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Complete solution of the antiferromagnetic Heisenberg rings with N = 12—16 sites
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We present results of a complete and exact diagonalization of the antiferromagnetic Heisenberg Ham-
iltonian for rings with %=12, 13, 14, 15, or 16 sites.

I. INTRODUCTION

There has been a considerable effort over more than 60
years to achieve a better understanding of the spin- —,

'

quantum Heisenberg system. Some analytical results are
known for one-dimensional rings with periodic boundary
conditions: (1) Bethe's ansatz' allows for an exact com-
putation of some quantities in the thermodynamical limit,
e.g., the ground-state energy. However, there are also
quantities of physical interest which are not easily acces-
sible via the Bethe ansatz, e.g., wave functions and spin-
spin correlation correlation functions. (2) There exist
higher conservation laws. The associated quantum num-
bers can be used for a complete characterization of the
energy eigenstates and their degeneracies.

The antiferromagnetic Heisenberg (AFH) model with a
limited number X of sites was studied numerically. The
ground state has been computed by Oitmaa and Betts on
lattices up to 16 sites. Using a modified Lanczos algo-
rithm, the authors in Ref. 5 were able to enlarge the size
of the lattice to 24 sites. A complete diagonalization of
the AFH Hamiltonian for rings with X =2—11 was per-
formed by Bonner and Fisher. They were able to com-
pute exactly the thermodynamical and magnetic proper-
ties of the model. These results, obtained on rather small
systems, yield a useful check for "less exact" algorithms
like Monte Carlo, which can be performed on much
larger systems. It is the purpose of this paper to present
the results of a complete and exact diagonalization of the
AFH Hamiltonian with X =12—16 sites. The outline of
the paper is as follows. In Sec. II we discuss the quantum
numbers which characterize the energy eigenstates and
show the distribution of the energy eigenvalues and their
degeneracies. In Secs. III and IV, the thermodynamical
and magnetic properties of the AFH model are presented
and compared with the previous results of Bonner and
Fisher. Spin-correlation functions and the temperature
dependence of the correlation length are studied in Sec.
V. From a finite-size scaling analysis we conclude that
the correlation length g( T, N ~ ~ ) diverges with a criti-
cal exponent close to one as we approach zero tempera-
ture (T~O). In Sec. VI, we present results on thermal
averages of an operator corresponding to a "higher" con-
servation law in the one-dimensional quantum Heisen-
berg model. Finally, in Sec. VII, we discuss the surpris-
ing behavior of the thermal average of the modulus of the
momentum: In the thermodynamical limit it seems to be
~/2, independent of the temperature.

II. ENERGY KIGKNVALUES:
DISTRIBUTIONS AND DEGKNKRACIES

The isotropic AFH Hamiltonian for periodic rings
with N sites is defined by

N
H= ,' g o—(x).tr(x +1),

x=1

where

(2.1)

[H,P]=0 .

(2) ReAection invariance

(2.2)

[H,R]=0 . (2.3)

The reAection operator R transforms states with momen-
turn p into those with momentum —p. Therefore, it an-
ticommutes with the momentum operator

IR,PI =0 . (2.4)

(3) Rotation invariance, which implies the conservation
of total spin:

S= g S(x), [H, S]=0 . (2.5)

The total spin operator is translation and reAection in-
variant:

[S,P]=0, [S,R ]=0 . (2.6)

In addition, there is an infinite set of "higher" conserva-
tion laws F„. For the classification of energy eigenstates,
the most important one is

F3=i QE(x, x+1,x+2),
(2.7)

[H, F3 ]= [P,F3]= [S,F3]=0
with

E(x»x2, x3)—E,&,S,(x& )S&(x2)S,(x3) (2.8)

F3 commutes with II, S, P, but anticommutes with R:

cT=(o „o.2, o3)

is the vector of Pauli matrices. The obvious symmetries
of H are the following.

