
siderable effort in trying to observe propagating turbulent
fronts, switching on the heater power after the system
has been allowed to settle for a very long time. Those
efforts have been unsuccessful. Even placing an extra
heater just outside the channel inlet such as to generate a
large amount of preexisting vorticity there did not give
rise to such a front. The sole effect that could be
identified ~ this case was the diffusion of some of this
vorticity into the T3-T4 region, leading to an earlier rise
of the turbulence there. We conclude that the propaga-
tion of turbulent fronts in large channels such as ours is
too slow a process to compete with the growth of the vor-
tex tangle from its ambient level, and that little can be
learned about the initiation of the vortex tangle by doing
experiments in such a geometry.
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FIG. 22. Growth curves measured between T1 and T4 at
T = 1.9 K. In this case U„, was changed from various very low
initial values to a final value of 0.92 cms . The starting values
of U„, are (a) 0.00, (b} 0.018, (c) 0.028, (d) 0.037, (e) 0.055, (f)
0.064, (g) 0.074, and (h) 0.106 cm s

FIG. 23. Growth curves measured in various sections of the
channel when the initial U„, is 0.037 cms . (a) T1 to T2, (b) T3
to T4, and (c) T2 to T3. Curve (d) is measured between T1 and
T4, and has been offset by 1.5 pK. Note that the region near the
heater develops first, the region near the inlet some time later,
and the region in the center soon after that.

Finally, in attempting to test the ambient. -turbulence
hypothesis we have noted an interesting efFect, which
may have some relevance to another peculiar feature of
the onset regime —the so-called TI-TII transition. Fol-
lowing its early observation by Brewer and Edwards,
extensive studies by Tough and co-workers ' have es-
tablished that, at least in many situations, vortex tur-
bulence first appears in an atypical, low-level state not
well described by vortex-tangle theory. Only at a consid-
erably higher value of v„, does it suddenly switch over
into the true vortex-tangle state. There is no explanation
for this very unusual phenomenon of an apparently
discontinuous transition between distinct turbulent
states.

Following earlier authors, we have performed measure-
ments where, instead of letting the turbulence decay
down homogeneously before switching the heater back
up to its original value, we begin by applying a constant
low level of heater power for a long time and then switch
the heater up. The idea is to generate a family of curves
similar to those in Fig. 16, and by doing the same kind of
analysis on the growth curve, to determine the starting
steady-state vortex-line density as a function of driving
velocity at these very low levels that are not otherwise
observable. In attempting this, however, we encounter
the unexpected situation shown in Fig. 22. There is now

a range of initial conditions, above what we take to be the
ambient level, where the growth of I. takes on a very
different form from that predicted by Eq. (20). In exam-
ining how the growth occurs in various parts of the chan-
nel, it becomes obvious that this peculiar behavior is, in
fact, due to nonuniformity of the starting steady-state
vortex distribution along the channel. Figure 23 can
reasonably be interpreted as showing that, in fact, each
section grows in accordance with Eq. (20), but that the
region near the heater starts out from a state of much
higher line-length density. We conclude that, at very low
steady-state driving velocities, just above the critical ve-
locity, the line-length density is distributed quite nonuni-
formly along the channel. Whether this is a consequence
of channel end effects (as seems likely) or whether there is
an inherent spatial instability in the turbulence is unclear
at present, but it leads to the intriguing speculation that
the TI state may be a spatially patchy precursor to the
homogeneous TII state. In this connection, it is interest-
ing to note that in our experiment the transition to the
homogeneous behavior occurs at a U„, of about 0.06
cm s '. The scaled velocity for the TI-TII transition ob-
served previously in much smaller channels is of order
0.1 cm s . This is su%ciently close to be intriguing and
suggests that further studies along this line are desirable.
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