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Green-function theory for an isolated magnetic impurity near the surface of a ferromagnet
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Localized states of an isolated magnetic impurity situated near or within the surface of a semi-infinite

Heisenberg ferromagnet are studied. A Green-function approach is used to determine the localized "de-
fect modes" and "resonance modes" associated with the impurity at energies outside and inside the re-
gions of bulk spin waves and surface spin waves. The density of spin-wave states is also calculated for
the case of low impurity concentrations. It is shown how the proximity of the defect to the surface leads
to modifications in the defect-associated modes.

I. INTRODUCTION II. THE GREEN-FUNCTION FORMALISM

It is well known from earlier work that localized spin
waves may occur associated with an isolated magnetic
impurity, or a low concentration of random impurities, in
bulk ferromagnets and antiferromagnets. The relevant
Green-function theories have been described by several
authors' in the context of the Heisenberg model. This
has led to the prediction of "defect modes" occurring
outside the band of bulk spin waves and "resonance
modes" within the spin-wave band. Related experimental
investigations have included the use of Raman scattering
and inelastic neutron scattering (e.g., see Refs. 6 and 7 for
reviews), as discussed further in Sec. V.

In this paper we derive a theory for the spin-wave
states associated with an isolated magnetic defect at or
near the surface of a semi infinite Heise-nberg ferromag-
net. In this geometry there may be surface spin waves as
well as the usual bulk spin waves. ' We find that both
types of spin waves inhuence the defect modes, giving rise
to a shift and (in some cases) a splitting of the infinite-
crystal defect modes. These effects occur because the
spin-spin correlations (as expressed through the spin-
dependent Green functions) are modified in the vicinity
of a surface and also because there are missing exchange
interactions due to the surface. We note that the pres-
ence of an isolated defect breaks the translational symme-
try parallel to the surface, so this problem is quite distinct
from theoretical studies for a layer of impurities embed-
ded in a semi-infinite magnetic medium, ' ' " where a
two-dimensional wave vector can be introduced for a
description of the energy spectrum of the impure system.

In Sec. II we present a Green-function formalism for
an isolated impurity spin embedded in a semi-infinite
Heisenberg ferromagnet at an arbitrary distance from the
surface. A simple-cubic ferromagnetic structure is as-
sumed, but the results may be generalized to other lattice
structures. The energies of the impurity modes are de-
duced in Sec. III and the spin-wave density of states is
discussed in Sec. IV.

The system under study is a semi-infinite ferromagnet
with a (001) surface and a simple-cubic structure (lattice
constant a). An isolated single magnetic impurity is tak-
en to be embedded in the medium at distance (1V —1)a
from the surface (where integer N ~ 1). The Heisenberg
Hamiltonian used to describe the system is

where S, is the spin operator at site r, having spin quan-
tum number S everywhere except at the impurity site (la-
beled by c) where the spin quantum number is denoted by
S'. We assume that the exchange J(r, r') couples only the
nearest neighbors, having values in the pure medium
equal to J, if both spins are in the surface layer and J oth-
erwise. The exchange interaction between the impurity
and its neighbors is denoted by J', with the exception
that when %=1 the exchange between the impurity and
its neighbors in the surface layer is J,'. The final term in
Eq. (1) describes an external magnetic field Bo applied to
the system in the z direction: h(r)=gpttBo—:h except at
the impurity site where h(r=c) =g'p&BO ——h', allowing
for a modified g value there.

Using the Holstein-Primakoff transformation, the spin
operators are expressed in terms of boson operators b,
and b, . At low enough temperatures (k&T « JS), the
linearized spin-wave approximation can be used to give

S,+ =(2S btb )'r~b =(2S—)'~ b, ,

S; =b,'(2S b,'b, )'"=(2S)'"—b,',
S', =S—b~b, .

At impurity site c the spin quantum number S above be-
comes replaced by the corresponding value S'. Substitut-
ing Eq. (2) into (1), we may write the linearized Hamil-
tonian as &=&0+&', where &o is just the Hamiltonian
for the pure semi-infinite ferromagnet:
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&o=S g g J(r, r')+h b,b, —S g J(r, r')blab,
r r' r, r'

(3)

and ~' is the perturbation due to the impurity. When
X) 1 we have

&'= —JS g (yb, bd+yb, bd eb—,b, Pb—dbd)
d

layer parallel to the surface. Also r~I and
r~~ are two-

dimensional vectors representing the projection of r and
r' in the xy plane, and n and n' are the layer numbers for
the sites r and r', respectively (with n = 1 being the sur-
face layer, etc.). The complex quantity x (satisfying the
condition

~
x

~

~ 1) is defined by

x+x '=(h —E)/(JS)+2[3 —cos(q a) —cos(q a)],
—(h' —h )blab, ,

where d runs over the six nearest neighbors of the impur-
ity at site c. Also we have defined the following quanti-
ties,

and 4 depends on
q~~

and the exchange parameters:

b, =2(J, /J —1)[2—cos(q a) —cos(q~a)] —1 .