(1) Translation invariance, leading to momentum con-
servation,
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IF3RJ=O.
We classify the eigenstates

(2.9) so(N) —so(~ )=m a/(6N ),
s,(N) —Eo(N) =rr b/N

(2.15)

(2.16)

lE, s,s„p,A, & (2.10)

by the eigenvalues of H, S, S3, P, F3. Due to the an-
ticommutation rules (2.4) and (2.9), the states

RIE, s,s,p, ~) (2.11)

are eigenstates of P and F3 with eigenvalues ( —p, —
A, ).

On the other hand, H is symmetric under R. Therefore,
the eigenstates (2.10) and (2.11) have degenerate energy
eigenvalues. In other words, there is at least a twofold
degeneracy of all eigenstates with quantum numbers

(p, k) and ( —p, —
A, ). Nondegenerate energy eigenstates

must have quantum numbers (p =O, m; A, =O). In particu-
lar, the nondegenerate ground state is found in the sector
characterized by the quantum numbers

s =0, p =0, A, =O for N=4, 8, . . . ,

s =0, p =m, A, =O for N =6, 10, . . . .

The first excited state has quantum numbers

s=1, p =m, A, =O for N=4, 8, . . . ,

s =1, p =0, A, =O for N =6, 10, . . . .

(2.12)

(2.13)

lpol =~/2(1+1/N), lp, l
=~/2(1 —3/N)

for N =3,7, 11, . . . ,

Ipol =sr/2(l —1/N), Ip& I
=m'/2(1+3/N)

for N =9, 13, . . . .

(2.14)

The situation looks quite different for rings with an odd
number of sites where the ground state and the first excit-
ed state have spin —,

' and —'„respectively. The momenta of
the ground state and the first excited state are listed in
Table I.

From Table I we read off the following rules for the
momenta in the ground state and in the first excited state:

a = —2.04, b=1.83 . (2.17)

It should be noted that the ground-state energies eo(N)
for N even and N odd approach the thermodynamical
limit from below and above, respectively,

eo(N) l~,„,„&eo( ~ ) & eo(N) l~,sd . (2.18)

Apart from the trivial s3 degeneracy, we found for the
ring with N =16 sites the following degeneracies in the
spectrum of energy eigenvalues;

(1) For EA2, 4, 6 all eigenstates (2.10) and (2.11) with
pAO, n are exactly twofold degenerate. All nondegen-
erate eigenstates are symmetric under the reAection
operator R and have quantum numbers (p =0, rr; A, =0).

(2) The eigenstates with energy eigenvalues E =2,4, 6
show additional degeneracies, which are not related to
the refiection symmetry R: (a) There are two eigenstates
with E =2 and p =0:

lE=2, s =5,s3 p=0, A, =O),
lE=2, s =6,s3,p=0, A, =O) .

(2.19)

Note, that the two states differ in their total spin. (b)
There are eight states with E =4 and p =m".

lE=4,s=4, s3,p =m, A, =O),

For N even, this behavior has been verified numerically in
Ref. 9 and the constants a and b, which can be identified
with the central charge, turn out to be one. To our
knowledge, predictions of conformal invariance for the
finite-size behavior of the lowest states in the AFH model
with N odd have not yet been worked out. We observe,
in our results for N = 13,15 and in the previous results of
Bonner and Fisher for N =5,7,9, 11 a behavior of the
forms (2.15) and (2.16), but the constants a and b seem to
be quite different from the case where N is even:

The validity of these rules for odd values of NX5 can be
verified by means of the Bethe ansatz. For N=5, the
momentum of the ground state is lpo l =a/2(1 —

—,
'

) in ac-
cord with (2.14). The momentum of the first excited
state, however, is zero. Conformal invariance gives pre-
dictions for the finite-size behavior of the ground state
and of the first excited state with periodic boundary con-
ditions

lE =4,s =7,s3,p =sr, A, =O),
lE =4,s =6,s3,p =m, A, =+6.9422 35),
lE =4,s =6,s3,p =m, A, =+12.508 81),
lE =4,s =6,s3,p =n, A, =+15.595 32),

(c) There are three states with E =6:

(2.20)

TABLE I. The energies per spin and the momenta of the ground state and the first excited state for
rings with an odd number of sites.

