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We consider a two-dimensional Chem-Simons gauge theory where the gauge field couples to an inter-
nal degree of freedom of the fermion. For a fixed gauge coupling g there exists a finite window of
Chem-Simons magnetic moment coupling g for which a nonzero Chem-Simons magnetic field is gen-
erated at T =0. The system then is superconducting without Cooper pairing. There is a second-order
thermodynamic phase transition at T, & 0 where the Chem-Simons magnetic field goes to zero and su-

perconductivity terminates.

I. INTRODUCTION

Particles in three dimensions obey either Bose or Fermi
statistics. In two dimensions, a continuous range of pos-
sibilities (anyons) exists between these two limits. They
are said to obey fractional statistics.

Much of the recent interest in anyons is due to the pos-
sibility of their relevance to certain types of elementary
excitations in condensed matter physics. They have been
shown to play a role in the fractional quantum Hall
effect. ' Furthermore, Laughlin has suggested that the
charge carriers in high-temperature superconductors may
be anyons. It has been demonstrated that particles
which have fractional statistics, or anyons, can be de-
scribed by means of an Abelian Chem-Simon s field
theory. ' Both the Goldstone pole in the current-current
correlation function and the Meissner effect at zero tem-
perature have been derived. '

One difhculty with the previous discussions of anyon
high-temperature superconductivity is that there is no
evidence that these theories imply a superconducting
phase transition at T&0. In this paper we propose a
modification of the theory which does lead to a second-
order transition to a superconducting state at a critical
temperature T, )0 when the parameters of the theory lie
within a certain range.

This paper is organized as follows. In Sec. II we for-
mulate our theory. The theory is analyzed in the mean-
field approximation. By extremizing the thermodynamic
potential, we show numerically that there is a second-
order phase transition. %'e obtain a phase diagram for
the critical temperature as a function of Chem-Simons
magnetic moment coupling, and show that there exists a
finite region of this coupling for which superconductivity
exists. An analytic expansion of the thermodynamic po-
tential verifies that the transition is second order, and
reproduces the upper and lower critical values of the cou-

pling. In Sec. III we study the Meissner effect at T&0.
Near the critical temperature T, the penetration depth A,

behaves as (T, —T) ', which indicates a second-order
phase transition. In Sec. IV we summarize our results.

II. FORMULATION

The Chem-Simons Lagrangian studied in Ref. 5 is

X=/ iDog ~Dkg~ + ,'e"' a„B~i—1

b= —gn . (3)

In the mean-field approximation the fermions move in
Landau orbitals with a cyclotron frequency co, =g ~b ~

/m.
Usually, g is chosen so that g /2' = 1/1V, where X is an
integer. Then an integral number of Landau levels are
completely filled at T =0. Equation (3) is a self-
consistency condition on b if one chooses as independent
variables chemical potential p and temperature T. A
Meissner effect has been proven, both at T=0 and
T&0.' '

If this model is to be applied to real materials it has the
failing that it has no phase transition and the Meissner
effect persists to arbitrarily high temperatures. In our
view this can be traced to Eqs. (2) and (3).

A minimal modification of (1) would be to have two

where D„=8„—iga„ is the covariant derivative, a„ is the
Chem-Simons (sometimes called statistical) gauge field,
and P is the fermion field. The fermion can be chosen to
have spin-0 or spin- —„it makes little difference in this
model. An operator identity following from (1) is

f i2 —=B,az —82a, = —gg P . (2)

Thus, an average Chem-Simons magnetic field b = (f,2 )
is generated by a net particle density n = ( g g).
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types of fermions, called+ and —,which couple to the
Chem-Simons field with equal and opposite couplings
+g. Then (3) would be replaced by

b= —g(n+ —n ) . (4)

If the —fermion had a lower energy than the + fermion
with an energy difference proportional to b, then it could
happen that bAO at low temperatures but that b =0 at
high temperatures due to thermal Auctuations. Let us
therefore consider the Lagrangian

0'(g'~3+g" 82m
(5)

where D„=B& iga„o—
3, f is a two-component spinor and

0 3 is the Pauli matrix. There are two types of magnetic
coupling with coupling constants g' and g". The o.

3 cou-
pling is the important one, since it splits the energy levels
of the + fermions, and gives us the effect we want.

