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Doping-induced incommensurate antiferromagnetism in a Mott-Hubbard insulator

E. Arrigoni and G. C. Strinati
Scuola Normale Superiore, I-56100 Pisa, Italy

(Received 24 April 1991)

Properties of incommensurate spiral spin phases are calculated at the mean-field level for a single-

band Hubbard Hamiltonian with variable hole density, by adapting both the Hartree-Pock decoupling

and the Kotliar-Ruckenstein slave-boson approach to a regular twist of the spin quantization axes from

site to site in a two-dimensional square lattice. The relative stability of the (1,1) and (1,0) spiral phases,

the coexistence of the antiferromagnetic and the spiral phases over a finite range of hole density, and the

sti6'ness of the spirals against fluctuations of their direction and pitch are discussed within the model

Hamiltonian over a wide range of hole density and interaction strength.

I. INTRODUCTION

The occurrence of incommensurate antiferromagne-
tism in strongly correlated fermion systems has been an
argument of considerable recent theoretical interest, '

in the effort to relate the interpretation of the physical
properties of high-temperature superconducting materi-
als to a theoretical understanding of the normal-state
properties of strongly correlated fermion systems. This
effort has been prompted by the experimental report of
incommensurate antiferromagnetism in Cu02-based
high-temperature superconducting samples of
La2 Sr„Cu04 . Since it is also established that the
La2Cu04 parent compound is a commensurate (Neel) an-
tiferromagnet, the incommensurate distortion of the spin
order has been ascribed to the system trying to adapt to
the addition of holes in the Cu02 planes upon doping.
Experiments have further indicated that incommensurate
order shows up when doping exceeds a threshold which
turns out to coincide with the minimal doping for super-
conductivity to occur. Although the coincidence of the
two thresholds may simply support the idea that both
phenomena are independently related to the hole mobili-
ty, people have unavoidably been led to speculate that the
spin state associated with incommensurability is a prere-
quisite for superconductivity to exist. A connection (if
any) between the two phenomena, however, has not yet
been established.

Pending this connection, it is worthwhile to study the
properties of the incommensurate spin state per se in
some detail. In this paper we shall, in particular, consid-
er the competition between the antiferromagnetic and the
spiral incommensurate phases upon doping. Several
questions can be addressed in this context. Specifically,
we will inquire about (i) the existence of various spiral
phases which may become energetically favored in
different doping ranges; (ii) the occurrence of a phase sep-
aration in hole-rich and no-hole phases which coexist in a
well-defined doping range where the homogeneous phases
are intrinsically unstable; and (iii) the stability of the
spiral phases against fluctuations in the direction and in
the pitch of the spirals. We remark that question (i) be-

comes relevant whenever question (ii) can be affirmed, be-
cause in this case the incommensurate phase present at
small doping could have only a finite pitch corresponding
to a phase stable at larger doping. We note, however,
that our discussion about the intrinsic instability of the
homogeneous phases against phase separation will be re-
stricted by neglecting additional physical effects (such as
the long-range repulsion among the holes) which could
effectively prevent it unless properly balanced (for in-
stance, by screening effects). ' Question (iii) hinges in-
stead on the spiral phases being envisaged as the underly-
ing structures for the construction of moment-free quan-
turn spin nematics in the presence of large quantum Auc-
tuations.

We base our calculations on a two-dimensional single-
band Hubbard model because we expect this model to
capture the essential physics present in the magnetic
properties of the high-temperature superconductors. We
perform two types of mean-field calculations based on
different decouplings of the Hubbard Hamiltonian for
itinerant holes, with the intent to cover a wide interaction
range from weak to strong coupling. We begin by consid-
ering a local magnetic Hartree-Fock decoupling along
spin quantization axes that twist regularly from site to
site of the two-dimensional square lattice, thereby yield-
ing a spiral spin pattern with constant direction and uni-
form pitch. We are able in this way to reproduce the nu-
merical results obtained recently by Schulz via an
effective action derived through functional integral
methods. We extend Schulz's results further by noticing
the occurrence of a discontinuous transition from the
(1,1) to the (1,0) incommensurate phases at finite doping.
For intermediate values of the Mott-Hubbard parameter
Ult we also find that the incommensurate phases are un-
stable against phase separation in a doping range which is
relevant to ceramic superconductors. We study next the
incommensurate phases via a mean-field slave-boson ap-
proach which adapts the Kotliar and Ruckenstein formu-
lation' when the spin quantization axes are regularly
twisting from site to site. Consistently with one s expec-
tation that the slave-boson approach is better suited than-
an ordinary Hartree-Fock decoupling in the
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intermediate- and strong-coupling regimes, we now find
the incommensurate phases to be stable over a consider-
ably wider doping range.

