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We have investigated the competing roles of intralayer s-wave and interlayer BCS-like pairing in
determining the c-axis versus ab-plane energy-gap anisotropy in layered superconductors with N =1,2
conducting planes per unit-cell edge s. For N = 1, intralayer s-wave pairing leads to a conventional order
parameter (OP) Ao with a transition temperature ( T, ) value T,o and isotropic energy gap 2~60~. For in-

terlayer pairing, the four-vector gap function 63(k, ) contains a singlet OP 6, and a vector triplet OP h,„
with corresponding normalized gap functions &2cosk, s and &2sink, s. Since 6, and 6, have identical
T, values ( T„=T„), the free energy is minimized when ~A, ~

= ~h, ~, and the resulting gap 2~6~ is found
to be isotropic. However, 2~ 6

~
is completely incompatible with 2~ Ao ~. For X=2, there are two intralayer

pairing OP's 50 and 6i, and two interlayer four-vector gap functions 63(k, ) and 62(k, ), all of which

could contribute to measurable quantities in the Gaussian-fluctuation regime above the highest T, value.

However, interband pair breaking causes 6, and 52 to vanish below the maximum T, value. Of the two

singlet OP's in 63(k, ), the OP 6, has the higher T, value, T„,and the second singlet OP can be neglect-
ed. The triplet OP b, , has the T, value T„~T„. For T,o) T„, the gap is just 2~DO~. For T,o(T„,
b,0=0 and the gap 2~6.(k„T)~ is anisotropic. There are two regions of the parameters with different

gap-anisotropy behavior. In region I, the gap is always nodeless, and is nearly pure singlet for weak cou-

pling. In region II, the gap has a pair of nodes near to T„, but is nodeless at low T, as ~b, , ~AO. For
T„)T,o) T„, the gap 2~ 6(k„T)

~
is anisotropic, nodeless at low T, and could on rare occasions involve

Do&0, in addition to 6,%0. In any event, the gap is the same on both of the quasiparticle bands. Our
results are discussed in terms of recent far-infrared-reAectance, Raman-scattering, and point-contact-
tunneling experiments. Additional experiments to clarify the c-axis versus ab-plane gap anisotropy and

the microscopic pairing mechanism are suggested.

I. INTRODUCTION

Recently, there have been a number of measurements
in various high-transition-temperature ( T, ) superconduc-
tors that have the potential of giving information regard-
ing the symmetry of the superconducting energy gap 26
and the related order parameter(s) (OP's) in those materi-
als. Measurements' of the penetration depth A,(T) in
YBapCu307 s (Y 1:2:3) for magnetic fields H

~ ~

c and H j c
gave results consistent with BCS behavior in both direc-
tions, suggesting that the gap is unlikely to exhibit nodes
at low temperatures T in that material, although it could
be anisotropic, the possible gap anisotropy being masked
by the pair efFective-mass anisotropy between the c axis
and the ab planes. Magnetization measurements at
different azimuthal angles of the critical fields parallel to
the ab plane in Y 1:2:3were consistent with little or no
effective-mass anisotropy of the pairs within the ab plane,
as well as no nodes of the gap within the ab plane.

Far-infrared-reAectance measurements on twinned
crystals of Y 1:2:3were suggestive of a lack of gap anisot-
ropy within the ab plane, but gave different apparent
"gap" values for electric fields E~~c and Elc, suggestive of
a gap that is larger within the ab planes than in the c

direction. More recent infrared-reAectance measure-
ments on an untwinned single crystal with E~~a and E~~b

showed the gap to be apparently isotropic within the ab
plane, with an apparent T=O magnitude 2b, lk Ti,i—8,
consistent with the twinned single-crystal infrared-
reAectance results. Similar results suggestive of c axis
versus ab-plane gap anisotropy have been obtained by
recent Raman-scattering experiments on untwinned sin-

gle crystals of Y 1:2:3.
Point-contact-tunneling ' measurements on Y 1:2:3

have been interpreted as giving a gap of roughly the same
value, but show an additional feature at lower energies
that has been interpreted as possibly arising from gap
anisotropy, the gap being different for wave vectors k~~c
and klc. Point-contact measurements at positions on
the planar surface and on the edges of Y 1:2:3 crystals
have also been interpreted as giving evidence for
c-axis versus ab-plane gap anisotropy. Recent super-
conducting-normal-superconducting (SNS') planar tun-
neling experiments on Y 1:2:3 were reported to exhibit
an ac Josephson effect. Other workers found' that pla-
nar SNS' tunneling into Y 1:2:3films oriented with the c
axis normal to the substrate surface did not give an ac
Josephson effect, whereas tunneling into Y 1:2:3 films
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with the a axis normal to the substrate did result in the
Shapiro steps characteristic of the ac Josephson effect. In
addition, NMR experiments on Y 1:2:3 using ' 0 (Ref.
11) and Cu (Ref. 12) showed no evidence of a Hebel-
Slichter peak in the Knight shift, and a Cu Knight shift
exhibiting a different T dependence for the Cu ions on the
Cu-0 chains from those on the Cu-0 planes, consistent
with c-axis versus ab-plane gas anisotropy. The magni-
tudes of the low-T Knight shift were found to be incon-
sistent' with purely triplet superconductivity.

A smattering of results for other high-T, superconduc-
tors is also available. Angular resolved photoemission re-
sults' for BizSr2CaCuz08+ (Bi 2:2:1:2), in addition to
showing a clear Fermi edge on the holelike Cu-0 bands
(and on the electronlike Bi-0 band for one x value stud-
ied), are consistent with little, if any, gap anisotropy
within the ab planes, the gap appearing to be essentially
given by 2b, /k~T, —8 at all of the points in reciprocal
space investigated to date. '" The k, dependence has not
yet been investigated' by sampling different outgoing en-
ergy values at fixed k„and k . Point-contact-tunneling
measurements' on La2 Sr Cu04 were interpreted as
arising from an isotropic gap. In the electron-doped su-
perconductors Nd2 Ce Cu04 and Nd2 „Th„Cu04,
point-contact' and far-infrared-reAectance' measure-
ments gave different apparent gap values, which were in-
terpreted' as possibly arising from c-axis versus ab-plane
gap anisotropy. However, more recent tunneling experi-
ments' are consistent with an isotropic gap and strong-
coupling electron-phonon BCS behavior.

Whether the gaps in the above materials are indeed an-
isotropic in the above fashion can only be decided by re-
peated experiments in different laboratories on high-
quality, untwinned single crystals. If, as the consistency
of the experiments improves, some of the materials are
found conclusively to have a c-axis versus ab-plane gap
anisotropy, it would be helpful in interpreting the data to
investigate the possible origin of such anisotropy.

In this work, we have investigated the competing roles
of inter- and intralayer pairing with N=1, 2 conducting
layers per unit-cell edge s. We find that, for s-wave in-
tralayer pairing only, the resulting gap is isotropic, even
in the presence of single-particle interlayer hopping pro-
cesses, which includes Josephson tunneling. Hence, for
substantial gap anisotropy between wave vectors in the c
and ab-plane directions to occur, the pairing must in-
volve a spatial separation in the c direction of the paired
fermions. Furthermore, such substantial gap anisotropy
can only occur for N ~ 2, as the gap is always isotropic
(or nearly so) for N = 1, even when arising from interlayer
pairing.

In Sec. II, we present and discuss the model, diagonal-
ize the single-particle Hamiltonian for N = 1,2, and solve
the resulting mean-field equations. In Sec. III, we consid-
er the N= 1 case, solving for the gap functions and the
OP's. We then generate the effective Ginzburg-Landau
(GL) free energy, and minimize it to obtain the gap. In
Sec. IV, we consider the N=2 case, obtaining the OP's,
their T, values, and their associated normalized gap func-
tions. In Sec. V, we analyze the GL free energy for
N=2, and the resulting gap as a function of the material

parameters. In Sec. VI, we discuss our results. We also
suggest experiments to help clarify our understanding of
the high-T, materials.

II. THE MODEL

We propose a model for the high-T, superconductors
that is sufficiently general so as to encompass all of the
known materials that are superconducting, and which
specifically addresses the issue of c-axis versus ab-plane
gap anisotropy. We assume the quasiparticles (or
quasiholes) are fermions, and that the normal state just
above T, for the superconducting materials is a Fermi
liquid. ' ' ' The sharpness and the magnitude of the ob-
served Fermi edge in the Bi 2:2:1:2photoemission experi-
ments, ' ' plus the remarkable agreement of its location
with band-structure calculations, convinces us that a
true, rather conventional Fermi surface exists. A prelim-
inary report ' of de Haas-van Alphen measurements in Y
1:2:3 is also supportive of the sharp Fermi surface pic-
ture, as are positron-annihilation experiments. ' Al-
though, at present, a complete microscopic theory for the
linear quasiparticle inelastic lifetime has not been
presented, we believe that this effect is, at best, only mar-
ginally related to the magnitude of the discontinuity in
the Fermi edge, which we assume to be conventional.

The layers between the conducting Cu02 layers are as-
sumed to be insulating. This assumption is supported in
Y 1:2:3by far-infrared-reflectance measurements for E~~c
and by the T dependence of the normal-state resistivity
tensor. In Bi 2:2:1:2, the large normal-state-resistivity
anisotropy demands that the Sr-0 and Ca-0 layers be
insulating. The Cu-0 chain layer in Y 1:2:3and the Bi-0
layers in Bi 2:2:1:2may count as additional conducting
layers, as discussed below.

We assume there are N ~ 1 identical conducting layers
per unit-cell edge s in the c direction, with N —1 inter-
layer spacings d, and one interlayer spacing
d'=s (N 1)d, res—pecti—vely. The quasiparticles propa-
gate freely with effective mass mo within each of the N
conducting layers within the M unit cells, and tunnel (or
hop) with effective matrix elements JI and J2 between ad-
jacent conducting planes within the same and neighbor-
ing unit cells (with separations d and d ), respectively.
This assumption is strongly supported by band-structure
calculations, magnetic torque experiments, and mag-
netization measurements of the azimuthal dependence of
the critical fields parallel to the layers, which are con-
sistent with a corrugated cylindrical Fermi surface, with
no significant anisotropy within the ab planes for T T, .
In any event, W„/W~~ &&1, where W~ and W~~ are the
bandwidths for propagation perpendicular and parallel to
the layers, respectively.

Within a given layer, the quasiparticles interact via the
s-wave BCS pairing interaction A.o. Quasiparticles on ad-
jacent layers interact via BCS-like pairing interactions A,

&

and A,2, for pairs on neighboring layers within the same
and adjacent unit cells, respectively. This is pictured for
N=2 in Fig. 1. For N=1, there is no intracell interlayer
hopping or pairing, so we set JI =d =A, , =0.