(10)

1/2JI S~

s
J'S' J'—1, p= —1, e= —1.JS ' J

The bulk spin waves of the pure semi-infinite ferromag-
net correspond to ~x ~

= 1. Setting x =exp(iq, a ) for this
case, we obtain E=E~(q) from Eq. (10) where

In the special case of %=1 the impurity spin is in the
surface layer, where it has only fiue nearest neighbors and
the exchange interactions with the impurity spin may be
different from those in the bulk. The corresponding per-
turbation Hamiltonian for N = 1 is then

JS(yb,—bd. +yb, bd- eb, b, —Pbd-bd ~
—
)

—(h' —h )b,b,

JS g () sbcbd'+ Vsbcbd' sbcbc Psbd'bd') .
d'

Es (q) =h +2JS[3—cos(q a )
—cos(q a )

—cos(q, a ) ]

(12)

is the dispersion relation for bulk spin waves of wave vec-
tor q =(q, q, q, ). Also there are surface spin waves at
values of E corresponding to x = —1/6, provided the ex-
istence condition b,

~

) 1 is satisfied (e.g. , see Ref. 13).
From Eq. (10) we obtain the surface spin-wave dispersion
relation as

Here d" denotes the site on layer N=2 immediately
below the impurity at c, and d' runs over the four nearest
neighbors in the surface layer (%=1). Also y„e„and
p, are obtained, respectively, from y, e, and p in Eq. (5)
by replacing J' with J,' and adding a term (1—J, /J ).

We now introduce the retarded commutator Green
function G(r, r';t)=«b, (t);b, (0) » for the impure sys-
tem. Its Fourier component, defined as

G(r, r';E)=«b, ;bt »
QO

G(r, r', t)exp(iEt )dt,
2'7l

satisfies the standard equation of motion'

Ez(q) =h +2JS[2—cos(q„a ) —cos(q a )]
—JS( b. + 1/6, ) . (13)

If J, /J & 1 there may be acoustic spin waves, having ener-
gies below the bulk band, whereas if J, /J) 1.25 there
may be optic surface spin waves above the bulk band.

The Green-function equation of motion for the semi-
infinite ferromagnet with an impurity can be constructed
from Eq. (8) using the full form of the Hamiltonian &.
The result can eventually be expressed in the form of a
Dyson equation relating G(r, r', E) to the unperturbed
Green function G (r, r';E):

E«b„b,', », =, &[b„b,']&+«[b„m];b,". », . (8)
1 —g G (r, s;E)V(s, s') G(s', r';E)=G (r, r', E) .

S S

The corresponding unperturbed Green function can be
obtained by solving the above equation with & replaced
by &o. The solution, which represents the case of a pure
semi-infinite ferromagnet, is well known and given by'

G' '(r, r';E)= —g exp[iq~~ (r~~
—

r~~)]M 2'JS(x —x ')

Here V is an eAective potential related to the perturba-
tion produced by the presence of the impurity. It is
given, for X) 1, by

V(s, s') =2wJS g (P5, d5d, —y5 d5, —
y 5 5d, )

d

x xi"-"'i— 1+Ax
1+Ax

n+n' +2~JS [6e (h ' —h )/( JS ) ]5, ,5. .. —

where q~~=(q„, q ) and M is the number of sites in any and, for %=1,by
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V(s, s') = 2' JS g (p, 5, ~ 5~,.—y, 5, ~ 5, , —y, 5, ,5~, ) Di, = —g~G (1,1)+4y~G (1,2)

+2m JS(p5, q-5~-, .—y5, ~-5, , —y5, 5~ ~, )

+2m.JS[4e,+e (h—' —h )/(JS)]5, ,5, , (16)

+yG (1,7)+ I/(2nJS),

D2, = —$~G (1,2)+y~[G (1,1)+G (2, 3)

+2G (2, 4)]+yG (2,7),

We note that in the presence of an isolated impurity, the
translational symmetry does not exist in any of the three
dimensions. It is no longer possible to introduce a two-
dimensional wave vector as in the cases of a pure semi-
infinite medium or a layered system, and we have to work
in terms of the real space to solve the above Eqs.
(14)—(16).

DI. IMPURITY MQDES

In this section we solve for the energy spectrum of the
modes associated with the impurity. In the site represen-
tation, we label the impurity site c in layer X by index 1,
its four neighbors in the same layer by 2 —5, and its neigh-
bors in layers X—1 and %+1 by 6 and 7, respectively.
Clearly neighbor 6 is absent when %=1. The Dyson's
equation (14) can be rewritten in a matrix form,

[I G(E)V]—G(E)=G (E) . (17)

As in the corresponding calculations for an impurity in
an infinite ferromagnet, ' ' the only nonvanishing part
of the potential matrix V is a 7 X 7 submatrix correspond-
ing to the impurity spin and its six (five in the case of
N = 1) neighbors.