We have mentioned already that incommensurate
spiral phases have been discussed by several au-
thors. ' ' ' These calculations, however, have been
based on the t Jmod-el (or its variations) which can be de-
rived from the Hubbard model when Ult is large com-
pared to unity. Our findings of a transition between the
incommensurate spiral phases (1,1) and (1,0) at finite dop-
ing and of an intrinsic range of stability of these phases,
both occurring rather at intermediate values of U/t, were
thus precluded to those calculations based on the t-J
model.

The plan of the paper is the following. In Sec. II we
formulate the Hartree-Fock decoupling for spin spirals
by allowing the spin quantization axis to be site depen-
dent via a suitable transformation of the spin- —,

' operators.
The straightforward calculation which results suffices to
establish general trends for the relative stability of the in-
commensurate phases. In Sec. III the same questions are
faced with the slave-boson approach. Section IV gives
our conclusions. In Appendix A we describe the
Maxwell construction which identifies the doping range
where the antiferromagnetic and the spiral phases can
coexist in equilibrium, owing to an anomalous decrease of
the chemical potential with increasing particle number.
In Appendix B we finally show that the averaging over all
possible realizations of the site-dependent spin quantiza-
tion axes suffices to render the Kotliar-Ruckenstein
slave-boson approach manifestly spin-rotationally invari-
ant.

is the rotation operator which (apart from a phase) trans-
forms the eigenvectors of the Pauli spin matrix o., into
the eigenvectors of the matrix o (Q; )
=sin8; (cosy&, o +sing; oz ) +cos8;o, along the local
quantization axis specified by the spherical angles
Q;=—(8;,y;). Suppose that the set of angles IQ, I is
specified for all lattice sites. The Hamiltonian (2.1) can
then be transformed into an equivalent form that takes
explicitly into account the set of variable quantization
axes:

H(tQ;] )

=(E()—p) g d;p;&
i, g

+t g gd, ~[A (Q, )A(Q )]~~d (+H.c.

+ U g d,t+d, +d;t d; (2.4)

The invariance of the interaction term in (2.1) under the
transformation (2.2) is readily verified by writing

c;tc;tc;gc;g —
2 [(c;tc;t+c(gc;g) (c;tc;t+c;gc;i)] (2.5)

and noticing that

c;yc; y+ 0 gc g
=d;+d;+ +d. (2.6)

since the transformation (2.3) is unitary.
The mean-field Hartree-Fock decoupling of the Hamil-

tonian (2.4) is obtained at this point by the usual one-
body reduction of the interaction term:

U gd;+d;+d;
II. HARTREE-FOCK DECOUPLING WITH

TWISTING SPIN QUANTIZATION AXES

We begin by considering a single-band Hubbard Ham-
iltonian for a two-dimensional square lattice (in hole no-
tation)

~ U g m;P, .P,.
&

—U gm, +m,
i, g

where the (zero-temperature) average

m, ~=

(dt's,

~)

(2.7)

(2.8)

(2.2)

H = ( so p) g —c; c; + t g g c; c~ +H. c.
i o- &ij ) o

+ U gc;&c;tc;~c;&, (2.1)
l

where co is the site energy, p the chemical potential, the
double lattice sum is limited to pairs of neighboring sites,
and the spin projection o. refers to a common (say, z)
quantization axis. Although a more realistic multiband
Hubbard model could be considered with no difficulty,
we regard the simplified Hamiltonian (2.1) sufficient to
discuss the variety of magnetic phases we are interested
in.

Spin-symmetry breaking on the Hamiltonian (2.1) can
be achieved as follows. For each pair (c;t,c;& ) of destruc-
tion operators at a given lattice site i, we introduce the
unitary transformation

d;~= g [A (Q;)]g c, 8;=Q R;, (2.9)

has to be self-consistently determined.
Despite the local variable quantization axes, the Ham-

iltonian (2.4) with the replacement (2.7) can be diagonal-
ized by Bloch transforming the set of operators
[d,.&, i = 1,2, . . . , N I (X being the number of lattice sites),
provided

(i) the set of local quantization axes displays a regular
order, in the sense that each product % (Q;)A(Q~) de-
pends actually on R; —R and not on R,. and R sepa-
rately, where R; is the lattice vector associated with site

~ .13

(ii) the average (2.8) along the local quantization axis is
site independent. '