Since a proper treatment of the role of the magnetic
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(lb)

where 4'(r) is a 2M%-dimensional Nambu spinor with
spinor component 4 „(r) which annihilates a quasiparti-
cle at position r on the nth layer in the jth unit cell, p(r)
is an MN-dimensional density operator with component
p.„(r)=4 „(r)%'.„(r),

g (r) = [go(r)1+J)5)+Jq5q]ao, (lc)

(ld)

and

go(r) = —V /(2mo) EF, — (le)

where E~ is the Fermi energy, o-o is the Pauli spin identi-
ty matrix, and 1, 5&, and 52 are matrices of rank NM with
elements given by

(1)g„=5"5„„,, (2a)

and

(5, )jj„=5 '(5„„+,+5„„,),
~ ~ ~

(52)nn' 5j ',j 15+'15nnN+5j' j—15n'N5n1

(2b)

(2c)

This model is similar to those considered previously by

d'

FIG. 1. Cross-sectional view of an N =2 crystal section. The
quasiparticles hop with matrix elements J& and J2 between
neighboring layers separated by d and d'=s —d, respectively.
The intra- and interlayer pairing interactions A,o, A, &, and A,& are
also pictured.

field will be given in a subsequent publication, we neglect
it entirely, except in the Appendix, where we have kept
the Zeeman splitting of the quasiparticle energy for fu-
ture reference. We use units in which 6=k~ =c =1 in
the following. This model and a compact summary of
our results have been presented elsewhere.

The quasiparticle Hamiltonian is thus taken to be
H=HO+ V, where

IIo=s Jd~r@t(r)g (r)4(r), (la)

V=-,'s J d rp (r) Pp(r)',

other authors. With three exceptions, ' ' none of
those authors calculated the energy gap, however, as they
were all concerned with the T, behavior. The N=1 ver-
sion of this model was studied by Efetov and Larkin
and by Klemm and Scharnberg, who calculated the
upper critical field H, 2, including intralayer elastic
scattering. Gulasci, Gulasci, and Pop and Schneider
and Baeriswyl also studied the N=1 version of this
model in order to determine if the interlayer pairing
would enhance the T, value obtained from intralayer
pairing. A generalization to N & 1 of their results was
made by Ihm and Yu. They concluded that the in-
tralayer and interlayer OP's would mix linearly, raising
the T, value above that of the maximum bare T, value.
This is questionable, as pointed out recently by Suwa,
Tanaka, and Tsukada ' (STT), and in a treatment that
neglected the important triplet OP by Schneider, De
Raedt, and Frick. STT correctly showed that such a T,
enhancement can only occur if the intralayer conduction
band violates particle-hole symmetry (i.e., the linear cou-
pling between the intra- and interlayer OP's is propor-
tional to the derivative of the density of states at the Fer-
mi energy). Such a scenario could arise for the tight-
binding N = 1 intralayer band STT considered, for certain
band fillings. However, their results led to an anomalous
azimuthal dependence of H, 2, which is contrary to experi-
ment. ' In addition, STT included both intra- and inter-
layer pairing exchange terms in their Harniltonian.
While exchange is to be expected for on-site intralayer
pairing, because it arises from the Pauli exclusion princi-
ple, it is not appropriate for interlayer pairing. Only in
the unlikely situation that the interlayer pairing were of
magnetic origin could it exhibit any significant spin
dependence. Our model is easily generalized to arbitrary
forms for the intralayer propagation energy go(r), which,
for W'~/W~~ ((1,leaves our results unaltered.

Tesanovic studied the N=1 version of this model,
adding a term due to interlayer pair hopping (or Joseph-
son scattering). Since interlayer pair hopping is a selec-
tion of processes arising from intralayer pairing plus in-
terlayer single quasiparticle hopping, the inclusion of
such an additional interaction amounts to overcounting.
More extensive overcounting in the Hamiltonian was
made by Bulaevskii and Zyskin. In addition, interlayer
pair hopping implicitly violates time-reversal invariance,
as the pairs must propagate in the same direction during
the interlayer hopping. Similar models were studied by
Appel and Fay for N=l and by Jha for N&1. Since
Appel and Fay did not discuss the T, enchancement due
to OP mixing, their results are essentially correct for
their model. Jha's results and those of Birman and Lu
were questionable, as they did not properly diagonalize
the free energy. Since the crystal is periodic in the unit-
cell edge s, one must first Fourier transform in the layer
index, and then diagonalize the resulting N XN matrix,
resulting in the T, value corresponding to the average
pairing interaction in the conducting layers in the unit
cell. We note that experiments on the Tl compounds
reveal that T, is not just a function of N; but depends
upon many factors.
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The model described by Eq. (1) could arise physically
from a variety of possible mechanisms, prominent among
which is the electron-phonon interaction. While
numerous authors have proclaimed the impossibility of
phonons playing a signi6cant role in the mechanism for
high-T, superconductivity, recent experiments lead
us to suspect that this conventional wisdom may be mis-
guided. The phonon dispersions have been determined
for nonsuperconducting La2Cu04 (Ref. 40) and La2Ni04
(Ref. 40}, and for superconducting La2 „Sr,Cu04,
twinned Y 1:2:3, ' and Nd~ Ce CuO (Ref. 42) by
neutron scattering. In Y 1:2:3 (Ref. 7) and
Nd2 Ce Cu04, ' tunneling measurements of the elec-
tronic density of states yielded apparent strong-coupling
anomalies, which appear to be consistent with the peaks
in the phonon density of states obtained from neutron
scattering. In addition, the apparent lack of an appre-
ciable isotope effect in Y 1:2:3 cannot be a valid reason
for elimination of phonons as the mechanism, as demon-
strated dramatically in the ' 0 isotope experiments on
La2 Sr Cu04. Similar ' 0 isotope experiments on Y
1:2:3 doped with Pr are also suggestive of a prominent
role for the electron-phonon interaction in that system.

Velocity-of-sound measurements show strong ano-
malies at T, in La2 Sr Cu04 and in Y 1:2:3. Ion-
channeling measurements on Y 1:2:3 have been inter-
preted as showing an anomalous change in the Debye-
Waller factor at or near to T, . This interpretation is sup-
ported by recent neutron-scattering measurements of
the Debye-Wailer factor of the Cu ions in Bi 2:2:1:2,
which show a kink in the T dependence of the Cu
Debye-%aller factor at T„ the sign of which is polariza-
tion dependent. More recent neutron-scattering experi-
ments showed a dramatic broadening of a phonon
linewidth at T, in Bi 2:2:1:2.Together these experiments
suggest that phonons and/or charge fluctuations are
strongly involved in the superconducting transition.

We note that the short coherence length g, (0) normal
to the layers that has been inferred ' ' does IMt limit
the range of the pairing interaction to this value. Rather,
it merely reQects the low value of the Fermi velocity
along c, which depends upon J„J2.

I f„(k), gt p(k') ] =5„„,5„„.5 p5 (k —k'),

G p(k, r r') = ——(T[P (k, r)Pp(k, r')]),
F p(k, v r')= ( T—[g (k, r)Pp( k, r')])—,

(Sa)

(Sb)

etc. Letting the Pauli matrices p; and cr; (and the identi-
ty matrices po and oo) represent the usual Green's func-
tion components (i.e., G, F, F, and —G ) and the quasi-

ky

=kx

kzs o

etc.
For N = 1, Ho is diagonalized by the above procedure

alone, leading to

Ho=(MsL L )
' g 4 (k )g (k }%(k),

k

where 0'(k ) =%&(k ), and

g (k ) = [go(k)+ 2Jzcosk, s ]oo,
where go(k) =k /(2mo } Ez. T—he Fermi surface is given
by go(k~)+2Jzcosk, ~s =0, which is a corrugated
cylinder pictured in Fig. 2(a). The above Fourier trans-
formation is then applied to the operators in the interac-
tion V.

For N = 1, the components of the temperature-ordered
Green's function matrix in the Heisenberg representation
are de6ned in the usual fashion,

III. ABSENCE OF GAP ANISOTROPY FOR N = 1

We now return to the Hamiltonian [Eq. (1)]. The sin-
gle quasiparticle Hamiltonian Ho may be diagonalized
for arbitrary J„Jz, N by employing the periodicity of
the lattice in the c- axis direction, as required by Bloch's
theorem,

O'J„(r ) = (MsL„L„)

X g exp(ik r).
k

X exp [ik, [js+( n —1)d ] ]%„(k), (3)

kzs o—

kF
kF+

where n ~N, k—:(k, k, ), L„L~ is the area of the ab
planes, and the Nambu spinor %„(k) contains elements
P„(k ) for a =+, which satisfy the usual fermion an-
ticommutation relations,

FIG. 2. The Fermi surface in the first zone —m. ~k, s ~m. is
pictured. The corrugations in the c-axis direction are exaggerat-
ed for clarity. (a) %= 1, (b) N =2.
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particle spin, respectively, and using the standard mean-
field decoupling procedure for the interaction terms, the
inverse temperature Green's function is a 4 X4 matrix of
the SU(2)XSU(2) form,

(k, co) —lci3poo 0 [go(k) +2J2cosk 5 ]p30 o

(~—oP i ~o'O2)~z

where co represents the Matsubara frequencies, Ao, Ao',

and 6&, 6&' represent the real and imaginary parts of the
intralayer pairing QP 60 and the interlayer pairing gap
functions 63 . These are given for weak coupling by

d k'
Ao =

g T y I 3 AQTr[(p] ip2)o'pG ( k Q) ) ](2'�)
I}

(7a)

50
b,o

=A.OX(0)m. T
2]1/2 (Sa)

where X(0)=no/(2ms ) is the single quasiparticle density
of states at the Fermi energy. The bare transition tem-
perature T,o (at which ho becomes nonvanishing in the
absence of the interlayer gap functions) is given ' by
the weak-coupling BCS formula

interlayer pairing interactions arise in general from dis-
tinct microscopic processes (including dift'erent phonon
density-of-state weighting factors), they generally have
distinct high-frequency cutofFs co~~ and ~~, respectively.
We note that 630(k ) 63](k ) and 633(k, ) are triplet in-
terlayer gap functions, as their spin configurations are
represented by the symmetric matrices o.o, o „and o.3.