It then follows from Eq. (17) that the excitation ener-
gies associated with the impurity spin are give by the con-
dition

det[I G(E)V]=0—.

On substituting Eq. (15) or (16) into the above equation,
we find that the determinant can be factorized as

det[I —G (E)V]=D„(E)Ds(E)Dc(E), (19)

with

D~(E)=p~[G (2, 3)—G (1, 1)]+I/(2wJS), (20)

For convenience we have omitted the E labeling in the
site-dependent Green functions 6, and the elements of
the 4X4 matrix D(E) in Eq. (22) are defined by

Dg(E)=p~[2G (2,4) —G (1,1)—G (2, 3)]+I/(2~JS)

(21)

Dc(E)=detD(E) .

4 G'(I 6)

+y~[4G (2, 6)+G (6,6)+G (6,7)],
D4. i

= —g~G (1,7)+4y~G (2, 7)+yG (7,7),
Di 2=4[y~G (1,1)—p~G (1,2)],
Dp2=4y~G (1,2)—p~[G (1,1)+G (2, 3)

+2G (2,4)]+1/(2m.JS),
D32=4[y~G (1,6)—p~G (2,6)],
D~, 2=4[yxG (1,7)—p+G (2,7)],
D, 3=yG (1, 1)—pG (1,6),
D23=yG (1,2) —pG (2, 6),

(23)

D, , =yG (1,6)—pG (6, 6)+ I/(2~JS),
D4 3 =yG (1,7)—pG (6,7),
Di 4=yG (1, 1)—pG (1,7),
D =yG (1,2) —pG (2, 7),
D34=yG (1,6)—pG (6,7),
D44=yG (1,7)—pG (7,7)+1/(2mJS) .

Here we have denoted p& =p„y&=y„and
/~=4@, +e—(h' —h)/(JS) when %=1; and p~=p,
y~=y, and (~=6m —(h' —h)/(JS) when %~2. Note
also that for the case of %=1,all Green functions associ-
ated with site 6 are defined to be zero.

The impurity-associated modes in the semi-infinite fer-
romagnet may now be obtained from Eqs. (20)—(23) by
finding the E values for which D„(E)Ds(E) or Dc(E)
vanishes. It is useful to distinguish between "defect
modes, " which are nonresonant with any of the bulk or
surface spin waves of the pure semi-infinite ferromagnet,
and "resonance modes, " which occur for E within the
bands of bulk or surface spin waves. In either case the
first step is the evaluation of the position-dependent
Green functions G appearing in Eqs. (20)—(23). In any
specific application these may be found using Eq. (9) and
carrying out the summation over the two-dimensional
wave vector

q~~
numerically. For the case of defect modes

these Green functions are all real quantities, whereas for
resonance modes the Green functions will generally be
complex.

We first discuss the results for defect modes, since this
case is more straightforward. In Fig. 1 we show some
numerical examples in which the defect-mode energies
are plotted against J'/J for the cases of X= 1 (solid lines)
and X= 10 (dashed lines). In the latter case X is

sufficiently large that the curves are essentially the same
as calculated from previous theories for infinite ferromag-
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d(E) = ——Im g G(r, r;E)2

r

= ——Im ln detG (E),2 d —1

0 dE (29)

100

where Q is the total number of sites in the system. Be-
cause the density-of-states contribution from a single im-
purity (or even from a number of isolated impurities em-
bedded in one of the layers) will be negligibly small com-
pared with d(E) for a semi-infinite ferromagnet (due to
factors of order 1/Q), we adopt the following procedure
used in some previous calculations for surface problems.
We consider a low concentration C(N) of uncorrelated
impurities randomly distributed on a single layer, taken
to be at a distance (N 1)a fr—om the surface, and we in-
troduce a depth-dependent integrated density of states
defined as'

O
60

K

Q)
C5

20

9
E/JS

12

d(E, NO) = — Im g' G(r, r;E ),2

r
(30)

where the prime indicates that the three-dimensional
summation over r is here restricted to the first Xo layers
from the surface. The total number of sites in that region
is XoM, where M denotes the number of sites in any one
layer. Using Eqs. (17) and (19), the above Eq. (30) gives

d(E, NO) =do(E, NO) — Im ln det[I G(E)Vj-2C(N) d

o dE

=do(E, NO)

D„'(E) D~(E) Dc(E)
No D„(E) D~(E) Dc(E )

Im +2 +

(31)

Here do(E, NO) is the corresponding integrated density of
states of the pure semi-infinite ferromagnet and the prime
indicates differentiation with respect to E. Using Eqs.
(20)—(23), as well as the Green function of the pure sys-
tem to obtain do(E), numerical calculations of d(E, No)
can be carried out for any given values of J'/J, the im-
purity concentration C(N ), and No. The arbitrary cutoff
Xo for the summation in the z direction is essentially like
a normalization parameter; usually we would choose
Xo )1V.