15

co(N)
poN /2m
—~,(x)

0.5
1

—0.5
0

0.747 21
1

0.3
0

0.815 77
2
0.516078
1

0.843 84
2
0.696 04
3

0.857 99
3
0.725 821 3
2

0.866 089 8
3
0.769 519 3
4

0.871 155 6
4
0.797 573 8
3
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lE =6,s =7,s3,p =+~/2),
lE =6,s =6,s3,p =n., A, =O) .

(2.21)
and the entropy per site

S(T,N)/N= [U(T,N) F—(T,N)],1
(3.2)

Here, the states di6'er in their total spin As =1 and mo-
menta hp =+m. /2. This type of degeneracy can be found
on all rings with an even number of sites.

The density of states N(E, s) as a function of the ener-
gy E is plotted in Figs. 1(a)—1(0 for the total spin sectors
s =0, 1,2, 3,4, 5 of a ring with X =16 sites. These distri-
butions show some characteristic features: (1) Small en-
ergy eigenvalues, which determine the low-temperature
behavior, are accompanied by small values of the total
spin s =0, 1,2. (2) The maximum of the distribution
N(E, s) and its average value increase with s. The distri-
bution of the nondegenerate eigenvalues, which are all
zero modes of F3, are marked in black.

III. INTERNAL ENERGY AND ENTROPY

From the distribution of the energy eigenvalues,
presented in the last section, we obtain the thermo-
dynamical properties of the AFH ring. The internal en-
ergy per site

where F(T,N) and Z(T, N) are the free energy and the
partition function, respectively,

F( T,N) = kT—lnZ (T,N),
Z(T, N) = Q N(E)exp( E/—kT),

E

N(E) = g(2s+1)N(E, s),

(3 3)

(3.4)

(3.5)

are shown in Figs. 2 and 3 together with the results for
X = 11 of Ref. 6. It has been already observed by Bonner
and Fisher that the internal energy per site u ( T) and the
entropy per site s ( T) in the thermodynamical limit
(N ~ ~ ) are bounded from below and above by the cor-
responding quantities on finite systems with N even and
odd, respectively,

U(T, N)/Nl~, „,„&u (T) & U(T, N)!Nl~, dq, (3.6)

S(T,N)/Nl~ „, &s(T) &S(T,N)/Nl~. dd .

U ( T,N) /N = g N (E)Eexp( E lk T)—1

SZ E
(3.1) The upper and lower bounds coincide for T values:
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FIG. 1. The densities of states N(E, s) in the sectors with total spin s =0, 1, 2, 3, 4, and 5 on a ring with N = 16 sites.
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-0.775

—0.825

the system. This indicates already that the correlation
length is increasing as we approach zero temperature.
The correlation length will be investigated in Sec. V. One
might ask whether the bounds (3.6) and (3.7) may help to
find a clever extrapolation to the thermodynamical limit.
For example, Bonner and Fisher introduced weighted
means of their results for N = 10 and 11 in order to esti-
mate the low-temperature behavior in the thermodynami-
cal limit.

Here, we propose weighted means of our results for
N =15 and 16:

—0.85
11

—0.875

u(T)=p(15)U(T, 15)/15+p (16)U(T, 16)/16,

s(T)=p(15)S(T, 15)/15+p(16)S(T, 16)/16 .
(3.9)

—0.9 14

We will assume that the weights p (15) and p (16) are in-
dependent of the temperature and are the same for all ob-
servables. Since we know the ground-state energy per
site in the infinite system from the Bethe ansatz,

—0.925

—0.95
0

I

0. 1

I I I I I I

0.2 0.3 0.4 0.5 0.6 0.7 0.8
kT

u ( T = 0)=
—,
' —21n2,

we can compute the weights

p ( 15 ) =0.300 35, p ( 16)=0.699 65 .