Since the two operators on the right-hand side of Eq.
(2.3) do not commute, condition (i) is fulfilled by setting

y,- =0 and choosing

where
—i ( q,. /2)cr i( 8,./2)cr—

Q,. =e ' 'e (2.3)
where Q is a wave vector belonging to the Brillouin zone.
With this choice we obtain



(2.10)(Q,. )Q(~ )
i(Q.(R,. —R ~~ )&z

Condition ~ii'~ii', implies instead

mg=m I +/my

+

+

'+
'IIL

+ + +

(2.11)
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10—20% accuracy) Schultz's results which have been ob-
tained via an e6'ective action appropriate to the strongly
correlated case. Figure 2 locates, in addition, the critical
doping 5, (at fixed t/U) beyond which the diagonal (1,1)
phase is no longer energetically favored with respect to
the transverse (1,0) phase. For small values of t/U
( 80.09), however, the continuous transition from the
(1,1) spiral directly to the ferromagnetic phase is pre-
ferred. For larger values of t /U ( ~ 0. 11) and larger dop-
ing than shown in Fig. 2, the paramagnetic phase has in-
stead the lowest energy.

In the weak and intermediate interaction regimes
( U/t 55) the transition from the (1,1) to the (1,0) spiral
phase occurs at smaller doping. A plot of the corre-
sponding critical doping in this region is shown in Fig. 3.

The vanishing of the spiral pitch parameter at small
doping over the whole range of t/U shown in Fig. 2
should mean that the antiferromagnetic phase is energeti-
cally favored at half-filling, with the spiral phases devel-
oping with continuity from the antiferromagnetic phase
for increasing doping. Physically, the spiral phases are
preferred for increasing doping because the kinetic ener-

gy of the holes can lower the total energy when neighbor-
ing spins are not completely antiparallel. ' Irrespective of
the continuity of the spiral pitch parameter at small dop-
ing, however, the present calculation implies that the
spiral phases do not actually evolve continuously from
the antiferromagnetic phase at half-filling; rather, the two
phases coexist in equilibrium from half-filling to a critical
doping (say, 5" ) with the system undergoing a first-order
phase transition. To show this we report in Fig. 4 the be-
havior of the chemical potential p(5) versus 5 for the two
spiral phases (1,1) and (1,0) and for two representative
values of U/t: in all cases, p(5) suffers initially an un-
physical decrease from the bottom of the empty antifer-
romagnetic band at 6 =0+ down to a minimum at 6=6
As is usually the case, we ascribe the occurrence of a dop-
ing range where dp(5)/d5 is negative to the implicit as-
sumption of our calculation that the spiral phases are
homogeneous, with no allowance made for the possible
coexistence of two phases. To improve on this situation
we can perform a Maxwell construction in the manner in-
dicated in Appendix A, thereby inquiring whether two
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different states (namely, the antiferromagnetic and the
spiral state with the well-defined pitch parameter
a b,g*/ir) can coexist in equilibrium when 0~5~5*.
For the cases of Fig. 4, in particular, we obtain 6 =0.24
and 6*=0.23, in the order, with 6 belonging to the sta-
bility domain of the (1,0) and of the (1,1) phases in the
two cases. For 6&6 the homogeneous spiral phase
(with the value of EQ appropriate to the doping 5) be-
comes thermodynamically stable.

We emphasize again that the whole discussion about
phase separation is meaningful provided the holes are not
prevented from separating into a no-hole and into a
hole-rich phase by additional physical e6'ects not includ-
ed in the present model. '

It is convenient to postpone the discussion of more de-
tailed features of the spiral phases to the next section
within an alternative mean-field calculation.

FIG. 4. Chemical potential (in units of t) vs doping when (a)
U/t=5 and (b) U/t =10 in the Hartree-Pock approximation.
Solid and broken lines refer to the (1,1) and {1,0) spiral phases,
respectively, and the arrows locate the critical doping 6, where
the transition (1,1)~(1,0) occurs (see text). [We notice that
the abrupt change of slope occurring in {b) for the (1,0) phase
corresponds to the transition to a state which is ferromagnetic
along AQ and antiferromagnetic orthogonally to b,Q.] The zero
of the chemical potential has been set at the top of the lower
filled band at zero doping.

0,0
I I» & l

2.5 5.0 7.5
U/t

10.0

FIG. 3. Critical doping 6, for the transition from the {1,1) to
the {1,0) spiral phase vs U/t in the weak and intermediate in-
teraction regimes of the Hartree-Fock approximation.