At this point we do not specify the origin of the two
fermion types. It could be spin: in this case (5) is to be
viewed as an "Ising" approximation since spin SU(2) is
reduced to U(1). If this symmetry breakdown is spon-
taneous, then magnons should be added to (5). However,
these magnons would not affect the mean-field analysis
presented below. One could consider elevating the
Chem-Simons gauge field to a non-Abelian field a„, in
which case the extension of (5) would have a local unbro-
ken SU(2) symmetry when g"=0. Of course, coupling to
an internal fermion degree of freedom other than spin is
also a possibility. In any event, we focus here on (5) as
our model and analyze its thermodynamic properties.

We allow the fermions to move independently in the
mean fields a0=const, b =const. These fields are gen-
erated by the fermions and so will be T and p dependent.
The fermions move in Landau orbitals with energies

where

1
P10 p(E. p )lO' ll +

(8b)

This can now be thought of as determining a0
=ao(b, p, T). This solution is substituted back into Eqs.
(6) and (7) and Q is minimized with respect to b. In gen-
eral, this must be done numerically.

As an example we take m = 10m, (electron mass) and
N=10 (g /2m =0.1). We also take g'/g =9; this
perhaps can be motivated by saying that, although the
dynamic mass of the fermion (the mass that enters in the
kinetic energy) is enhanced by many-body effects, the
mass that enters in the expression for the magnetic mo-
rnent is not modified, hence, we might expect
g'/g =m /m, . Since the energy splitting between + and
—states does not depend on g", it is an inessential pa-
rameter and we set it to zero. Finally, we take @=0.01
eV. The result of a numerical calculation is displayed in
Fig. 1. The Chem-Simons magnetic field b(T) goes
smoothly to zero at a critical temperature T, =125 K, as
is characteristic of a second-order phase transition. Since
p is fixed in this calculation the number density
n =n++n varies slowly with T: n (0 K) =0.7X 10
A and n (T, ) =1.6X10 A

By varying g' we obtain the phase diagram shown in
Fig. 2 from which we can make the following observa-
tions. The critical temperature is a sensitive function of
g'. Our model does not predict the critical temperature,
but reproduces an experimentally typical value for physi-
cally reasonable choices of the parameters. There are
upper and lower critical values for superconductivity to
occur. From Fig. 2 we have approximately g';„=4.6
and g',„=27. We can interpret this as follows. From
(4), it is only when we have unequal number densities for

E; = /+ —+— +— 0 co
1 1g" 1g'
2 2 g 2 g

and effective chemical potentials p =p+ga0o. , where
o. =+1 and i =0, 1,2, . . . . The thermodynamic potential
1S

(6)

The shift in the zero-point energy (Casimir effect) due to
b&0 is computed by standard methods to be

(3g' +3g" g)b-
zero 48am

(7) 0
0

(

50 100 350
T(K)

b= pop,
EO

(8a)

Q is an extremum with respect to the condensates ao and
b at fixed p and T. The condition BQ/Bao =0 just repro-
duces (4) FIG. 1. Plot of the mean Chem-Simons magnetic field b as a

function of temperature T. This curve is obtained by numerical
solution of Eqs. (6)-(8), using the parameters specified in the
text.
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FIG. 2. Plot of the critical temperature as a function of mag-
netic coupling for fixed g /2~=0. 1.

Q(b) Q(0) = —
—,'c2co—, +—,'c„co~,

where

the two species of fermions that we have nonzero magnet-
ic field. To have a significant difference in the number
densities, we must have a large enough asymmetry in the
energies of the two species and thus the magnetic cou-
pling must be greater than a certain lower critical value.
Conversely, if the magnetic coupling is too large, the
zero-point contributions (7) dominate in the expression
for the thermodynamic potential (6), and the only solu-
tion of the extremization condition occurs for b =0. Fi-
nally, we note that there is a singularity at —,'g'/g=N.
This singularity is presumably an unphysical artifact of
the mean-field approximation. Numerically we find that
the condensates a0 and b approximately satisfy
gao= —2.47co, for —,'g'/g &N and ga0=2. 47co, for
—'g'/g )pj;

We have looked at the sensitivity of the critical tern-
perature as a function of chemical potential. With
%=10, and g'/g=9, chemical potentials of p=0.005,
0.01, and 0.02 eV give critical temperatures of 62, 125,
and 348 K, respectively. Thus, the critical temperature is
also a fairly sensitive function of chemical potential. We
will comment further on the significance of this phase di-
agram in Sec. IV

We have also done an analytic calculation that verifies
that the phase transition is second order. For small
values of b the sum involved in (6) can be approximated
by the Euler-MacLaurin formula. To order b we find,
after eliminating a0,

c4 = (1—u )(2u —1)u
I

96m T
4 2 (10)

277

g

1 2m.

u4 g2
1 7

u 2 240

u = 1

1+e
It is apparent from (9) that the phase transition is second
order. The possibility that the phase transition is weaker
than the second-order transition predicted by mean-field
theory cannot be ruled out. Some Abelian two-
dimensional continuum gauge theories have been shown
to possess a Kosterlitz-Thouless transition. The original
Chem-Simons theory (1) has been formulated on the lat-
tice and it has been argued to also undergo a Kosterlitz-
Thouless transition. ' So far, vortex solutions have not
been found in the continuum theories (1) or (5). There-
fore, the softening of the transition due to the Kosterlitz-
Thouless mechanism in these theories remains an open
problem.