(3.10)

(3.11)

FIG. 2. The internal energy per site vs temperature.

kT &08 . (3.8)

The weighted means (3.9) are represented in Figs. 2 and 3
by dashed curves. The thermodynamical Bethe ansatz'
and conformal invariance" predict a linear behavior at
low temperatures for the specific heat and the entropy
per site in the thermodynamical limit

In this domain we see already on finite systems (N ) 10)
the limiting behavior for N —+ ~. This is not so in the
low-temperature domain, where we feel the finiteness of

C =1/3kT,
S/Nk =1/3kT,

(3.12)

(3.13)

0.32

with slope —,. This behavior is represented in Fig. 3 as a
straight line which is almost tangent to our extrapolation
(3.9) with the weights (3.11).

0.28
IV. MAGNETIC PROPERTIES
AND TOTAL SPIN AVERAGES

0 24 In the absence of an external field, the susceptibility
per spin

0,2 y(T, N)=:-(T,N)
1

(4.1)

0. 1 6 can be expressed in terms of the thermal average of the
operator S:

0.08

=(1/3N) ps(s+1)Z(T, s) Q Z(T, s) . (4.2)

0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
kT

Here we denote by

Z ( T,s ) = ( 2s + 1 ) g N (E,s )exp( EjkT)—
E

(4.3)

FIG. 3. The entropy per site vs temperature. The straight
1ine shows the 1ow-temperature behavior {3.12).

the partition function in the spin-s sector. Since we know
the distributions N(E, s) of energy eigenvalues in the
various spin sectors, the computation of the susceptibility
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lim =(T,N)=:-(T)
&—+ oo

and that the limiting function =( T) behaves as

(4.4)

is straightforward. For a study of the thermodynamical
limit N —+co, the quantity =(T,N) appears to be more
useful than the susceptibility itself. We expect that the
sequence =( T,N) has a proper limit for N ~~: R,

V

y,
'I 0
60

50

const for T~ ~,
:-(T)= '

y(0)kT for T~O . (4.5)

The high-temperature behavior expresses Curie's law,
whereas the low-temperature behavior means that the
susceptibility per spin converges to a finite nonvanishing
value. According to Grif5ths conjecture, ' the suscepti-
bility at T =0 is y(0) =0.050 66.

The =(T,N) with N even (odd) approach, the limiting
curve (4.4) from below (above):

30

20

(T N)~~ ( (T)( (T N)~~ (4.6)
10

This behavior is easily understood in the low-temperature
limit: For N=3, 5, . . . , the total spin values are half-
integers s =

—,', —,', . . . . The (antiferromagnetic) ground
state is found in the spin s =

—,
' sector. Therefore, we ex-

pect

0
0 0.2 0.3 0.4 0.5 0.6 0.7 0.8

kT

:-(T,N)-1/(4N) for T~O, N=3, 5, . . . . (4.7)

For X =4, 6, . . . , the total spin values are integers
s =0, 1,2, . . . . The ground state is found in the s =0 sec-
tor the first excited state in the s = 1 sector,

FIG. 4. The thermal average of S vs temperature. The
straight line shows the low-temperature behavior (4.5) with the
Griffiths value for the susceptibility yC,'0) =0.050 66.

:-(T,N) —(2/N)exp( b,E /kT), — (4.8)

:"(T) =p (15):-(T,15)+p (16):-(T,16) (4.9)

with weights (3.11). The linear low-temperature behavior
(4.5) (with the slope given by the Grifliths value) is almost
tangent to our extrapolation. This supports our assump-
tion (3.11) on the weights in Eq. (4.9).

V. SPIN-SPIN CORRELATION FUNCTIONS
AND THE CORRELATION LENGTH

In the absence of an external field, the spin-spin corre-
lation functions are defined as

coi(N) =4(S3(x)S3(x + l) )
=—', Z 'Tr[exp( —H/kT)S(x) S(x +I)] . (5.1)

The correlation functions multiplied with a factor ( —1)
are shown for N =15 and 16 in Figs. 5 and 6 as function
of the separation I and the temperatures

where AE is the gap between the ground state and the
first excited state.