III. SLAVE-BOSON APPROACH WITH
TWISTING SPIN QUANTIZATION AXES

The Hartree-Fock calculation discussed in Sec. II
suftices to signal the existence of two competing spiral
phases and of a threshold for their stability as homogene-
ous phases. We expect, however, that the known tenden-
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cy of the Hartree-Fock approximation to overestimate
the occurrence of the ferromagnetic (Stoner) phase' re-
sults in a sizable compression for the stability domain of
the spiral phases in the (5, Ult) plane. To get a more
quantitative behavior for these phases, we then adopt a
di6'erent mean-field approach based on the slave-boson
method by Kotliar and Ruckenstein, ' which is believed
to be well suited to describe highly correlated electron
systems. It has further been shown that the antiferro-
magnetic mean-field approximation to the Kotliar-
Ruckenstein method for a two-dimensional single-band
Hubbard model leads to quantitative agreement with
Monte Carlo results over a wide range of doping and in-
teraction strength. '

We begin by reconsidering the Hamiltonian (2.4) for a
set of variable quantization axes directed locally along
0;. Following the original formulation by Kotliar and
Ruckenstein, ' we then assign to each site i a set of four
slave bosons which specify empty (e;), singly occupied
(s;&), and doubly occupied (D;) states. As in Sec. II, the

label g refers to the spin orientation along the local
quantization axis. To avoid unphysical multiple occu-
pancy by slave bosons at a given site, two constraints
must be supplemented which project onto the physical
subspace at each site:

(I) e,. e;+ g s;p, &+D, D, = 1,

(II) d;gd;g=s;p;g+D; D; .
(3.1)

dig zip ig & (3.2)

where z;& is a bosonic operator to be specified below. One
gets

In practice, these constraints are enforced by introducing
Lagrange multiplier fields, A, ; and X;& in the order, at each
site, thereby adding two new terms to the transformed
Hamiltonian. The latter is obtained from Eq. (2.4) by
mapping the fermionic operator d;& into

H([Q;J)=( e—o iu, ) gd;gd;~+t g g d,t~z;t~[A (Q, )Jt'(Q )]~~.z ~d ~+H. c.

+USED;

D; —g A, ; e,"e;+ gs, p. ,&+D, D.,
—1 —g. A, ,&(d;P;& s;p, &

—D, D., )
—. (3.3)

Because of the constraints (3.1), the mapping (3.2) is
not unique. In particular, any choice of the type

z;&=e; F(e, , s;&,D; )s,&+s,.
&

F(e;,s;&,D, )D; (3.4)

leads to a faithful mapping provided the function
F(e;,s, &, D; ) of the slave-boson operators is equivalent to
the identity when (3.4) acts within the physical subspace.
Kotliar and Ruckenstein' have shown that the choice

F(e;,s;&,D; )= 1

Ql DD —s =~. Q— l —
e. te —s.=~.—i i ig ig i i i+i (

with real numbers to be determined self-consistently. If
we further regard these numbers and the Lagrange multi-
ples as being site independent and limit the product
A (0;)A(Ai) to the form (2.10), we can exploit the
Bloch transformation (2.12) to rewrite the mean-field
Hamiltonian in the simple form

BZ
H(Q) = g g d g~ [M(k, Q) ]~~ dq~.

k

+UND XA, ' e + g—sg+D 1—
(3.5) +Xg A~'(s(+D ), (3.6)

reproduces the independent-particle limit (U=O) within
the mean-field approximation to a single-band Hubbard
model. Although it is not evident a priori that the choice
(3.5) can also apply to a strongly correlated system with
broken spin symmetry, we have previously shown' at the
mean-field level for a multiband Hubbard Hamiltonian
that the choice (3.5) reproduces both the energy of the
antiferromagnetic (Neel) state in the localized limit (when
comparison with perturbation theory is meaningful) and
the corresponding clustering of the Neel state into molec-
ularlike orbitals. We therefore adopt the choice (3.5) also
in the present context.

A mean-field approximation is obtained from the Harn-
iltonian (3.3) by replacing all bosonic operators therein

where

[M(k, Q)]++ =tz+T, (k, Q)+so —p —A+,

[M(k, Q) ]+ =M(k, Q)* +

itz+z T, (k, Q—),
[M(k, Q) ] = tz T, (k, Q)+ Eo

—p —
A.",

(3.7a)

(3.7b)

(3.7c)

with the notation (2.14). Let [V(k, Q)]&„be the umtary
matrix which diagonalizes [M(k, Q)]+.. The mean-field
parameters are then self-consistently determined through
the equations