We first consider the case of purely intralayer pairing
(A, =OWED). For this case, the only OP is 60, which is in-
dependent of k, . Even in the presence of interlayer quasi-
particle tunneling (which includes Josephson tunneling),
the gap 2lho for intralayer s-wave pairing is isotropic.
For this OP, the Green s function matrix is readily in-
verted, as in textbooks. " After integration over go(k')
and k,', we obtain the standard BCS gap equation for 60,

XTr[(p, ip2)o —C(k', co)],
1 =k()N(0)in(2ycoll/~T, O) (Hb)

(7b)

V(k„k,') =A2cos[(k, —k,')s]

is the Fourier transform of the mean-field interlayer pair-
ing interaction, and J d k= Jd k I '& dk, In Eq. (7. ),
we have separated the singlet functions 50 and 632(k, ).
Although one couM. combine 60 and 632 in one equa-
tion, 3 the orthogonality of b,o with 632(k, ) over the zone
—~/s & k, & ~/s allows us to write the gap-function
equations as in Eq. (7). In addition, as the intralayer and

I

where y = 1.78 is the exponential of Euler's constant.
Next, we treat the case of purely interlayer pairing, set-

ting A,o=OWA, 2. The interlayer gap functions are best
treated as components of a four-vector gap function
53(k, ),

63(k, ) =(ih3O(k, ),b3, (k, ), b3~(k, ), 633(k, )) .

In this notation, 630(k, ) is timelike, whereas the remain-
ing gap functions are spacelike in the standard relativistic
four-vector representation.

In the Appendix, we show that the four gap-function
equations for the 63 are best written as a single four-
vector gap-function equation. To order 6 3, we find

&3(k, ) = —,'x(0)» g J dk,'V(k„k,') — —(2~3f~31'—~ 3 ~ 3)/(21~i') (10)

where V(k„k,') is given by Eq. (7c), and 53 is the com-
plex conjugate of 63. Inside the large parentheses on the
right-hand side, b,3=63(k,'). The standard four-vector
scalar products are de6ned in the Appendix.

It is useful to write the interaction V(k„k,') as
6))(k, ) = [63O(k, ) —i633(k, )]/&2

=&25, sink, s .

(12c)

V(k„k,.') =A2(cosk, s cosk,'s+ sink, s sink, 's ) .

For antisymmetric pair wave functions, b,32(k, ) is even in
k, and the remaining b, 3 (k, ) are odd in k, . Hence,

63&(k, ) =&2b,,cosk, s, (12a)

A~, (k, ) ='&2h, osink, s,
Kt t(k, ) = [330(k, )+i333(k, )]/&2

In Eq. (12), 6, and the 6, are complex quantities, in-
dependent of k, . We de6ne 6, to be the interlayer singlet
OP. We then define the interlayer triplet vector OP to be

m=+, 0, —
e S, (13)

where re ] forms an orthonormal vector set. The sub-
script m of 6, is the magnetic quantum number of the
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spin-1 OP.
The factors &2 on the right-hand side of Eq. (12) in-

sure that the gap functions (&2cosk, s and &2sink, s ) are
properly normalized over the first zone Ir—ls ~ k, ~ Ir/s.
These normalized gap functions are orthogonal to each
other and to unity (the gap function for intralayer pair-
ing) within the first zone. We note that each of these two
normalized gap functions vanishes for a particular value
of k, within the first zone, which might lead one naively
to expect the resulting energy gap to exhibit a line node.
However, such a scenario is forbidden on energetic
grounds, as shown below.

The bare transition temperatures T„and T„ for the
singlet and triplet QP's are found from the part of Eq.
(10) linear in the appropriate component of A3, leading to
the result ' T„=T„=T,3, where

1=—,'X2X(0)ln(2ycoi/IrT, 3) . (14)

+s —+x —= —,'&(0)(f3+&I3o» (15a)

where f3 is the part with Do=0, and 5f3O includes all b, o
contributions. In the GL regime, we find, for weak cou-
pling,

One might think this result ( T„=T„) is not so
significant, as the nodal structure of the interlayer gap
functions is incompatible with nonmagnetic intralayer
impurity scattering. However, it has been shown previ-
ously that T„and T„are equally suppressed by elastic
intralayer nonmagnetic impurity scattering, at least in
the self-consistent Born approximation. Hence, the rela-
tion T„=T„holds, even in the presence of impurities, al-
though the form of Eq. (14) is modified to the standard
pair-breaking form.

The free energy may be obtained as a power series in
the various OP's from each of the components of Eq.
(10), performing the integrals over k,', and functionally
integrating ihe resulting equation for 6, with respect to
5, , and that for 6, with respect to 5,* . The free ener-

gy relative to the normal state is defined to be

f3 =(l 6, + lA, l
)ln(T/T, 3)

+I, I
3 la, l'+-,'[2(lx, ')' —Rc(a"'a')]

+ ~ [2ls, l'la, l' —Re(a,*'a,')]],
where bo = 7g(3)/[8(~T)2]. The coe%cients —,', —,', and —,

arise from the zone averages of 4cos"x, 4sin x, and
8cos x sin x, plus the functional integration of the gap-
function equations. The quantity bo is the standard GL
coefIlcient arising from IrTQ lcol /2.

It is easy to minimize f3 by considering its symmetry.
First of all, f3 is minimized when b, , and each of the
components of 5, are either in phase or ~ out of phase.
The resulting phase minimized f3 is then only a function
of

I L, I
and 4, I. We assuage

I A, I

=
I 4, I

/&x
=l4l/&2%0. The minimum fl value f3 = gt /—bo&

where t = ln( T /T, 3 ), and

X(x)= (x+1)
3(1+x )+2x

The absolute maximum of y(x) is —,', which occurs at
x = 1. Hence, lb, , l

= h, , and all three components of I,,
are equally probable.

It is important to note that, for this energetically
favored configuration, the actual energy gap 2lb,

l
is iso-

tropic, as we have

lb, (k, ) l
/2= lb, cos(k, s ) l

+ l~, sin(k, s)l'= l~l'/2,

which is independent of k, .
We now consider the possibility of A3 and Ao simul-

taneously nonvanishing. From Eq. (6), it is clear that b,o
and 63 can be treated simultaneously by letting
632~632+ ho in the determinant of 6 '. The full gap-
function equations for this general case are given in Eq.
(Al 1) of tllc Appendix. To cubic order II1 53~ alld Ao, wc
obtain

a,=,'x(o)sTx, y I '
dk,'

' —[a,(la, l'+2ls, ') —a,*(a',—2s'„)]/(21~1')—vr/s Cc)
co co

i)

(18a)

~3, (k. )=-,'&(0)» & I '
dk,'v(k„k,') -"—t2&3J(l&, l'+I&, l') —&,*,[&',+(I—»,, )&0]]/(21~ ')

17/s CO

(18b)

where the dk3 inside the square brackets are functions of
k,'.

Performing the integration over k,' and the appropriate
functional integrations, we find that the GL free energy is
given by Eq. (15a), where f3 is given by Eq. (15b) and

hf 30
=

I
~01'ln( T/T, o)

+bo I -,
'

I ~pl'+21 &pl'(
I &, I'+ I &, ')

+Re[ho'(4, —6, )]] .
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For T, o+T, 3, the assumption of b,o and b, both nonvan-
ishing leads to a contradiction. Hence, whichever gap
has the higher-T, value wins the battle, destroying the
other gap completely. At the special point T,o= T,3, the
choice of nonvanishing gap is arbitrary. In either case,
the gap is isotropic, with a BCS-like T dependence.

This result is in contradiction to recent results ' ob-
tained by omitting 6, Those workers ' found an an-
isotropic gap for T,3 )T o and concluded that the inter-
layer and intralayer OP's would coexist, causing a T-
dependent anisotropy. As shown above, however, their
solution does not minimize the free energy. First of all,
b,o and b,, are n. /2 out of phase. More important, 6,
conspires with b,, to give an isotropic gap 2~6, ~. Either
2~6,

~
or 2~ho~ is energetically favored over the pure sing-

let anisotropic gap (2~ ho+3/2h, cosk, s
~

) they con-
sidered.

Ho = (MsL L )
' g ql t( k )g„(k )0'( k ),

k

where

(21a)

ko(~ )pooo+ eJ( k )p3oo (21b)

p; and the identity matrix po are Pauli matrices
representing the band degrees of freedom, and

to be a four-vector with element Ps (k), where S=+
indexes the band and a=+ indexes the spin. The gs (k)
satisfy the fermion anticommutation relations

I (is (k ) 0 s'p(k )] ~kk'~ss'~ p

etc.
The transformed single-quasiparticle Hamiltonian Ho

is then diagonal,

ei(k, ) = (J, +J2+2J,J2cosk, s )'~ (21c)
IV. ORDER PARAMETERS
AND T, VALUES FOR %=2

%„(k) =exp[+i(t(k&, )/2][q+1(k )+qI(k )]/3/2, (20a)

where n = 1 (2) corresponds to the upper (lower) sign,

J2sin(k, d') —Ji sin(k, d )

(k,d')+ J,cos(k,
(20b)

For N=2, we again employ Eq. (3), setting n =1,2.
We let

The two band dispersions are thus go(k)+Ei(k, ). This
leads to two Fermi surfaces defined by go(k~+ )

+E1(k,i;+)=0, which are pictured in Fig. 2(b). As for
N = 1, the operators in V [Eq. (lb)] are Fourier
transformed, but for N=2 we must also rotate them [Eq.
(20a)] in order to diagonalize Ho.

For N=2, it is necessary to define the temperature-
ordered Green's-function components in the Heisenberg
band representation,

and define G ssP(k, r r')=(T[g—s (k, r)psp(k, r')]), (22a)

0++(k )

(k)
4'(k )—: (20c)

F ss.(k, r r'): (T[g—s (k&—r)itJs, p( k&r')]), —(22b)

etc. In the mean-field approximation, the inverse temper-
ature Careen's function is an 8 X 8 matrix of
SU(2)XSU(2)XSU(2) form,

I

~popo~o Ko(~)pro~0 el(k )p3p3o0 g (~~~pl ~i p2)pio2

3 3 3 3

X (~~pi ~ P2)P ~J X "X (~ JP1 ~~~J~P2)PkoJ (23)
i =2 j=O i, k=2j =0

iWk

where

d k'
, ~oTr[(pi —ip2)p;o 2G(k', oi)]

(2m )CO Q)
ii

(24a)

for i =0, 1, and

b;J(k, ) = —
—,
' T g I 3 V'(k„k,')Tr[(p, ip2)p;o J G(k', oi—)],dk'-,

(2m )
(24b)

dk' -„
&;~(k, )= ,' T g 3

V"(k„k—,'—)Tr[(p, ip2)J2; oG—(k', cg)],.
(2m )

(24c)
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for i =2, 3, where

V(k„k,') =A, ,exp[i[(k, —k,')rI+P(k, ) —P(k,')]]

+AzexpIi[(k, —k,')d' —P(k, )+P(k,')]]
(24d)

is the effective mean-field interlayer pairing interaction
obtained by the Fourier transformation plus the rotation,
and V' and V" are the real and imaginary parts of V, re-
spectively. The intralayer singlet OP's A0 and 5& are in-
dependent of k, . h0 and the interlayer gap functions
53.(k, ) are analogous to those for N= 1, but b, , and the
interlayer gap functions b,2 (k, ) arise from the pairing of
quasiparticles in diferent bands, as their band matrix
structures are represented by p, and p2, respectively.
The additional anomalous gap functions 52~(k, ) and

63J ( k, ) arise from mixed intra- and interband pairing
processes. Since V"(k,', k, ) = —V"(k„k,'), these gap
functions can only become nonvanishing from their cou-
pling to other nonvanishing gap functions. In this paper,
we neglect the 6;. completely.