This expansion also reproduces the upper and lower
critical values of g' which were obtained numerically (see
Fig. 2). In order that a nonzero b is generated, c2 must
be positive. At T=O this means that only if g lies in the
window

1
2 —2—

3N
(2+ 2—gg 1

2' 3X

' 1/2

will a Chem-Simons magnetic field be generated. With
N=10, (11) gives g';„=4.65 and g',„=27. Finally, for
g' in this window, T, can be computed from the condi-
tion c2(T, )=0. For the numerical example above, u,
=0.7172, P,p=0. 9307 which gives T, =125 K.

III. FINITE-TEMPERATURE MEISSNER EFFECT

There is a simple argument, due to Chen et al. ," that
the Chem-Simons model described by (1) exhibits the
Meissner effect at T=O as long as 2m/g =N=integer.
It is based on the observation that, with these values of
the coupling, there is complete band filling up to some
Fermi energy. This leads to an energy gap. Imposition
of an external magnetic field costs an amount of energy
proportional to ~B ~. Therefore, magnetic fields will tend
to be excluded. In our case, the self-consistency condi-
tion (8) evaluated at T=O is 2n/g =N N+, where-
%+ and X are the number of filled levels of o.= + 1 and
o = —1, respectively. If we choose 2m/g =N, then one
finds numerically that N+ =0 and N =X for T=O.
Hence, we have completely filled levels for the —parti-
cle, and the elementary argument of Chem et aI. can be
applied. At T)0 the analysis is more involved. That is
the topic of this section.

We have carried out finite-temperature calculations
analogous to the zero-temperature calculations of Ref. S
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which showed that the model (1) exhibits a Meissner
efFect. We couple the fermions to the electromagnetic
vector potential A„with the covariant derivative
D„=B„ ieA iga—„o3, and include the Zeeman term
—(e/2m )BP o 3g in the Lagrangian. ' The material oc-
cupies the half-plane x2 ~ O. A real, weak, static, magnet-
ic field 8 is applied in a direction perpendicular to the
plane. We work in the Landau gauge. Inside the materi-
al the vector Potentials are 20(xz), A, (xz), Hz= 33=0,
and the condensates develop nonzero fluctuations such
that

a0(xz ) =a0+a0" (xz ),

a, (xz)= b' 'x —+a'"(x )

H=HO+ V,
1H0= — [(c),—igbxzcr3) +c)z]

2m
b(o)—ga0cr, +— (g'cr, +g"),

1V= — (ga', "o3+eA, )(gbxzo 3+id, )

+ [(g'o 3+g")b'"+eBo3]
1

2m

—(ga0 'o3+eA0) .

The zeroth-order solutions satisfy

(O) — (O)
HOWnkrr encr4nko

(13)

(14)

(15)

a&=0,

where the superscript denotes the shift in the Chern-
Simons vector potential caused by the imposition of the
real magnetic field.

We proceed in the following way. First we calculate
the electromagnetic and Chem-Simons currents to first
order in perturbation theory by writing the Hamiltonian
as H=Ho+ V, where Vis first order in the small quanti-
ties A0(xz), A, (xz), a0" (xz), and a', "(xz).Then we sub-
stitute these results into the equations of motion from (5)
to obtain four equations for the four unknown variables

2 f20 E2 +20 b f 12 B +12 Note
e'=E'= j2=J2=0. Finally, we solve these equations by
implementing a local-density approximation as in Ref. 5;
that is, we assume that the perturbing fields vary over 3
distance much larger than the average Bohr-Landau ra-
dius.