The temperature dependence of:-(T,N) for
N = 11,13, 15 and N = 12, 14, 16 is shown in Fig. 4. The
dashed curve again represents the weighted mean

A

+ —1X 10

10

V)
V'

10

10

10

10

—7
10

10
8

I

10

kT=0.2,0.4,0.6,0.8, 1.0,2.0, 3.0,4.0, 5.0, 6.0.
For even N, the data points are well described by a

FIG. 5. The spin-spin correlators as a function of the separa-
tion l for N =15. The solid lines are extrapolations according
to Eq. (5.4).
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R.

+ —1X 10

V3

10

V)
V

10

10

10

10

10

—810

10
10 12

I

14 10

FIG. 6. Same as in Fig. 5 for N =16. The solid lines are ex-
trapolations according to Eq. (5.3).

FIG. 7. The inverse correlation length [g,(T,N)] ' vs tem-
perature.

hyperbolic-cosine-type ansatz,

cot(N) =( —1)'Ai(T, N)cosh[(N/2 —1)/g't(T, N)]

+ 2 z( T,N)cosh[(N/2 —1)/gz( T,N),
whereas one observed a mixed behavior for odd X,

co&(N) =( —1)'2 t(T, N)sinh[(N/2 —1)/g&(T, N)]

+ A2(T, N)cosh[(N/2 —1)/g'2(T, N)) .

(5.2)

(5.3)

Note that all the terms in (5.2) and (5.3) respect the sym-
metry property of the correlation functions

col(N)=co~ I(N). (5.4)

The amplitudes A;(T, N), i =1,2, and the correlation
lengths g; ( T,N), i = 1,2, were determined from the corre-
lators at the four innermost sites. For an unambiguous
determination of these parameters, it is crucial that our
correlation functions are calculated exactly. In general,
the mere existence of statistical errors in a Monte Carlo
simulation prevents a clean separation of the lowest mode
(with correlation length g, ) from the excited modes.

The inverse correlation length g& '(T, N) as a function
of the temperature and the number of sites N = 12, 13,
14, 15, and 16 is shown in Fig. 7 in a log-log-plot. The
curves coincide for temperatures k T )0.8 and split
below this value due to finite-size effects. There are
strong arguments that the system becomes critical at
T =0 in the therrnodynamical limit. ' Therefore, we ex-
pect the correlation length g't(T, N)~ac ) to diverge at

T =0. In this case, a standard finite-size scaling ansatz'
should be applicable:

g)(T, N)/g)(T, N~ ~ )=f [N/gt(T, N~ ac )] . (5.5)

To our knowledge, the type of the divergence in the
correlation length is not known so far for the one-
dimensional AFH model. It may be an exponential
one —as it appears to be in the two-dimensional case'—
or an algebraic one. We tried to answer this question by
analyzing our data with the scaling ansatz (5.5). We
found that an exponential singularity does not fit,
whereas the power-law ansatz

gt( T,N~ ao ) —(kT) (5.6)

leads to good results for v values close to one. Figures 8
and 9 show the scaling functions (5.5) for v=1.0,
N =12, 14, 16 and X =13,15, respectively. The rescaled
correlation lengths coincide almost exactly near the
phase-transition point T =0. However, the scaling func-
tions differ slightly from each other for the ¹ ven and
¹odd cases. This is an accord with our experience of
other thermodynamical quantities: The approach to the
thermodynamical limit is quite different for N even and N
odd. If one changes the critical exponent v, the scaling
behavior starts to disappear at v&0. 95 and v) 1.05.
This gives an estimate on the error in v. The subleading
correlation lengths gz are plotted in Fig. 10 for N =12,
13, 14, 15, and 16. They seem to suffer much more under
finite-size effects. Concerning the amplitudes A;( T,N),
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1.0

0.6

0.3

L M . L
5 10 'I 5 20 —110

I I I I I

kT

5.6 for v=1.0 and N=12, 14,FIG. 8. The scaling function (5.6) or v=
16.

n th (T,X)] ' vs tem-FIG. 10. The inverse correlation lengt
perature.