The classification of these N=2 interlayer gap func-
tions is evident from the Pauli matrix structure of the
Careen's function matrix: singlet states (represented by
crz) are odd in the spin configuration, whereas the triplet
spin states (represented by pro, o

&
and o 3) are even in the

spin configuration. Those states odd in the band index
are represented by p2 and are not time-reversal invariant,
whereas those states represented by p0, p„and p3 are
even in the band index and are invariant under time re-
versal. The remaining degrees of freedom are implicit in
the k, dependences of the pair wave functions. As the
overall pair wave function must be odd under quasiparti-
cle exchange, the symmetry of the k, dependence of the
gap functions is as follows: 620, 62„523, and 632 are
euen functions of k„whereas 622 ~30 ~31 nd 433 are
odd functions of k, .

We first consider the N=2 case of purely intralayer
pairing (A, , =A2=0&Ao). For this case, the Green's func-
tion matrix given by Eq. (23) is readily inverted, as shown
in the Appendix. Expanding Eq. (A10) to order 5;, we
have

a,=-,'X~(0)sT y f" ak,'
' —(aolaol'+z, boa', +2z,a, la, l')/(21~1')—m/s CO

CO

(25a)

and

b, , = —,'A()N(0)sT g f dk,' —(z3h, ib, ii +z, b., bo+2z~b, , idol )/(2icoi )—m/s CO
CO CO

ii

(25b)

where

and

Ei( k,' )5=
co +Ei(k,')

z, =1—5,
z2=(1 —5)

z3=(1—5) (1—45),

(25c)

(25d)

(25e)

(250

and P(z) is the digamma function. Equation (26a) has
the standard pair-breaking form, with the function
is~(k, ) acting as the pair-breaking parameter. We shall
refer to this type of pair breaking as interband pair break-
ing. We recall from Eq. (23) that b,o arises from in-
tralayer s-wave pairing between quasiparticles in the
same band, but 6& arises from intralayer s-wave pairing
between quasiparticles in diferent bands. This difFerence
is evident in the band Pauli matrix structure, represented
by p0 and p&, respectively.

To leading order in J, /T, o,

= f Re[/( —,
'

)
—/[1/2+ig(x, T, , )]}, (26a)

where

g(x, T):Ez(x/s)/(2mT)— (26b)

describes a different type of pair breaking.
The bare transition temperature T,0 for the h0 OP is

obtained by linearizing Eq. (25a), which results in Eq.
(Sc). Similarly, the gap equation with only 60 nonvanish-
ing is obtained from Eq. (A10a) by setting b, , =0, result-
ing in Eq (Sa).

The bare transition temperature T, &
for the 5, OP is

similarly obtained from the linear term in Eq. (25b),

ln( T, , /T, o)

T, i /T, o= 1 —7g(3)(Jf +J2 ) /(2' T,o)

where g(z ) is the Riemann g function. Hence, T, &
(T,o,

unless J& =J2=0. In materials with two nearby CuO2
planes (e.g., Y 1:2:3)it is likely that J, /T, o)) 1, implying
T, , =0. As shown in the Appendix, even when T,&%0,
the nonvanishing A0 acts as a very strong pair breaker
upon 5&, driving its actual transition temperature T„
essentially to 0.

We now consider the case of purely interlayer pairing,
setting A,0=0. For this case the nonvanishing quantities
are 52j and 63j, as discussed above. As for the N=1
case, each of the two interlayer gap functions is a four-
vector,
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b2(k )=i(ih20(k ) b2i(k ) biz(k ) &23(k )) (27)

and b, 3(k, ) is defined by Eq. (9). The extra overall factor
of i in Eq. (27) implies that there is one spacelike gap
function 620,' the other three gap functions are timelike.

We first consider the cases of 62 and h3 separately non-
vanishing. From Eq. (A13) of the Appendix, the linear-
ized gap-function equations are g=(Ji/J2) (31a)

dependent even (S= + ) or odd (S= —) eigenfunctions in
V'(k„k,'). Cienerally, we have n+ =2, n =1. For the
special case J, =Jz, however,

~ g,+ ) =
~
P2+ ), so n+ = 1.

We shall write the eigenfunctions for J2 ~J
&

~ 0.
Forms for J, ~ J2 ~0 can be obtained by interchanging
JI with Jz and A, , and kz. We first define

b,3(k, ) = —,'N(0) Ts g I dk,' V'(k„k,')
b,3(k,')

7T/s CO

and

A, = ( A, , +A,~g ) /2 . (31b)

E2(k, ) =—,'N(0) Ts g J dk,' V'(k„k,')
K/S

(28a) Normalizing the odd eigenfunction, we obtain

~
u 3, (k, ) ) =&2J2sin(k, s ) /si(k, )

and

Ei(k,')z, (k,')
(28b)

where z, and V'(k„k,') are given by Eqs. (25c) and (24d).
Equation {28a) diff'ers from the linearized Eq. {10) (for
N = 1) only in the form of the interaction. Equation (28b)
also diff'ers from Eq. (10) due to interband pair breaking.
In addition, we note the similarity of Eq. (28) with the
linearized Eqs. (25a)»d (25b) fo«o and ~i.

The transition temperatures T,3 and T,2 for the 63 and
b.3 gap functions may be found from Eq. (28). Since most
of the interesting physics arises from the differences in
the T, 's for the various gap functions, we present our re-
sults in detail.

We note that V'(k„k,') can be written as

V'(k„k,')= g g A, , ~g, (k, )&(g, (k,')~,
1=1,2 S=+

where

Ilgwu+(k,

)) ] from I ~1ii+(k, ) &] . (32)

We then write the part of V'(k„k,') even in k„k,' in
terms of this basis. The resulting form can be diagonal-
ized by a unitary transformation, equivalent to a rotation.
The even eigenfunctions and eigenvalues are found to be

iu 3+„(k, ) ) =(a++b+cosk, s )/Ei(k, ), (33a)

A,3+„=( A, ++Z ) /2, (33b)

where the upper (lower) signs correspond to n = 1 (2),

(33c)

(31d)

To obtain the even eigenfunctions, we first employ the
standard Gram-Schmidt orthonormalization procedure
to obtain an orthonormal basis

i g,+(k, ) ) =cos[k, d +P(k, )], (29b) (= 1 —g, (33d)

~$2 (k, ) ) =cos[k,d' —P(k, )], (29c)

and where the
~ Pi (k, ) ) functions are obtained from the

above with the cosine functions being replaced by sine
functions. Using Eq. (21b), it is easy to show that

Z=(A, +2k, gg)'

S =(I+X /Z)'",

a =i &~+i &g/2. -

(33e)

(33g)

i/i (k, ) ) =[J,+J2cos(k, s)]/Ei(k, ),
~ q,+(k, ) &

= [J,cos(k, s )+J ]/E (k, ),
~ Q, (k, ) ) =J~sin(k, s )/si(k, ),

(30a)

(30b)

(30c)

We note that k3+, &A,32 and that A, 3+, A, ~, . All of the ei-
genvalues are real.

In this representation, V'(k„k,') is diagonal, as well as
separable in k, and k,',

nS

V'(k„k,')= y y A, „~u „(k,)){u „(k,')~ . (34)
~g2 (k, ))=J,sin(k, s)/Ei(k, )

=(J, /J, )ly (k. )& . (30d)

The ~g&—(k, )) are commensurate with the lattice. In
addition, ~pi+(k, )) and ~Pz+(k, )) are linearly indepen-
dent, but not orthogonal over the first zone ( —m/s, m. /s ).
Since ~1ij2 ) =(J, /J2)~g, ), these two functions are
equivalent. We define ns to be the number of linearly in-

S=+ n =1

Equation (34) is particularly useful for treating the states
invariant under time reversal for arb&trary X. For %=1,
Eq. (11) may also be written in this form, with
n+=n =1, A, 3+i=i,&&=X2/2, and ~u3&(k, )) given by
v'2cosk, s and V2sink, s, respectively.

We then write the b, 3.(k, ) in terms of this orthonormal
basis,
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and

n=1
(35a)

1 =A3„N(0)a ( T,3„),
where

(36a)

a(T)=ln(2yroilmT) . (36b)

Since X31 ~32 and A, 31 ~31, we have T 31 Tc32

T,» ~ T,31. We let T„=T,31 and T„=T,3, be the higher
singlet and the triplet T, values, respectively. Hence,
T„)T„,the equality holding only for special cases in the
parameter space. For J, /Jz & 1, these special cases are
(a) J, /J2=1, (b) A,2=0, and (c) J, =O, and A, z/A, , & —,'.
The fact that T„ is otherwise greater than T„ is the most
important difference between the X= 1 and 2 cases. The
OP's corresponding to these T, values are defined to be

5321 and h, „which is a vector OP with components
At+ ( 53pi+ib 33 i )/&2 and b, ,p= A3» as in Eq. (12) (see
the Appendix).