The Hamiltonian, to first order, is

E'n = n + + + 0 COq ~ COq
=1 g" 1 g' glbl (16)

2 2 g 2 g m

We impose a periodic boundary condition in the x i direc-
tion, g(t, x„xz)=g(t,x, +L,xz). Taking the thermo-
dynamic limit L —+ ce, and defining the magnetic length I
by 1 = lgb' 'l, we have

(0) 1

(iL )1/2

lkX I
x2'u„o. +kl U

[,

u„(z)=
I /2

e ' ~H„(z),
2"n! 1r

(17)

k= p, pEZ=2~
L

03U~ =OU~

The first-order corrections to the wave function are
given by

~ x x
k (x1 x2)= & X

" f dy1dyzk 'k' '(yl yz)v(yl yzW k (yl yz)
k', o' n'Wn ~no. ~n'o'

dyf u„(oy )u„(oy )C(y, k, o ),

C(y, k, o ) = [ga', "(y)o +eA1(y)][gb' 'yo +0]+m [ga0" (y)o +eA, (y)] —
—,'[g'o. +g")b"'(y)+eB(y)o ] .

(19)

(20)

Now we can calculate the currents to first order. For example, to first order, the zeroth component of the elec-
tromagnetic current is given by

(J0(x))=e(p (x, t)g(x, t)), (21)

rf a k (Pk +0k
n, k, o.

's'

Substituting in, we obtain

(22)

(23)

—(J0(xz))= gP; +Ir" [C(y, k, cr);xz],e 2&;. "
where the linear functional is
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&[b(y, k, cr) x2]=—g p,. g, f d — J d(kl)h(y, k, a )u; o —+kl
. i' —i —~ In, O E WE

I

3' X2 X2
Xu; o.—+kh u; o. +kl u; o. +kl

l ' l (25)

Recall that u,.(x) are the normalized, one-dimensional harmonic-oscillator wave functions. The integrand contributes
significantly only in the vicinity of y =x2 because of the Gaussian falloff of the Hermite polynomials. We evaluate the
integral by expanding the function C(y, k, o. ) in a Taylor series about xz. Using the orthogonality relations of the Her-
mite polymonials, we obtain

—Jo(x2) = gp„ 1+l (gb"'+ecrB)+I mc)z(go fo2+eE2)

+ (g—'o +g")c)zb"'+ ecrBzB—+ o l—(2n + 1)c)z(go b"'+eB ) (26)

In the same way we calculate

i '=g4'aA (27)

H'J'= q"" y+H. c. + ' e'~aj(y'a, q),27?l 2ppz
(28)

,g~, II'j'= pt p+H. c. + e'~d'[g (g'o +g")Q],
2tPl 2' (29)

II'= —i 8'+e A ', (30)

II'= —i 0'+ga' .

The results are

gib l—(jo(xz) ) = g crp; +K[o C(y, k, a );xz]2&;.

gb g op„ 1+1 (gb'"+eoB)+I mc)2(go f02+eE2)
n, cr

+ (g'o+g")—8 b'''+ ecrB B+ crl —(2n+—1)B (gcrb" +eB) (31)

T

1 glbl g p; (eA, +gcra, )+K co, x2+crC(y, k, cr);x2
kI 2& m

1
~,(j,(x, ))

2pplg

gb=2 XP..
n, o

I2al (gaf02+eE2) — d2[—(g'o+g")b"'.+eoB]

$2
(2n+1)&2(gob'"+eB) ——(2n+1)crl d2(gcrfo2+eE2) — dz(jo(x2)),

Pg 4. 2P1g
(32)
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pop; eA &+go a j +K o. co,xzo+ C(y, k, cr);xz
m 2& m

7

, B,&j,(x, ))— &,&&,(x ))
2mg 2mge

gb—
2 XP..

l, CT

j'2
l (g—o foz+eEz) — Bz[(g'cr+g")b'"+eoB]

j'2
(2n+1)Bz(gob'"+eB ) ——l (2n+l )Bz(go foz+eEz)

tlg, B,&j,(,))—
2mg2 2mge

(33)

We note that calculating the wave functions in first-order
perturbation theory is completely equivalent to using
standard linear response theory. '

Substituting these results into the equations of motion
from (5},

P [ePvzf'

O=Ez( eml n—IA, )+foz( gml —no/A),
+b~'~(l4g'no/2A, +3gl v/2A. )

+B(el no+3el vo/2l ), (41)

()=Ez( lzen 3—el4v/2—A, )+foz( l gno 3gi vo/2~ }

dg~ =J" en06"— (35) +b'" (g'l'mnoli, +4gml'vlk)
2m

where —en 0 is the background neutralizing charge densi-
ty, we obtain a set of four coupled, linear, di6'erential
equations. We have analyzed this set of equations using
the local-density approximation as given above. We as-—x2/A,
sume the fields vary as e ', where A, )&l. We define

gb"+ - Xp~i2K

+B
z (2eml vo/A, ),

m
(42)

+b'" (2gml vole, )+B
m

1
(2eml V/A, ) .