8 +5+ +s +D = $ g +g +2D2=]+$
BZ

+ —™,=
& gg&(i —&„(k,Q))[[V (k, Q)]„+[V(k,Q)]+„—[V (k, Q)]„[V(k,Q)] j

k n
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g gg(p —e„(k,Q)}g[Vt(k, Q)]„~ [M(k, Q)]g..[V(k, Q)]~,„+ UD —I, e + gsg+D 1—

+ gA('(s~+D ) =0 . (3.8)

In these expressions, m, is the local magnetic moment, E„(k,Q) are band eigenvalues for given Q, and b stands for any
of the four bosons (e,s+,s,D ). The chemical potential can again be eliminated in favor of the doping parameter 5 via
Eq. (2.15}. Finally, minimization of the total energy with respect to the wave vector Q can be achieved by complement-
ing Eqs. (3.8) with the following self-consistency equation:

BZ—g +8(Itt —s„(k,Q)) g [V (k, Q)]„pQ[M(k, Q)]~~[V(k,Q)]~„=0 .
Pt (3.9)

Figure 5 gives the spiral pitch parameter ab, g/~
versus doping for the (1,1) diagonal and (1,0) transverse
phases and for two characteristic values of U/t.
Hartree-Fock results are also shown for comparison. No-
tice that the slave-boson approach results in a slower in-
crease of EQ at small doping and in a decrease of b,g
after a maximum at intermediate doping while approach-
ing the paramagnetic phase.

The energy gain per site relative to the antiferromag-
netic phase is shown in Fig. 6 versus doping for either
one of the two homogeneous spiral phases. The vanish-
ing of the energy gain at large doping corresponds to a
decrease of the local magnetic moment m, for all phases.
Notice that the (absolute) value of this energy gain
( 5 10 t ) is one order of magnitude smaller than the typ-

I

ical overall gain due to magnetic interactions ( ~ 10 't)
for a two-dimensional Hubbard Hamiltonian. From Fig.
6 one can also locate the critical doping 5, for the transi-
tion from the (1,1) to the (1,0) spiral phases.

A plot of 5, for smaller values of U/t shown in Fig. 7,
where the Hartree —Fock results of Fig. 3 are also report-
ed for comparison. Typically, 5, "/5s =—,'when
2S U/t 55.

The anomalous decrease of the chemical potential with
doping, which was pointed out in Sec. II within the
Hartree-Fock decoupling, occurs also in the slave-boson
approach as evidenced in Fig. 8. Comparison with the
analogous Hartree-Pock results of Fig. 4 shows that the
doping range has been compressed typically by a factor of
2 in the slave-boson approach. Repeating further the
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FK1. 5. Spiral pitch parameter a AQ /rr for the (1,1) and (1,0)
spiral phases vs doping 5, for U/t =5 and U/t = 10. Solid line:
slave bosons; broken line: Hartree-Fock. Solid lines terminate
when the paramagnetic phase sets in.

FIG. 6. Energy difference per site (in units of t) between ei-
ther the (1,1) (solid line) or the (1,0) (broken line) spiral phases
and the antiferromagnetic phase vs doping when (a) U/t=5
and (b) U/t =10.
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FIG. 7. Critical doping 5, for the transition from the (1,1) to
the (1,0) spiral phase vs U/t. Solid line: slave bosons; broken
line: Hartree-Fock (from Fig. 3).

(a)

Maxwell construction along the lines discussed in Sec. II
and Appendix A to obtain the threshold doping 5* for
the thermodynamic stability of the homogeneous spiral
phases, we obtain now 5' =0.14 when U/t =5 and
5*=0.19 when U/t =10. Both values of 5' correspond
now to the (1,0) phase, although the energy difFerence for
this preference is admittedly small. Notice that the cal-
culation of 5 when U!t =5 is now complicated by the
occurrence of a secondary minimum of p(5) for the (1,1)
spiral phase.

To analyze the reason why this secondary minimum

occurs, we have determined numerically the second
derivatives of the total energy for each spiral phase in
both directions parallel and orthogonal to b,Q (all other
mean-field parameters being determined self-consistently
at each Q ). Pictorially, these derivatives provide us with
a measure of the stiffness of the spiral state against Auc-
tuations of the spiral pitch and of the spiral direction, re-
spectively, in the static and long-wavelength limits. Fig-
ure 9 shows these derivatives versus doping when
U/t =5 for the two spiral phases. Typically, fiuctuations
in the spiral pitch prove to be "harder" than Auctuations
in the spiral direction, thus making it easier for the spiral
to tilt than to elongate. In particular, fluctuations in the
spiral direction become critical for the (1,1) spiral phase
at 5=0. 12 (when U/t =5 ), a value that significantly
coincides with the onset of the secondary anomalous de-
crease in the chemical potential of Fig. 8(a). At this dop-
ing value, in fact, one eigenvalue of the quadratic Auctua-
tions matrix becomes negative as the second cross deriva-
tives vanish by symmetry. This effect can be interpreted
as being a precursor of the biaxial to the uniaxial transi-
tion from a helimagnet to a spin nematic recently dis-
cussed in Ref. 11. However, a fuller study of the nematic
state would require to take into account dynamical Auc-
tuations which are beyond the scope of the present
mean-field treatment.