In Fig. 3, we have plotted the orthonormal gap func-
tions

~
u 3„(k, ) & as functions of k, s /n. In each figure, the

lettering (a)—(c) correspond to ~u3i &, ~u32 &, and ~u3i &,

respectively. In the left figure, the parameters are
1,, /A2=0. 9 and J, /J3 =0.7. The relative eigenvalues

(35b)

for j%2. Using these forms in Eq. (28a), we obtain
n~ T,3 values T,3„given by

(37b)

for j%2. The linearized equation for hz2, is then diago-
nal, with eigenvalue a2i( T)=a 2, ( T ), where

az„(T)=[A,3„N(0)] ' —a(T) K„„(T), —

for S=+, where

E„„(T)=I (u3„(x/s) u3„,(x/s))
2%

XRe[g( —,') —/[1/2+ig(x, T)]I,

(38a)

(38b)

g(x, T) is given by Eq. (26b) and g(x ) is the digamma
function. The singlet eigenfunction

~
u 2, ( k, ) &

=~u3i(k, )&, which is odd in k, . The triplet eigenfunc-
tions ~u2+„(k, ) & and eigenvalues a2+„(T) are listed in the
Appendix.

For each eigenvalue az„(T), there is a corresponding
bare T,2 value T,2„given by

A,3
—„/A, 2 for these curves are (a) 0.9679, (b) 0.2371, and (c)

0.6950, respectively. We note that ~u3+, (k, ) & is nodeless,
whereas the other gap functions each have a pair of
nodes, and lower T, values. In the right figure, the pa-
rameter values are A2/1, , =0.4 and J, /Jz=0. 8. The rel-
ative eigenvalues A3„/A, , for these curves are (a) 0.6635,
(b) 0.1085, and (c) 0.6280, respectively. In this figure, all
curves have a pair of nodes. In each figure, we note that
the odd eigenfunction has a node at k, =o, and one-half
of a node at k, =++/s. The second node disappears for
J, /J3=1.

To calculate the bare T,2 values, we first expand
b, 2 ( k, ) in its own orthonormal basis [ ~

u 2„(k, ) & I,

522(k ) 622i ~u pi (k ) & (37a)

s (TSO) 0 (39)

We rank order the T,2 values T,2„ in decreasing order,
with T,2, corresponding to the highest-T, value for a par-
ticular S=+ value, as for the A,3„and the T,3„. At fixed

T, the az„( T) are then ranked in increasing order, as we
have divided by A, 3„N(0) in Eq. (38a). As for the in-

tralayer pairing case, we find that the T,2„are suppressed
from T,3„by interband pair breaking. The suppression is
given by

k,sin

0

k, s/m

FIG. 3. Plotted are the orthonornial wave functions
~u,—„(k,)) as functions of k, s/rr for the parameters A, , /A, &=0.9,
Ji/J2=0. 7 and A,z/A, 1=0.4, Jl/J2=0. 8 in the left-hand and
right-hand figures, respectively. The curves (a), (b), and (c)
refer, respectively, to

~
u 3+| (k, ) ), ~

u 32 (k, ) ), and
~
u 3|(k, ) ). The

relative eigenvalues A3
—+„/A2 for the left-hand figure are (a)

0.9679, (b) 0.2371, and {c)0.6950. In the right-hand figure, the
relative eigenvalues A.3

—„/A, , are (a) 0.6635, (b) 0.1085, and (c)
0.6280.

T,2„ /T, 3„=1 C„(J /T, 3„)—
where J =J1+J2, and C„&0 is of order unity. Unless
J/T, 3„«1,we can neglect hz altogether. Usually, the
interband pair breaking is sufficiently strong (J/T, 3„)1)
that all of the T,2„=0. Even for T 2„&0, the nonvanish-
ing 6, below T„acts as a sufFiciently strong pair breaker
upon the OP's in 62 as to force their amplitudes to vanish
below T„,as shown in the Appendix.

To construct the GL free energy —,'N(0)f in terms of
the 5;.„, we need to find the eigenvalues at arbitrary T.
The above procedure insures that the basis gap functions
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a3„(T)=a( T,3„)—a(T) =ln(T/T, 3„) (40a)

az„( T)= ln( T /T, z„)+5az„( T ) . (40b)

From Eq. (40a), we have 5a2„(T,2„)=0.
We now consider simultaneous intra- and interlayer

pairing. Since our separate analysis of the intra- and in-

terlayer pairing cases resulted in pair breaking for the b
&

QP and for the 62. gap functions, we neglect 6& and 52,
which is certainly valid near the highest transition tem-

are properly normalized. For terms in f, obtained from
the A3 equation, we must also divide the coefficients of
lit 3„(k,)) by A3„N(0). The resulting coefficients of the
quadratic terms in f are

perature. In the Appendix, we have treated Ao and 63 to
all orders simultaneously. Expanding Eqs. (Alla) and
(Al lb) to cubic order in ho and b,3, we find that the re-
sulting gap-function equations are identical to Eqs. (18a)
and (18b), with the modification that V(k„k,') is replaced
by V'(k„k,') in Eq. (18b). This modification is responsi-
ble for T„and T„being generally distinct for %=2.
Hence, there are three important T, values: T,o, T„,and
T„,as discussed in Sec. V.

V. GINZBURG-I. ANDAU FREE ENERGY FOR N =2

From the analysis in the Appendix, the dominant part
of the free energy —,'N(0)f3o arises from b,o and the b,,
and 6,, OP's, defined for N=2 in the Appendix and
below Eq. (36). We have

f3o
=

I a, I'ln( /T„)+ I 4, I ln( T/T„)+ I ~o I'»( T/T„)+P, I ~, I'

+0, I:2(I~,I')' —Re(~,*'~', ) ]+20„I2I ~, I'I~, I' —Re(~ ~', )]

+bo f-,' I&,l'+21&, l'(I&, I'+ I&, I')+Rel 6*'(b,,' —6', )]j, (41)

where P, =3b o /4, as for X= 1, and P„P„are given in
the Appendix. The quantities T„/T„, P, and P„reduce
to the %= 1 values at J, /J2 = 1, but generally are func-
tions of J, /J2 and A, , /A2. The terms containing b,o are
identical to Eq. (19) for N = 1.

As for %= 1, the signs of the 4o, 6, and the 60, 6,,
coupling terms are different. For X= 1 and 2 with
T„=T„,this causes ho to be completely incompatible
with the isotropic interlayer gap 2lb, l. For %=2 and
T„&T„, the situation is more complicated. To investi-
gate the competition between ho, 6, and h, „we must
consider all allowed orderings of T,o, T„, and T„. As
discussed below, it does not appear to be possible to have
Ao, A„and h, , simultaneously nonvanishing.

We first consider the case T,o & T„~T„. Below
T,o, I ho WO. It is easily shown that the assumption of ei-
ther Ib,, %0 or Ih, , IAO below the temperatures T„or T„
leads to a contradiction. We therefore conclude that, for
T,o& T„)T„, b,o is the only nonvanishing OP, and the
gap 2l gaol is isotropic.

We next consider the case T„)max( T«, T,o). There
are two cases of interest: T„&T„and T„=T„. The
T„=T„case reduces to the case considered for N=1:
bo =0, and the gap 2lb, l

is isotropic, where

b, =IX, I=lb, II+2. Hence, we assume T„)max( T«, T,o).
Just below T„,the system is in the S phase,

t, = 5t, /g, —,

where

(43a)

(43b)

provided that P, )P„. For P, ~P„, T„=O. We note
that, for P, )&P„,T„=T„.

On the other hand, if we assume 6,, =0, to satisfies

to = 5to /go, —

where

(44a)

go= 1 —bo/(2P, ) . (44b)

Comparing Eqs. (43) and (44), we see that, for P„(bo/2,
the relative suppression T,o/T, o is greater than that of
T„/T„. More precisely, the ST phase is stable below
T„,provided that T„&T,o, which implies

T„/T„) ( T,o/T„)",
where

(45a)

I

favored. Below T„, I
b,, I

%0 acts as a pair breaker upon
both 60 and h„suppressing T„and T,o to T„and T,o,
respectively.

We let t = ln( T /T„), to = ln( T,o/T„), t, = ln( T„/T„),
5t, = ln( T„/T„), and 5to = ln( T„/T, o). Assuming
Do=0, t, is found to satisfy

I &, I'= —t /(2P, ) (42a) &=Pi/0o . (45b)

and

(42b)

At lower T, we could have b,,AO and either dE, NO=ho
or b o&0=h, We denote these phases the ST and SS
phases, respectively. For T„and T,o both finite, we must
first determine which, if either, of these phases would be and

Ib,, I'= —t /(2P, )+(t —t, )g/(2P, ) (46a)

For T,o& T„, the SS phase is stable below T,o.
We first assume Eq. (45) is satisfied. Then the S phase

is stable for T„~T & T„, and the ST phase for T& T„.
In the ST phase (t t, (0), we have Ib,ol =0, —
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l~, I'= —g(t —t, )/(2p„),
where

p, jp„p„—jp, '

(46b)

(46c)
0.5

where t„g, are given by Eq. (43). There is a second-
order phase transition from the S to the STphases at T„,
provided that p„p, &p„. The anisotropy of the gap
2lb.(k„T)l is T dependent,

lb(k„T)l'= lb, , I'& u3+, (k, )lu3+(k, ) &

+Ih, l &u, (k, )lu, (k, )&, (47)

where
I 5, I

and
I 6, I are given in the S and STphases by

Eqs. (42) and (46). This gap is the same on both bands.
We now assume Eq. (45) is not satisfied

[T,t/T„) (T,o/T„) ], so that the S phase is stable for
T,o~ T & T„, and the SS phase is stable for T & T,o. In
the SS phase, we have t to (—0 and

I 6, I
=0,

and

lb, ol
= (t to)jb—o—

t, /(2p, ), —

(48a)

(48b)

where to is given by Eq. (44a). The transition from the S
to the SS phase at T,o is second order. The gap
2lb, (k„T)l is the same on both bands, and nodeless at
low T,

I~(k. , T)l'= Idol'+ l~, I'&u3')(k. )lu~)(k. ) & . (49)

In the S and SS' phases, Ib,ol and Ih, l
are given by Eqs.

(42) and (48), respectively.
In order to investigate the possible existence of an ad-

ditional phase with lh, I, lih, , l, and lb.ol, all simultaneous-
ly nonvanishing, we then choose the phases of 60 and 6,
to minimize their repulsive interactions with 5, . For
these phase choices (b,o and b,, out of phase by n/2, and
h, , and b,, in phase), the repulsive interaction between h, ,
and 60 is maximized. While we have not been able to
rigorously prove that either T,o or T„ is always forced to
zero, we have made numerous attempts to find regions in
which all three OP's could be nonvanishing, but have
been unsuccessful. Hence, we conclude on numerical
grounds that, at most, two OP's can be simultaneously
non vanishing.