'D
0

1.2

ur arametrizations (5.2) and 5.3), we only

sense: A, (T,N) shows the T dependence, as we expec
r =; i T N) which is much smaller thanfrom co (N)=1; Az, , w i

A ( T N) decreases for increasing
0

in T values.
~ ~

ted that the parametrizationsinall, it should be note, a
are a licable for nonvanishing tempera-(5.2) and (5.3) are app ica e or ra-

onl, At T =0, the corre ation un
n (

—1)'/l for large separations I.
ues of X and T, we were not able to

n' to decrease as

b h
' f hle the subleading power-law e avior

I d d looking for an op-onential behavior. n ee,
1 d that the subleadingtimal parametetrization, we rea ize a
are best fitted by a secondcontributions to the correlators are es e

exponential.

0.8 VI. THERMAL AVERAGE
OF A HIGHER CONSERVATION LAW

0.6
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Having classified the energy g . b thener ei enstates (2.10) by the
H S S P, and F3, it is straig or-quantum numbers H 3,
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g g, . l f the internal energy ands s, A, ). The resu ts or e

'

o
' hN en and Noddseemtothe thermal average oof S wit even a

b unds for theindicate that they yie un sield lower and upper oun s
of these quantities in the thermo ynam

k hether bounds of the type
f r the thermal average of the

is motivated us to loo w e er
(3.6) and (4.6) also exist or e

2.operator F3-.

FIG. 9. Same as Fig. 8 for N ==13 15. (6.1)
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where

(6.2)

R,
CL

V
2.8

Indeed, this behavior is clearly seen in Fig. 11 where we
have plotted the thermal averages for N =13,15 and
N = 14, 16, respectively. 2.4

VII. THERMAL AVERAGE OF THE MOMENTUM

2.0

In Sec. II we pointed out that the modulus of the
momentum in the ground state converges to three
different values lp =O, m. /2, m. , depending on how we ap-
proach the thermodynamical limit: N=2(n+1), n, 2n,
where n is an odd number going to infinity. This peculiar
feature is shown in Fig. 12, where we have plotted the
thermal average & lp &( T,N) as a function of the tempera-
ture T and the number of sites N =13, 14, 15, and 16.
For these finite values of N, the thermal averages differ in
the low-temperature interval k T (0.5, but coincide
above this value:

& lpl &(T,N) =~/2

for T)0.8 and N=13, 14, 15, 16. (7.1)

1.2

0.8

0
0 0.4 0.8 1.2

I

1.6
I

2.4
kT

2.0

1.6

0.8

't3

15

I I

0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
kT

FIG. 11. The thermal average of the conserved operator F3.

We suggest that the splitting of & lpl &(T,N) at nonzero
temperatures TAO is a finite-size effect. Indeed, in all the
observables we investigated so far, finite-size dependences
were visible on our systems at kT (0.8. Therefore, we
expect that, in the thermodynamical limit,

FIG. 12. The thermal average of the modulus of the momen-
tum.

&lpl&(T, N~~)=~/2 for T)0. (7.2)

At first sight this behavior appears to be unusual. For ex-
ample, in a free Boltzman gas, the thermal average
& lpl &(T) is proportional to &T, due to the dispersion
relation between energy and momentum. In a quan-
tum system —with N momenta p =2m.n /N, n =0,
+1,+2, . . . and 2 energy eigenvalues —the notion of a
dispersion relation is not obvious. Since the momentum
is a conserved quantity, it is reasonable to split the Hil-
bert space of energy eigenstates into sectors of definite
momentum p. The most simple "explanation" of the be-
havior (7.2) would be that the distribution of the energy
eigenvalues N(E,p) in the different sectors is the same for
all momenta p (in the thermodynamical limit). The dis-
tributions N(E,p) plotted in Figs. 13(a)—13(i) for a ring
with 16 sites indicate that such a hypothesis might be
correct.