Another piece of information that can be drawn from
our approach concerns the distortion upon doping of the
characteristic square Fermi surface for a two-dimensional
itinerant antiferromagnet at half-filling. The high degen-
eracy occurring along the magnetic zone boundary at
half-filling is, in fact, removed by the spiral distortion of
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FIG. 8. Chemical potential (in units of t) vs doping when (a)
Ult =5 and (b) U jt =10, for the (1,1) (solid line) and the (1,0)
(broken line) spiral phases.

FIG. 9. Second derivatives of the total energy (per site and in
units of t) with respect to variations of the total wave vector Q
(in units of m/a) (a) transverse to and (b) along the direction of
b,Q vs doping when U/t =5. Solid line: (1,1) spiral; broken line:
(1,0) spiral.
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the long-range spin order, as shown in Fig. 10 for both
spiral phases with U/t =5 and 5=0.1. In both cases the
minimum of the upper band (namely, the band which is
progressively filled by holes upon doping) is seen to occur
at the center of the Brillouin zone [corresponding to
k=(m. /2a )(+1,+1) for the more conventional choice of
Brillouin zonej, in agreement with perturbative results on
spiral states with 5=0 and small b, g and with RPA
self-energy calculations for a single hole in an itinerant
antiferromagnet. Finally, it can be remarked from the
analysis of the band structure that the indirect gap be-
tween the two magnetic bands vanishes for doping values
close to the minima of Fig. 6. At the same time the
chemical potential gets closer to the top of the lower
band for increasing doping while remaining attached to
the upper band.

IV. CONCLUDING REMARKS

In this paper we have characterized the static proper-
ties of the two-dimensional incommensurate spiral spin
states by two di6'erent mean-field approximations to a
single-band Hubbard Hamiltonian. In particular, we

FIG. 10. Constant-energy surfaces and energy dispersion of
the upper band when U jt=S for (a) the (undoped) antifer-
romagnet, (b) the (1,1) spiral phase with 5=0.1, and (c) the (1,0)
spiral phase with 6=0.1. Energies are in units of t and wave
vectors in units of m/a. The unconventional choice of the Bril-
louin zone derives from the phase choice of the Bloch operators

di, &
defined by Eq. (2.12) of the text.

have mostly been concerned with the range of the Hub-
bard parameter U/t appropriate to weak and intermedi-
ate couplings ( U/t = 5 ) that cannot be covered by calcu-
lations based on the t-J model. ' '"' We have found
consistently that the itinerant approach favors the oc-
currence of the incommensurate phases by enlarging
their domain of stability at the expenses of more sym-
metric phases such as the antiferromagnetic or the fer-
romagnetic ones. A right variety of phenomena can be
run into by our approach. Specifically, we have obtained
a competition between alternative spiral phases upon
doping and the coexistence in equilibrium over a finite
doping range of the antiferromagnetic and the spiral
phases, provided obviously that the holes are allowed to
phase separate by suitably screening their mutual repul-
sion. We found it encouraging that the doping values for
these phenomena to occur are relevant to the ceramic su-
perconductors when a typical value U/t = 5 is con-
sidered. However, a meaningful comparison with experi-
ments unavoidably requires the inclusion of quantum
fluctuations about the mean field we have considered
since finite-frequency incommensurate spin correlations
have only been detected by neutrons. The use of a multi-
band Hubbard Hamiltonian is further advisable to
achieve a more quantitative description of the spiral
phases in copper-oxide superconductors, by taking into
account the charge-transfer degree of freedom between
Cu and 0 atoms. '

We have found, in addition, that the static and long-
wavelength Auctuations in the spiral direction lead to an
instability of the (l, l) spiral phase beyond a doping
threshold (which again is numerically relevant to ceramic
superconductors when U/r =5). The instability leads to
melting of the (1,1) spiral, possibly merging into a
moment-free quantum spin nematics. "

Finally, the possible coexistence of the antiferromag-
netic and the spiral phases over a finite doping range una-
voidably elicits one's speculation about the relevance of
the spiral phases for the superconducting mechanism. As
the incommensurate phase is allowed to split into ran-
domly distributed disconnected domains which are em-
bedded in the antiferromagnetic phase, interconnection
among the domains should only occur when their overall
volume exceeds a certain fraction of the total sample
volume. In this context, it would be significant to deter-
mine whether this condition enables superconductivity to
set in the whole sample.