We note that, for both allowed cases of any two of the
OP's, 60, A„or dL, nonvanishing, the actual gap is twice
the square root of the sum of the square magnitudes of
the nonvanishing OP's times their respective normalized
gap functions. For the b,„h,„combination, this arises
because of the different matrix structure of those quanti-
ties in the Green s function. For the 60, 6, combination,
5o and b,, have similar (for N=2) and identical (for
N= 1) Green's-function matrix structure. However, the
free energy is minimized when ho and b, , are m. /2 out of
phase. Hence, the above prescription for the gap is
correct for both N= 1,2.

In Figs. 4 and 5, we assume T„)T,o, so that 60 can be

0.5
J,/J,

|.0

FIG. 4. Regions of difFerent gap 2lhl behavior for N =2 are
shown for 0(ki/A2~1, 1)A2/A, &~0, and 0(J&/J2(1. Re-
gions for 1)J2/J& ~0 are obtained from J&~J2 and A, &~A,&.

On the dark exterior solid line, T„=T„,and 6 is isotropic. On
the crosshatched line, 6 is isotropic and pure singlet. Curve (a)
divides regions I and II, where the singlet gap function
Iu3+|(k, )) is nodeless or has a pair of nodes, respectively.
Curves (b), (c), and (d) denote Ilk, I=0.Olla,

I
at T=O for

A, 3+,N(0) =0.2, 1.0, and 2.0, respectively.

neglected. In Fig. 4, we have plotted the regions of
different gap behavior in the parameter space. In the
lower (upper) half of the figure, the regions are plotted for
0 (A&/A2 ( 1 (1 & A2/A, , & 0) and 0 (J& /J2 ( 1. Values
for 1 & J2/J, & 0 are obtained by interchanging J, with

J2 and I,
&

with A,z. Curve (a) separates region I, for which
the dominant singlet gap function

I
u 3+, (k, ) & is nodeless,

from region II, in which it has a pair of nodes. Curves
(b), (c), and (d) correspond, respectively, to
Ih, , I

=0.01lb,, I
at T=0 for the dimensionless eigenvalues

A3+, N(0) =0.2, 1.0, and 2.0. These values are appropriate

C)

1

I—

&I

X, ) = 0.91,2
J) ——0.7 J2

X2 ——0.4 X, )

J) ——0.8 J2

k zs/xc

1 0
k, s/z

FIG. 5. Plots of Ib, (k„T)l/Ih(0, 0)l vs k,s/~ for T/T„
values of 0, 0.6, and 0.9 in curves (a), (b), and (c), respectively.
Left plot: A I/A2=0. 9 JI /J2 =0.7 Right plot: A2/A I =0.4
Jl /J2 =0.8.
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1.0

X, )
——0.9 X2

J) ——0.7 J2

~co= 0.9 ~cs

C)
C)

N

0.5

0.5
k s/n

1.0

FICx. 6. Plotted is
~
6(k„T)

~ /( b (0,0)
~

vs k, s /~ for
X]/A2=0. 9 J& /J2 =0.7, and T,o/T„=0.9. Curves (a), (b), and
(c) are for T/T„values 0, 0.5, and 0.9, respectively. In these
curves, 4, =0 and AOAO in curve (a).

for weak, intermediate, and strong couplings, respective-
ly. Below these curves, 6, (and the ST phase) can be
neglected. Since region II is above all of these curves, we
see that the gap is always nodeless at low T, even for
weak-coupling strengths. Above the respective coupling
strength curve, there will be two phases. Above these
curves in region I, the gap is nodeless in both the S and
ST phases. In region II, the gap has a node in the S
phase (near to T„), but is nodeless in the ST phase (at
lower T). In region II, the gap is nodeless for all T & T„.

In Fig. 5, we have plotted the gap 2~ b,(k„T)~, normal-
ized by its k, =0, T=O value, as a function of k,s/~, at
three values of T/T„. In curves (a), (b), and (c), the
T/T„values are 0, 0.6, and 0.9, respectively. In each
case, we have used the weak-coupling limit A3+,N(0) =0.2.
In the left figure, the parameters are A, , /A, 2=0.9 and
J, /J2=0. 7, for which the normalized gap functions are
plotted in the left figure in Fig. 3. This case corresponds
to the triangle in region I of Fig. 4. Note that the gap is
anisotropic, but the relative anisotropy is almost com-
pletely T independent, as ~h, ~

makes a relatively small
contribution to ~b,

~
for all k, values, even in the ST

phase. In the right figure, A, 2/A, , =0.4 and J, /J2 =0.8.
The normalized gap functions for this case were plotted
in the right-hand figure in Fig. 3. This case corresponds
to the triangle in region II of Fig. 4. Note that, at
T/T„=0.9, which is in the S phase, the gap has a pair of
nodes at k, s =+0.86rr. However, in curve (b),
T/T„=0.6, which in in the ST phase, the node has been
removed. This T value is just below T„, so ~b, , ~&0, but

~ 5, ~
is still rather small. In curve (c), T=O, and ~h, ~

has
increased substantially. The gap remains anisotropic, but
all evidence of the node for T)T„has been removed.

In Fig. 6, we have plotted the gap 2~6,(k„T)~ relative
to its k, =0, T=O value, as a function of k,s/m, for one
case in which ~ho~ and ~b,, ~

are nonvanishing at low T.
The parameters are 1,, /A, &=0.9, J& /J2 =0.7, and
T,o/T„=0. 9, which correspond, for ho=0, to the left-
hand figures in Figs. 3 and 5. The T/T„values chosen
are (a) 0, (b) 0.5, and (c) 0.9. Although there are no
nodes even just below T„ for these parameters, the gap is
highly anisotropic in the S phase near T„. At
T/T„=0. 5 (barely in the SS phase), the gap remains
nearly as anisotropic as at T/T„=0.9, as ~b,o~ is small.
However, at T=O (well into the SS phase),

~
b,o %0 great-

ly reduces the gap anisotropy.

VI. DISCUSSION

The model we have presented here has been solved in
mean-field theory for the cases %=1,2. In our model, we
have neglected the derivative of the density of states at
the Fermi level, assuming Wi/W~~ &&1. Nonvanishing
Wi/W~~ leads to a term in the free energy 5f30 in Eqs.
(19) and (41) proportional to (Wi/W()Re(b. ob, , ). This
term would cause 6, and 50 to mix linearly, resulting in
two solutions for the singlet transition temperature: the
higher solution corresponds to a small amount of Ao mix-
ing with 6, . For X=2, this makes no essential
difference. For %=1, there will then be two phases, as
for N =2, and the gap would behave as in Eq. (47), where
the singlet part contains a bit of Ao mixing. For

J / fY(~ (& 1, this correction will be small.
For N=l, 0 ' has the SU(2)XSU(2) form, which

can be written as a sum of products of two Pauli rna-
trices. The Pauli matrices represent the spin and conven-
tional Green's-function degrees of freedom, respectively.
Both intralayer and interlayer pairing necessarily arise
from the pairing of quasiparticles within the same band.
For N=2, G ' has the SU(2)XSU(2)XSU(2) form,
which can be represented in terms of three Pauli rna-
trices. These Pauli matrices represent the spin, band, and
conventional Green's function degrees of freedom, re-
spectively. For general %~2, there are X bands, each
having a distinct k, dispersion. We would therefore ex-

pect 6 ' to have the SU(2) X SU(N) XSU(2) form, with
an N X N matrix [the elements of which are the eigen-
states of spin (N 1)/2] representi—ng the band degrees of
freedom. For SU( 3 ), there are eight matrix generators
in addition to the identity matrix, two of which are trace-
less diagonal matrices of rank 3. These two diagonal ma-
trices plus the identity matrix represent the intraband
pairing gap functions. As shown elsewhere for %=3,4,
the free energy has the form of Eq. (41), with different
values for the various constants. The gaps on the
different bands will not generally be equivalent, ,however.

We remark that Eq. (41) represents an accurate
description of the GL free energy below the rnaxirnurn T,
value. Above the maximum T„all of the gap functions
with nonvanishing bare T, values contribute to measur-
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able quantities. These extra contributions might ac-
count, in part, for the diff'erent efFective mass ratio for the
pairs inferred from fluctuation dimagnetism, fluctuation
conductivity, magnetic torque, and upper critical
field measurements. The Zeeman fluctuation conduc-
tivity fits could be greatly altered. Fluctuation specific-
heat fits would be slightly modified, as the T range of
the fits was limited.

Gap anisotropy between the c axis and the ab plane
would certainly affect the apparent effective-mass anisot-
ropy deduced from lower critical field and magnetic
penetration depth' experiments. It would also modify the
interpretation of the NMR Knight shifts. ' In a subse-
quent paper, we shall address those issues, most of which
require introducing the magnetic vector potential for
fields both along the c axis and in the ab plane.

The Ã = 1 case is presumably appropriate for
La2 Sr Cu04 and may also be appropriate for the
electron-doped materials Ndz „Ce Cu04 and
Ndz „Th Cu04. The predicted lack of gap anisotropy
for X= 1 materials does not necessarily imply- that the su-
perconductors are conventional. One can obtain an iso-
tropic gap either from the conventional s-wave intralayer
BCS pairing, or from BCS-like interlayer pairing. In the
latter case, the isotropic gap arises from an equal mixing
of the singlet and triplet gap functions. We note that
point-contact-tunneling experiments' on La2 Sr Cu04
were interpreted as evidence for an isotropic gap. How-
ever, electron-spin-resonance experiments on that ma-
terial were interpreted as providing evidence for triplet
hole pairs. Both conclusions would be consistent with in-
terlayer pairing.

Doping experiments are consistent with interlayer
pairing in La2 Sr Cu04 and Y 1:2:3but with intralayer
pairing in the Nd2 Ce Cu04 system. . In these experi-
ments, a small amount of Cu is replaced with Ni, Co, or
Zn. In La2 „Sr Cu04 and Y 1:2:3nonmagnetic dopants
(Zn) depress T, as much as magnetic dopants. This is ex-
pected for interlayer pairing, especially for %=1. In
the Nd2 Ce Cu04 system, doping with nonmagnetic
ions was much less destructive to T, than was doping
with magnetic ions, as in a conventional superconductor.

For Y 1:2:3,it is likely that TV=2. One possible con-
trary piece of evidence would be the Cu NMR experi-
ments, ' which indicated that the Cu-0 chains have a
Knight shift indicative of a gap distinct from the Cu02
planes, which might be interpreted as giving X=3.
However, this could possibly just be a manifestation of a
k, dependence of the overall gap. Infrared reflectance
and Raman-scattering experiments suggest that the Cu-
0 chains may remain normal below T„which would also
be a possible explanation for the linear term in the low-T
specific heat consistently observed only in Y 1:2:3. It is
likely that the problem effectively separates into weakly
coupled %=2 and (nearly normal) X= l cases.