O=Ez( el no —3el—vo/2A, )+foz( —31 gv/2A. )

gb
n = gp„2& .
v+ = g (n+1/2)p„, ,

gb
2K .

v = g(n + 1/2)p„gb
2& .

In the limit that b ~0, we find that

no =n+ +n -const,

&0=&++v —1/b,
&=&+—v -const .

(37)

(38)

(39)
A, =A,~+i%

2no

1/2

l(1+iv'2) . (44)

We emphasize that this is valid only in the limit T~ T,
from below. Physically, it is clear that the penetration
depth should diverge in this limit. As T~T„
no —+const, but vo and l both diverge as
b '-(T, T) '~ . Hence,—A, -(T,—T) '~ . In partic-
ular, the magnetic field behaves as

(43)

It is straightforward to solve these equations for k. It
turns out that A, is complex:

Then, to lowest order in b, we must solve the four equa-
tions

—x2 /A, ~ X2
B(xz)=B(0)e ' "cos

2 R

O=Ez( eml nolk, )+—foz( —gml v/A, )

+b"'(l gno+3gl vo/2A)+B(el n+3. el V/2A, },
(40)

There is a Meissner effect below T, but not above. Super-
conductivity terminates at T, . In the zero-temperature
limit, it is easily demonstrated that the fields are exponen-
tially screened with a penetration depth given by the
London expression X( T=0)=Q m /e no
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IV. CONCLUSIONS

%'e have obtained a phase diagram for a superconduct-
ing phase transition that appears qualitatively similar to
the one proposed by Chakraverty' which led Bednorz
and Muller' to their discovery of high-temperature su-
perconductivity in a material with copper-oxide planes
that contain symmetric Cu + ions and Jahn-Teller-
distorted Cu + ions.

It was recently pointed out by Heinz and
Tscheuschner' that the electron-phonon interaction
which produces the Jahn-Teller effect is mathematically
similar to our own interaction term. These authors sug-
gest that fictitious magnetism or anyon statistics is creat-
ed from quantum-mechanical nonlinear acoustics in
(2+1) dimensions. Essentially, an electron imbedded in
its own surrounding lattice distortion, and interacting
with the vibration modes, is an anyon seeing an effective
magnetic Aux. Two electron bands give rise to two anyon
types, or flavors.

It may also be possible to interpret our model in the
following way. The Chem-Simons Lagrangian describes
a system of particles with charge, with an extra term that
gives these particles fictitious Aux. These particles ac-
quire fractional statistics through what is essentially the
Aharanov-Bohm effect. It should be equivalent to study
a system of particles with nonzero magnetic moment,
with an extra term which gives these particles fictitious
charge, since such particles would develop fractional
statistics through the Aharanov-Casher effect. ' Such a
formulation is of interest to us because a nonrelativistic
particle with magnetic moment and no charge in an elec-
tromagnetic Geld is equivalent to a particle with an addi-
tional fIavor degree of freedom, minimally coupled to an
SU(2)-valued gauge potential. ' '

These ideas lead us to consider the Lagrangian of a
particle with charge e coupled to a field a„, and a mag-
netic moment A. coupled to a field strength F„,

iy„(r)„iea„)——m ——o„g" (45)

Using a covariant generalization of the transformation of

Ref. 17,

g P(3) i P3vkF
2 vA, (46)

this Lagrangian can be rewritten in terms of a U(1) field
a„and an SU(2) field A „". In (2+ 1) dimensions, (45) and
(46) become

X=P[iy„(d„ie—a„) m—+iAy„y , e" ai ' jg . (47)

The magnetic-moment interaction is equivalent to a
chiral-type interaction with a non-Abelian field. In the
nonrelativistic limit this becomes

(48)
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where P is a two-component Pauli spinor and D„
=r)„iea—„ik,rr —A„''. A comparison of (48) and (5)
seems to indicate that the Aavor degree of freedom which
we have introduced is related to a chiral degree of free-
dom. A Chem-Simons term does not appear at this level,
but may appear at higher order in the expansion. These
ideas will be explored in future work.

In summary, we have shown that there is a class of
Chem-Simons theories in two dimensions which undergo
superconducting phase transitions at finite temperature.
An essential feature of these theories is that the Chern-
Simons gauge field couples to an internal degree of free-
dom of the fermion. Superconductivity occurs only for a
finite window of magnetic moment coupling g'. The
phase transition appears to be second order. Further
progress along these lines depends on either a demonstra-
tion or refutation of this class of theories in real materi-
als.
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