An attempt to relate the presence of spiral phases with
superconductivity has recently been presented within a
spin model. In this model, spin-fluctuation-induced
pairing results from the tendency of the off-spiral-plane
fluctuations to reduce the frustration energy. It remains
to be verified, however, whether this magnetic pairing
and the hole pairing needed for superconductivity can be
identified within a localized spin model. This remark
points out the importance of including fluctuations in the
present itinerant approach.
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sities. The density range for which this phase separation
occurs can be readily found by adapting what is known as
a Maxwell construction to the present context.

Quite generally, we assume that p(5) behaves schemat-
ically as shown in Fig. 11. At given temperature T, we
then suppose that the system breaks up into two subsys-
tems with volumes V, and Vz and number of particles N&

ctively, such that V& + V2 = V and
kept constant. The corresponding free
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APPENDIX A: MAXWELL CONSTRUCTION FOR
THE ANOMALOUS DECREASE OF THE CHEMICAL

POTENTIAL WITH DOPING

(Al)

The anomalous decrease of the chemical potential with and + fespe
doping shown in Figs. 4 and 8 of the text is a signal that
the system finds it thermodynamically more convenient 1

to phase separate into two subsystems with diA'erent den-
I

F(T, VN;V), N, )=V,f T, N, /V, +(V—V, )f(T, (N N, )—/(V —V, )}

can then be minimized with respect to X& and V& to yield

p(T, 5))=p(T, 52),

f(T,52) —f(T,5()=(52—5))p(T, 5)),
where 5, =X, /V, and 5,=N, /V, . I.et

x = (5—52) /(5~ —5, )

(A2)

(A3)

F(T, V;x)= V[(1—x)f(T,5&)+xf(T,52)]
= V[f(T,5, )+(5—5, )p(T, 5, )] . (A4)

A graphical construction (known as a Maxwell construc-

with 0 ~ x ~ 1 for 5&
~ 5 ~ 52. The free energy (A 1) can

thus be cast in the form

I

tion) suffices to determine the two densities 5, and 52
from Eqs. (A2), and to show that the free energy (A4) for
two phases coexisting in equilibrium is lower than the
free energy Vf(T, 5) for a single phase of density
5=N/V whenever 5, (5 (52 (cf. Fig. 11).

The actual behavior of p(5) shown in Figs. 4 and 8 of
the text for the two spiral phases (1,1) and (1,0) is slightly
more complicated than the prototype behavior con-
sidered in Fig. 11. In particular: (i) the chemical poten-
tial is discontinuous at 5=0 as it jumps across the anti-
ferromagnetic gap; (ii) a secondary minimum can occur
for the (1,1) phase; (iii) the chemical potential drops
discontinuously from the (1,1) to the (1,0) phase at 5, .
The Maxwell construction of Fig. 11 can nonetheless be
generalized to include these novel features. In all cases
one obtains 5&=0 while 52=5* is given in the text for
two representative values of U/t. Notice that the
Maxwell construction pins now the chemical potential
within the energy gap of the antiferromagnetic phase.

APPENDIX B: ROTATIONALLY INVARIANT
SLAVE-BOSON APPROACH
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FIG. 11. (a) Schematic plot of the chemical potential vs dop-
ing showing an anomalous decrease between a local maximum
and a local minimum. Maxwell construction equates the areas
of the two shaded regions marked A and B. (b) Corresponding
free energy density vs doping for (I) a single homogeneous phase
with density 5 and (II) two phases with densities 5, and 52 coex-
isting in equilibrium.

Spin-rotational invariance is a fundamental property of
the interaction term of the Hubbard Hamiltonian, and
any functional integral formulation of the partition func-
tion based on the Hubbard Hamiltonian would preserve
the invariance if no approximations were performed. Ap-
proximations may introduce, however, spurious results
which violate spin-rotational invariance; a correct func-
tional integral formulation should then preserve the in-
variance at any level of approximations. This problem
has been debated for the functional integral formulations
of the Hubbard Hamiltonian that rely on the Hubbard-
Stratonovitch transformation and, more recently, also
for the Kotliar-Ruckenstein slave-boson formulation.
The latter has been generalized by considering four (in-
stead of two) s-like slave bosons which transform as a
spin matrix under spin rotations and by introducing two
additional constraints, thereby electively averaging
over all possible basis sets for spin —, with diA'erent orien-
tations of the quantization axis.