The Bi 2:2:1:2material contains two Cu02 layers and
two Bi-O layers within a formula unit. Unlike the CuO2
layers, the two Bi-Q layers form one electronlike band at
the Fermi level, both from band-structure calculations
and from photoemission experiments. ' Hence, this is in

reality an N=3 case. However, it is possible that the
coupling between the predominantly Bi-0 band to the
predominantly Cu02 bands is weak, reducing the prob-
lem to weakly coupled X=2 and 1 cases.

Finally, we would like to propose that a number of ex-
periments be carried out to further elucidate the question
of whether c-axis versus ab-plane gap anisotropy really
does exist in Y 1:2:3and possibly in other materials. One
ought to look for evidence for a second phase transition,
such as has recently been reported in specific-heat and
magnetization studies on Y 1:2:3. ' Angular-resolved
photoemission experiments with a high degree of k, reso-
lution may prove useful. Repeated infrared reflectance
and Raman-scattering measurements from the edge of
single crystals is highly desirable. In addition, point-
contact and Josephson tunneling into the ab-plane could
be useful, especially in a magnetic field. To improve the
interpretations of the data, more theory is needed to
properly obtain the expected infrared reflectance and tun-
neling current results. One needs to take account of the
normal-state layered structure and the gap anisotropy,
and treat the rather clean limit for intralayer impurity
scattering.

It would also be useful to perform experiments to in-
vestigate more thoroughly the electron-phonon mecha-
nism. There is evidence of a possible local structural
transition occurring at T, in at least three materi-
als, ' ' ', which involves the different polarizations of
the ionic motions differently. Hence, phonons and/or
charge fluctuations are likely to be involved in the super-
conducting transition, and may be the driving force. If
c-axis versus ab-plane gap anisotropy is indeed present
for N ~ 2, it implies the appropriate pairing mechanism is
likely to involve optical phonons propagating in the c-
axis direction. Further neutron-scattering investigations
of the polarizations and propagation directions of the
phonons involved in this structural transition at T, may
prove useful. In particular, we suggest looking at the c-
axis zone boundary for high-energy optical phonons.
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APPENDIX

In this appendix, we obtain the determinants of the
Green's functions for N = l. , 2. For future reference, we
keep the Zeeman energy splitting I =gp~B/2, where B is
the magnetic induction.

For X =1, the mean-field equations for the elements
6 & and I'

& are found to be
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and

I [ico —gp(k) —2J2 cosk, s)a p+Icr3] C —(b3+hpo2)P =crp

t [ico+gp(k)+2J2 cosk, s]op —Ia3IP —(b3+bpo2)0 =0,

(Ala)

(A lb)

where

3

b3= g 53jo
j=0

3
C= +Ger

j=O

and

3P'= y F,'oj,
j=0

(A28)

(A2b)

(A2c)

d, s =co + [gp(k)+2J2 cosk, s SI]—

d2s =(cp iS—I) + [gp(k)+2Jz cosk, s]

(A3c)

(A3d)

b 3(k, ) = (ih3p(k, ), b 3,(k, ), b 3~(k, ), 533(k, ) ), (A3e)

S =43O+SSb 33,

EL3]s k3] + iS ( 532+ kp)

(A3f)

(A3g)

All four-vector products are defined to be standard four-
vector scalar products,

where the o. . are the Pauli spin matrices. We note that
Eq. (A 1) comprises eight equations from the Pauli matrix
structure. We then combine those equations to obtain
equations for Go G3, G, iG2, Fo F3, and F i —'F
This effectively diagonalizes 0 and P into 2X2 blocks.
After some algebra, we obtain

and

3

b,;—:g(E;)
j=0

j=0

(A4a)

(A4b)

det(G)=D + + d„s,
S=+ n =1

where

(A3a) The gap-function equations for hp and b, 3j [Eq. (7) of
the text] are then obtained from

Tr[(p, ip2)o—,C(k', cp)]

1+ & (1~3psl /dis+I~3isl /des) = —2c) ln det(6 )/Bb, 3j(k,'), (A5)

+1~3I /(d, +d, ), (A3b) etc. , and integrating over gp(k'). This leads for I =0 to

/ Ep+ 632 +S ( 5R 3p /55@ )
bp= —,'N(0)sTkp g g f dk,'

~~~ ( s =+ (cp + El3+p +SR 3p )CO
CO)(

(A68)

and

b3)(k, ) = —,'N(0)Ts g g J dk,' V(k„k,')
leo( + cc) S—+

h3 +b,p5 2+S(5R3p/563j)
(~'+1~3+pl +sR3p)' ' (A6b)

R,'p =(I~, ,l')' —
I ~,' pl' (A6c)

A3+p j(k ) 53j(k )+5j2ap

For X =2, the mean-field equations for the Green's-function matrix elements Gss. and Fss are found to beaP ag

(A6d)

I [i co —g' ( p) kSeq(k, ) ]crp—+Io 3] Gss, —S [(b3+Shpa2)Fss. —i (h2+Sb ~cr2)F s s. ]=5ssop (A7a)

I [icp+ gp(k)+SEy(k ) ]crp Io'3]Fss —S [(h3 +Sb p cr2)Gss. +i (Q2 +Sb~&cr2)G s s, ] =0, (A7b)



INTRALAYER-VERSUS-INTERLAYER PAIRING IN THE. . . 7541

3

b, ; cr
j=o

(ASR)

where S, S'=+ are the band indices. As for X =1, we
expand the matrices in Eq. (A7) in terms of the Pauli spin
matrices,

~++ &++ &++ D++
D-+

D= &+- D+- ~+- &+- (A9f)

for & =2, 3,

and

3

SS'j~jj=o
(ASb)

~here

~ss =1+I~30$'I j'd1$$'+ I~31$$ I ~dzss

+ l~zos I ~d3$$ +1~21$$ I ~d4$$'

+SS' ( ~30$'~20S' jd 1SS' + 21SS' 31$S'~ 2SS'

(A9g)

=' = ' -t
Fss' X Fss'

j=p
(ASc) +~20$'~30$'~d3$$'+~31$$'~21$$'~ 4SS'

(A9h)
The eight resulting equations in the variables
Gss o+Gss'3 Gss'i+i Gss'2 I'ss'o+Fss'3 and Fss'i +'+ss'2
can be combined to give four equations in the variables
Ffs'0+Fss'3& F s,s'o +F— s, s'3~ —Fss'1 +iFss"z~ and
F—s,s'i+iF —s,s'2. After some algebra, the determinant
of G is found to be

+SS' 1 (~30$'~31$,—S'~diss' ~31$$ ~30, —S'~dzss'

+~20$'~21$, —S'~d3$$' ~21$$'~20, —S'~d4$$' ) ~

(A9i)
a

DSS' (~30$'~21$, —S'~diss' ~31$$'~20, —S' jdzss'

det(G) =D g d.ss (A9a) +~20$'~31$, —S'~ 3SS' ~21$$'~30, —S'~d4$$' )

where

S S'=+ n =1

d, ss, =co + [go(k)+Ski(k, ) S'I]—
dzss =(co+iS'I) + [go(k)+SE1(k, )]

d 3$$ [co isa j(—k, ) ] + [go( k ) S'I]—
(A9b)

(A9c)

(A9d)

63OS& =63o+ IS

~20S' ~20+ ES ~23

631$$ 631+iS'(E32+Sb0)

21$$
=

21 S ( 22
'

1)

(A9j)

(A91c)

(A91)

(A9m)

(A9n)

d4$$, ——[~—iSs,(k, )+iS'I]'+ go'(k), bz(k )=i(ikzo(k ) 521(k ) Azz(k ) 623(k )) (A9o)

aIld
For intralayer pairing alone, the resulting gap-function

equations are

and

dk,'bo[c0$+ Idol +Z+ej(k,')]—bo(b, , )
b,o= A, (0)sT

4z [2(z+x)]'"
~ll S—+

/ dk lhI1[cos+ I61 I
+Z EJ(k )] 61 (50)

(0)sT
4Z [2(Z +X)]'i

(A 108)

(A10b)

where &us =co—iSI,

x =~'s+ la, l'+ Ia, l' —",(k,'),
F2=4Ei(k,')[cosz+ Idol ) —4[Re(bob, 1)]

aIld

Z =(X + Y' )'i

(A10c)

(A10cl)

(A10e)

60= —,'N (0)sl 0T g g f dk,'
SS'=4 —m/s

Expanding Eq. (A10) to order 5, for I =0 leads to Eq. (25) of the text.
For 6,=62=0, the gap-function equations for I =0 reduce to

60+Sb.32+S'(5R 3$ /5b, o )

(F2+ I g3$ I

2+S.R 3$ )1n (A11a)
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N(0) / EL3j +S605j2+S (5R 3s /5ZII3j )
b.3 (k, ) = sT -g g V'(k„k,')dk, '

~~~&~, ss =+ — / (co + b3s +S'R3s)'

where

g2 —(tg ~2)2 ig2

and

(Al lb)

(A 1 lc)

~3s ~30 ~31 ~32+S~O ~33)

is a four-vector obtained from b, 3(k, ) by replacing 532 with h32+Sb, 0.
For 62 or b 3 alone, the gap-function equations for I =0 are

(A 1 ld)

b, , (k, )=—,I&(0)Ts g J dk,'V'(k„k,')
s s'=+

a, +S(x, S, ~' —S,'S',. )/Z,
(~', + )Z, ~2+SZ, )'" (A12a)

for i =2, 3, where

CO3gs CO

(A12b)

(A12c)

c02s =ca iS'E—i(k,') .

For interlayer pairing alone and I =0, the gap-function equations expanded to cubic order are found to be

(A12d)

E,(k, ) =-,'X(O)Ts y J '
dk; V'(k„k,') —t2S, ~Z, ~' —E,*E',+2z, [E,~a, ~'+E,(K,*a,) —a,'(E,E, )]

+z, [262(6263 ) —6362)] /(2~co~ ) (A13a)

and

hz
E2(k, ) =—'x(0)Ts y I dk, V'(k„k, ) —IZ3[2b2~b2~ —52zi2]+2z2[b2~b3~ +63(b2b3 ) —b3(6263)]—m/s C0

+z, [263(b,2*63)—b, 2*6,3]]/(2~c0~') (A13b)

where the z;(k,') are identical to those given in Eq. (25) of
the text.