In Fig. 5 we give a numerical example of D(E,NO ) cor-
responding to the case described in Fig. 3(a), taking
J'/J =4 and No = 15. The two-dimensional impurity
concentration in layer N =1 is chosen to be C(N ) =0.03,
low enough to neglect correlations among the impurities.
Due to the presence of the surface, the integrated density
of states for the pure system (see dashed curve) is no
longer symmetric about the midpoint of the continuum
band (at E/JS =7 in this example), even in the absence of
any surface mode. It increases slightly for the lower en-
ergy modes and decreases for the higher ones, similar to
the phonon cases. ' The peak in d (E,No ) (see the solid
curve) at around E/JS=13.2 is associated with the fac-
tor D~(E) and is therefore labeled by C. The width of
this peak is rather narrow (strictly it is a 5 function) be-

FIG. 5. The integrated density of states, plotted as a function
of E/JS, for the impure system (solid curve) and the corre-
sponding pure system (dashed curve), taking N= 1 and No =15.
The labeling of curves is explained in the text.

cause it is a "defect" mode, not "in resonance" with ei-
ther the bulk or surface modes for a pure semi-infinite
ferromagnet. On the other hand, the resonant feature
near E/JS=10. 8 is in fact composed of two nearby
peaks 3 and C, associated with factors D„(E) and
Dc(E), respectively. Since they are within the bulk con-
tinuum (E/JS & 13), the widths of these peaks are much
bigger than that of peak C and therefore they have short-
er lifetimes. Antiresonance modes' or "holes" in the
bulk region of the density of states are also obtained, cor-
responding to those negative peaks near E/JS=4. 5 and
7.8. If the isolated impurities are taken to be far below
the surface layer (the case of large N, when the surface
effects on the impurities can be neglected) we find that
our density-of-states calculations are consistent with the
results obtained by Izyumov and Medvedev' for the
cases of impurities in an infinite system.

V. CONCLUSIONS

In this paper we have studied the effects of an isolated
magnetic impurity embedded near the (001) surface of a
simple-cubic Heisenberg ferromag net. Within the
random-phase approximation at low temperatures
T(&T„we have employed Green-function methods to
calculate the spin-wave energies associated with the im-
purity spin for different values of J'/J, assumed to be
greater than or equal to zero. We find that both "defect"
and "resonance" modes are strongly affected by the sur-
face acoustic or optic modes, especially when the impuri-
ty is in layer %=1 or 2. If X becomes very large we re-
cover the previous results for infinite ferromagnets, as ex-
pected. We have also deduced results for the spin-wave
density of states for the case of a low impurity concentra-
tion. Here defect peaks are found outside the bulk
and/or surface mode region and resonance and antireso-
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nance peaks are found inside the bulk and/or surface
mode region, generalizing previous conclusions for
infinite bulk systems.

Some straightforward generalizations of the present
calculations would be to other crystal structures (such as
fcc and bcc) and to other orientations of surface. This
would allow applications to materials such as EuO and
EuS using, for example, Brillouin light scattering. Both
materials are good light scatterers and are optically rela-
tively opaque, making them suitable for surface studies
(e.g., see Ref. 7). It would be of interest to have Brillouin
scattering data for EuO or EuS samples with a low con-
centration of substitutional magnetic impurities. Anoth-
er extension of the theory is to the case of J'/J (0 (anti-
ferromagnetic impurity spin), which has already been
studied in infinite ferromagnets. '

A more interesting extension, however, is to the case of
an impurity near the surface of an antiferromagnet, since
impurity effects have already been extensively studied in
bulk antiferromagnets by experimental techniques such
as light scattering and neutron scattering, as mentioned
in Sec. I. For example, detailed Raman light scattering
studies have been reported' for the impurity modes ob-

served in bulk FeF2 with Mn impurities and bulk MnF2
with Fe impurities. Some theoretical results for impuri-
ties in semiin6nite rutile-structure antiferromagnets will
be reported elsewhere. '

We finally note that the type of Green-function formal-
ism employed here could, in principle, also be extended
to localized phonon states, assuming a model with short-
range force constants. An impurity atom near a surface
would, in general, perturb the force constants in its vicin-
ity and have a different mass from the other atoms. Some
calculations for the impurity-mode frequencies for special
cases, using methods different from that of the present
paper, have been given (see Ref. 16 and references
therein), including mention of a splitting due to the prox-
imity of the surface.
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