The formulation of Ref. 25 for slave bosons, and more
explicitly the one of Ref. 7 based on the Hubbard-
Stratonovitch transformation, introduces the averaging
over the di6'erent orientations of the quantization axis at
each point in space and imaginary time. The slave-boson
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approach with variable quantization axes that we have
discussed in Sec. III, on the other hand, is compatible
with the functional integral formulation provided the
quantization axes do not fiuctuate in time (spatial fiuctua-
tions are instead readily introduced by averaging the
functional integral over all possible sets IQ;I, indepen-
dently at each site i). Nonetheless, we shall show that
the introduction of quantization axes which can only
fluctuate in space is sufficient to render the Kotliar-
Ruckenstin slave-boson approach manifestly spin-
rotationally invariant.

To show this we consider the calculation of the longi-
tudinal and transverse parts of the (equal time) spin
correlation function (S;.S ) at diFerent sites. Although
in the paramagnetic phase these two parts must coincide,
the Kotliar-Ruckenstein formulation violates this proper-
ty at the lowest order for the vertices associated with the
mapping (3.2) (and for fixed quantization axes). In the
slave-boson representation of Ref. 12, we can in fact map
the product S; S into the following operator:

+
2 $ 0'z&pz(pc&pc(0 T $ o zj p zj p cj p cj (p' ~ (8 1)

Upon exploiting the constraints, each pair of bosonic z
operators at the same site with equal spin projections in
the last term of Eq. (81) can be replaced by unity [in
agreement to what was done in the first term on the
right-hand side of Eq. (3.3) of the text]. In the first term
of Eq. (Bl), on the other hand, where the pairs of z opera-
tors at the same site occur with opposite spin projections,
this replacement cannot be done. When the average of
S, -SJ is evaluated at the lowest order by replacing the z
factors with their mean-field value, a difference between
the longitudinal and transverse parts of the spin correla-
tion function unavoidably results even in the paramagnet-
ic phase.

This shortcoming of the Kotliar-Ruckenstein method
can be overcome upon averaging over all possible realiza-
tions of the spin quantization axis at each lattice site. To
this end we write the spin operators in the form
(a,P=x,y, z):

—1

2

—1

2

(a)
l CT CTCT l 0

a, o.'

g d;"~ g [A"(Q, )]~ o' ' [R(Q;)] ~ d, ~

g d;~ g T j3(Q; )o p~,'d;l. , (82)

where use has been made of the transformation (2.2) and
of the associated transformation property of the Pauli
matrices

At(Q;) ' 'A(Q;)= g T (Q;)
P

(83)

cosO coscp —sing sinO cosy
T(Q) = cos8 sing& cosy sin0 sing

—sinO 0 cosO

(84)

SI '
—,
' y dtqT. ,(Q, )o~qqId, q

+ —,
' g d;~z;l g T p(Q; )cr~~~'z;rd, ~,

P=x,y

(85)

where again the pair of bosonic z operators with equal
spin projection have been replaced by unity. Within the
saddle-point approximation for the z operators in the
paramagnetic phase, Eq. (85) further reduces to

S,' '~(1—z )—,
' g d;~T, (Q; )o.~(~'d;(

+z —,
' g d;~ gT p(Q;)cr~~~,'d, ~, .

P
(86)

To evaluate the average over A;, it is convenient to
transform back to the z quantization axis by exploiting
the independence of the action in the functional integral
on the particular quantization axis for the paramagnetic
phase. One obtains

rotates the z axis into the local quantization axis specified
by the spherical angles Q. Performing at this point the
mapping (3.2) via the slave-boson representation, Eq. (82)
becomes then

gI '~(l —z2),' g c,t T, (Q, ) g Pi'(Q;)] ~o. P[% (Q;)]g

+z~—,
' g ct g T p(Q;) g[%(Q;)] @pl,'[At(Q, )]~. .c, ~

a, o' P

0, 0'

(87)

where use has been made of the inverse of transformation
(83). Performing finally the spherical average separately
at each site, Eq. (87) is replaced for any a by

r

t~

I~

( a )

I

1 ~22 ~

I

~i

~ t a I
I~

~
~ (a

a�~
)
I ir ~I

4m ' 3 2

since [cf. Eq. (84)]

dA;I T, ( Q)T (jiQ)= —,'5 p .
4m

(89)

In this way the correct isotropy of the spin correlation
function (S;.Sj ) has been restored. A similar result fol-
lows from the spin-rotation-invariant approach of Ref.
25.
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