As discussed previously, the gap-function equations are
obtained by taking the logarithmic derivatives with
respect to the complex conjugates of the appropriate gap
functions. It is clear from Eq. (A9) that there are two
types of pair breaking present here: Pauli pair breaking,
arising from the Zeeman energy splitting of the nonparal-
lel spin states, and interband pair breaking, for paired
quasiparticles in di6'erent bands. Note that, for
si I ((max($0) d iss' can be rewritten with an appropri-
ate shift in g0, removing both types of pair breatung. Pair
breaking arises from the shifts in the Matsubara frequen-
cies by +iI or +i c~, respectively. All of the 62 functions
exhibit interband pair breaking, but the 63 do not. In
addition, the 6;& and 6,.2 functions exhibit Pauli pair
breaking for both i =2, 3, but the 6;0 and 6;3 functions
do not.

The eigenfunctions and eigenvalues present in A2 and

—2' I+2 ( T)
tan20~ =

a T
(A14a)

where

a+(T)=a2+, (T)+a„(T) (A14b)

and K,+2 and a 2+„(T) are given by Eq. (38). The eigenval-
ues a2+„(T) and eigenfunctions ~u2+„(k, ) ) are then given
by

cc2+„( T)= [cc+(T)+Z( T) ]/2, (A14c)

A3 are found in Sec. IV of the text, with the exception of
the triplet

~
u 2+„(k, ) ) eigenfunctions and their corre-

sponding eigenvalues a2„(T), explicit forms for which
were omitted from the text for brevity. These quantities
are listed in the following.

Using Eq. (37b) in Eq. (28b) of the text, we first make a
rotation through the angle 02 given by
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Z( T)= [tz ( T)+4/ +
( T) ]

i ~2 (A14d)

Iu2+„(k„T))= J2[a2+(T)+b2~( T)cosk, s]/ei(k, ),
(A14e)

where

a2+(T) = [a+c+(T)+a + c+ (T)]/3/2,

b2+(T) = [b+c+(T)+b+ c+ (T)]/3 2,
and

c+( T)= [}+a ( T)/Z( T) ]'

(A14f)

(A}4g)

(A 14}i)

The triplet eigenvalues a2+„(T) appear in Eqs. (39) and
(40b) of the text.

Next, we evaluate the GL free energy for N =2. While
it is possible for X =2 to find the GI. free energy with EQ,

A3 and b 2 simultaneously nonvanishing, the resulting
general expressions are sufficiently complicated (as well
as unlikely) that we prefer to address the simplest special
cases first, as most of the important physics can be ad-
dressed in this manner. We shall first consider the case of
purely intralayer pairing. Next, we shall consider the
case of purely interlayer pairing, neglecting Az. We then
consider the case of both 53 and 52 nonvanishing. Final-
ly, we consider A3 and the intralayer OP AQ both nonvan-
ishing.

The case of purely intralayer pairing is treated easily
by the standard techniques. The free energy
Fspi F~ = N(0)f—pi is found to be

fpi
=

I ~pl' »( TIT,o)+ I
~ il'[»( T IT,') )+&~&( T)]+-,

' bp( I ~pl'+ I
~

&

I')'

+-,'c'(
I a,+a, I' —

I a, l' —
I a, I')' —cl a, l'I a, I' —dim, I',

where T,p and T, , are given by Eqs. (8b) and (26a), and

bp=7$(3)/[8(mT) ],
c'=bo — g (2n +1) '[(2n +1) —(h„+h„) '],

(mT)' „=p

(A15)

(A16a)

(A16b)

c = g g (2n+1)[(2n+1) +(2n+1) (h„sh„s) ' —2(h„sh„s) '],
n=o S=+

(A}6c)

d=c+ g g (2n+1) j(2n+}) +2[(2n+1) h„sh„s]
2(wT) n =p s=+

—7[(2n+1) h„sh„s] '+3[h„sh„s] '+[h„sh„s]

5a, (T)=f Re[/[1/2+ig(x, T)]—g[l/2+ig (x, T, , )]],—~ 2'

(A}6d)

(A16e)

where

h„+=[(2n +1) +(J,+J2) /(AT) ]'~ (A}6f)

[c ( T„)/bo( T„)] ln( T„/T, , )+5a, ( T„)
=[}—[c(T„)/bo(T, i)]] n}( T, /T )o. (A}7a)

E~pa~di~g to leading olde~ in t, =T„/T, , —1 and

tQ = T~$ ~T~Q

t, =to(~T, , /J) IC',
where J =J i +J2 and

(A17b)

and g (x, T) is given by Eq. (26b).
We note that 5a, (T, i )=0. Examination of Eq. (A15)

reveals that fo, is minimized if Ap and 6& are vr/2 out of
phase with each other, as this choice causes the term with
coefficient c'&0 to vanish. Below T,Q, the mean-field
b,p&0. Assuming b, ,&0 below T„&T,„we obtain

J/T, p«1), the pair-breaking effects upon 6i arising
from the nonvanishing AQ are sufficient to drive T„ to
zero. In the unlikely case of completely decoupled layers
(Ji =J2 =0), T, , = T,p, the free energy is minimized
when

I ho I

=
I
b,

& I
below T,p. Otherwise, b, , can be

neglected entirely below T,Q. In the fluctuation regime
above T,Q, however, both OP's could contribute, their rel-
ative contribution depending upon their respective bare
T, values. This comprises the zero-field aspects of the
microscopic basis for a phenomenological model used
to fit the fluctuation diamagnetism data on alighted Y
1:2:3powder.

We now consider the case of purely interlayer pairing
for X =2. The singlet order parameters are defined to be

632 and 6,' =622, ~ The triplet vector order param-
eters 6, and 6I„have components 6,+=(b,3oi
—t633i )/+2, 6 to 63ii EIn+ (52pn +i523n )/V 2, and
6',„0=62&„. We then write

C'=93((5)/[}4((3)]—7g(3)/2= }.52 .

Hence, even if T, , is very near to T,o (which occurs for and

m =+,0, —
e S, (A 1 ga)
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dl
tn

m =+,0, —
Aem dtnm (A 1 gb) and

where the [e ] form an orthonormal vector set.
The parameters coupling the various OP's in the gap

functions d3 and in d2 are defined to be

v;„„=—,
'
ho J ( u 3+„(x/s) I

u 2„(x/s) )—~ 2'
X ( u 31(x/s)lu 21(x/s) )z, (x/s) (A22b)

] g, y3++

and

&snn'n "n"' 2 0 nn'n "n"'

2 bo~l 1 1 1 & Pt 2 b0~1111

where

J —~ 277

3+ — i i 2+—
pstnn' 2 0 nn'11 & pstnn' 2 own 11'

(A 198)

(A19b)

(A19c)

for i = 1,2, where z, and z2 are given in Eq. (25).
We first consider the case hz=0. The GL free energy

can readily be found to fourth order in the OP's A,„and
Although its exact form is rather complicated, we

shall analyze it in detail, as some of the terms are not
very important. We first analyze the singlet OP's alone.
There are two singlet OP's, 6,„:—532„, each of which
could become nonvanishing in the absence of the others
below its respective bare T, value, T,3n. Clearly, the
dominant singlet OP is A, =h„, with the highest-T,
value, T,3] T„. The dominant singlet terms in the free
energy Fs+ Fz =—2'—N(0)f 3+ may then be written as

X ( u „-(x /s ) I u;„-.(x /s ) )g,.(x /s ) (A20)

fori =2, 3, with (3(x/s)=1 and (2(x/s)=z3(x/s), which
is given in Eq. (25e). The most important of these cou-
pling parameters have been evaluated analytically. We
have

f3+ = l~, I'»(T/T„)+ p, I ~, I'

+ lt5, 2I »(T/T, 32)+4p, 21~, I «(L,*b,,2)

+2p.z2[2l~, I'l~,21'+«(~,*'&,', )]+ . , (A23)

pt = .' o p.t =-p.t11=.'bo(1+b'—-/2»
Ps Ps 1111

(A2la)

and

=
—,'bo[3+b —(3+g)b /(4g)+2a b /g],

(A21b)

b0P2=P„„2= [6b+b (3—g/g)+b+b (22/g —1)

+gb' (2)/2$)'i'(3 b' )], — (A21c)

P ~ s tt sss: —Q0 (u3„(x/s)lu3„(x ls) )S
—~2%

X (uz„(x/s)luz„. ..(x/s))z, (x/s),
(A22a)

where 2i, g, b+, and a+ are given in Eqs. (31)—(33). In ad-
dition, we have the parameters that couple the OP's in A2
to those in A3,

where p, &0, ps2=ps1„2, ps22=ps1122) 0, and we have
employed the obvious symmetries of p,„„.„„-given in
Eq. (A19) above.

Since p, 2 is, in general, nonvanishing, that term cou-
ples b,,2 it linearly to b,,"lb,, l, allowing b,,2 to become
nonvanishing. Numerically, however, it turns out that
b,,2 makes, at best, a l%%uo correction to the gap at low T.
This is due to the fact that the quadratic coupling (i.e.,
the p, 22 term) of h, 2 to 5, is strongly repulsive, prevent-
ing lb, ,2I from ever becoming comparable to lb, , l. In
short, it is almost always a good approximation to neglect
6,2 altogether.

Next, we consider the possibility of d2 and A3 simul-
taneously nonvanishing. We have evaluated the full ex-
pression for the free energy —,'N(0)f32, but its most gen-
eral form is too lengthy to present here. Since T„)T„,
in general, and T,', =T,z& is the highest of the possible
T,2„values, it su%ces to consider the effect of nonvanish-
ing 6, upon d'„ the latter being constructed out of the
b,2, for j&2 as in Eqs. (12) and (13). We find,

f32 = l~, '»(T/T„)+
I ~I I'[»(T/T, ". )+&~,( T) ]+p, I &, I'

+p,'[2(
I

a' I')' —«(a"'a') ]+4i.2++ Ia I'Ia' I' —2i.1++ Re(~*'S') (A24)

where P,'=P,'»» and p,
—+—

=1M,—.

, », for i =1,2, which are
given in Eq. (A22). Minimization of f32 occurs when b,,
and the components of d', are all in phase, or ~ out of
phase. We then minimize f32 with respect to the ampli-
tudes Ib,, l and IVIII. The analysis is then precisely analo-
gous with that following Eq. (A15), leading to the con-
clusion that the nonvanishing lh, I

below T„ is strongly

pair breaking upon
I 6I I, driving its actual transition tem-

perature T,', to zero. Numerically, we have determined
that it is always safe to neglect d', below T„. We note,
however, that A2 could play a role in the Gaussian Auc-
tuation regime above the highest-T, value (T„or T,o),
provided that at least one of the T,2„%0.
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