A behavior of the type (7.2) is quite plausible in the Is-
ing model. The distributions of the eigenvalues of the
Ising-Hamiltonian —which is obtained from (2.1) by the
substitution o(x) o (x +1)~o3(x)cr3(x +1)—are "al-
most" momentum independent, since two spin
configurations which are related by a translation have the
same energy eigenvalue. In general, this implies that the
energy eigenvalues are momentum degenerate. However,
this does not hold for spin configurations with special
symmetries under translations, which only allow for spe-
cial p values. For example, the configuration with all
spins parallel has momentum 0 only.

In this context, it is worthwhile to note how the anti-
ferromagnetic ground-state properties of the classical Is-



7484 K. FABRICIUS, U. LO%, K.-H. MUTTER, AND P. UEBERHOLZ

ing Hamiltonian differ from those in the quantum
Heisenberg model: For N even, the ground state of the
Ising Hamiltonian is twofold degenerate; there are two
possibilities to construct Neel states with complete anti-

ferromagnetic ordering. If the momentum operator is di-
agonalized, the momentum eigenvalues turn out to be 0
and ~.

For % odd, the ground state of the Ising Hamiltonian
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FIG. 13. The densities of states X{E,p) in the sectors with momentum p on a ring with X =16 sites.
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is 2X —fold degenerate. This is the number of states with

only one pair of parallel spins. If the momentum opera-
tor is diagonalized, each momentum value is found twice.

Therefore, the thermal average ( ~p~ )(T,N) will be
equal to vr/2 for all values of T in the Ising system. In
particular, there will be no splitting, as we observed it in
the AFH model for finite N.

VIII. CONCLUSIONS

By means of an exact and complete diagonalization of
the AFH Hamiltonian for rings with

X =11,13, 15,

aI1d

N =12,14, 16

sites, we have determined the following quantities
q ( T,N) as function of the temperature T and the number
of sites: internal energy per site, U( T, N)/N; entropy per
site, S(T,N)/N; thermal average, (S )(T,N)/3N; and
thermal average of the conserved operator (2.7),
(F3 )( T,N)/N. Combining our results with those of Ref.
6, we come to the following conclusion: For all values of
the temperature T, the quantities q ( T,N) decrease mono-
tonically for N =3, 5, 7, 9, 11, 13, and 15 and increase
monotonically for X =4, 6, 8, 10, 12, 14, and 16. This is,
of course, a strong indication that the q(T, N) on finite
systems with N odd and N even yield monotonic upper
and lower bounds on these quantities in the thermo-
dynamical limit

q (TN)~tt, „,„&q(TN ~ ) (q (TN)l~, dd .

To our knowledge, there does not yet exist a rigorous
proof for these bounds. Our results on the thermal spin-
spin correlation functions yield strong evidence for a
diverging correlation length g(T,N~ ao ) —T if we ap-
proach the critical point T~O.

From our computations of the thermal average
( ~p~ ) ( T), we conclude that this quantity is exactly rr/2 in
the thermodynamical limit for all temperatures T )0.
The origin of such a behavior has to be sought in the non-
trivial dynamics of the one-dimensional quantum Heisen-
berg system with its infinite series of higher conservation
laws. It will be interesting to see whether a similar be-
havior can be found in the two-dimensional cases as well.

The fact that the momentum of the ground state is a/2
and m if we approach the thermodynamical limit with
N =n and 2n, n odd, can be interpreted as a spontaneous
symmetry breaking of translation invariance: In contrast
to the Hamiltonian, the ground state is not invariant un-
der all translations. More precisely, the ground state is
not changed by translations, which are multiples of 4 for
N =n and of 2 for X =2n, .
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