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We report results for the ground-state energy of the Hubbard model in the form of perturbation ex-
pansions in ¢ /U, i.e., expansions about the strong-coupling or “atomic” limit. Expansions to order
(¢ /U)*® are obtained for finite cells with number of sites < 10, for the half-filled case, for both the linear
chain and two-dimensional (2D) square lattice. Analysis of the series by Padé approximant methods
yields, in the 1D case, results consistent with the known exact results. For the largest cell, N =10, on the
square lattice there is an indication of a singularity on the real ¢ axis, which may indicate a phase transi-

tion at U/t ~4.

The single-band Hubbard model is the simplest model
system for describing the physics of strongly correlated
electrons on a lattice. As such it is of relevance for
theories of high-temperature superconductivity,! even

though no definitive theory for this intriguing
phenomenon has yet appeared.
The Hubbard Hamiltonian is
H=—-t 3 (c,-J[,cja-l-H.c.H—UZn”nil , (1)
i
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where the first term represents noninteracting electrons
hopping between Wannier states on neighboring sites and
the second term is a Coulomb repulsion for electrons on
the same site. The phase diagram is then described in
terms of the two parameters U/t and n, the number of
electrons per site. The half-filled band corresponds to
n =1. Despite the simplicity of the Hamiltonian the
number or rigorous (or even generally accepted) results is
small.23 It is known, for example, that in one dimension
the ground state for » =1 is an antiferromagnetic insula-
tor for all U0 and is metallic at U =0. For non-half-
filling the model is a paramagnetic metal for all U. Thus,
in a sense, the one-dimensional Hubbard model has a
Mott transition at U =0. In higher dimensions even the
form of the phase diagram at T =0 is not known with
any degree of confidence. Mean-field approximations*
give extended regions of ferromagnetic and antiferromag-
netic ordering for sufficiently large U/t. For n =1 the
antiferromagnetic region extends to U/t =0, but is
asymptotically of zero width. It seems likely that this be-
havior is qualitatively correct in three-dimensions but
may well be wrong in two dimensions where quantum
fluctuations are stronger.

In this paper we report studies of the ground state of
the one- and two-dimensional Hubbard models for the
half-filled case n =1. In particular we seek to obtain ex-
pansions for the ground-state energy in the form

eo=E,/N=— 3 a,t’, )
r=2

where, without loss of generality, we take U =1 hereaf-

4

ter. This is an expansion about the “atomic limit” ¢ =0
(or U= = ) where the Hamiltonian is diagonal and trivi-
al, albeit with a highly degenerate ground state. If there
is a phase transition in the model at some finite U /¢ then,
in principle, this might be evident as a singularity in the
expansion (2) which could be detected by Padé approxi-
mant or other methods.

Perturbation expansions about the atomic limit for the
Hubbard model have a long history, going back at least
to Anderson’s demonstration® that, to second order in ¢,
the full Hamiltonian (1) is equivalent to the Heisenberg
antiferromagnet

). (3)
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Subsequent workers® have extended this to the ¢ term,
all the odd terms vanishing for the half-filled case. This
work has all been at the Hamiltonian level so that to
determine the coefficients in the expansion (2) there is a
further task, namely, to determine the ground-state ener-
gy of the effective Hamiltonian. This is already an impos-
sible task at second order for dimensionality d > 1.
Furthermore the effective Hamiltonian becomes so com-
plicated with increasing order that it would be barely
feasible to go beyond the ¢® terms and the resulting series
would be too short for one to have any confidence in a
Padé analysis.

For these reasons we have sought to work not at the
level of effective Hamiltonians but rather with the
ground-state energy directly. This is, of course, also a
very difficult problem for the infinite lattice since the un-
perturbed ground state is already infinitely degenerate.
However for finite systems the state space is finite dimen-
sional and it is not difficult to develop the perturbation
expansion to arbitrarily high order, as we do below. The
problem then is to extrapolate to the N = oo limit. For-
tunately the coefficients in the energy expansion can be
obtained exactly’ for the one-dimensional case for n = «
from the Bethe ansatz results of Lieb and Wu.® For
n =1 the result
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TABLE 1. Coefficients in the perturbation expansion for the ground-state energy of the one-dimensional Hubbard model.
Coefficients up to a4, inclusive have been obtained and can be supplied on request.

N 2 4 6 8 10 o

a, 8.0 3.0 2.8685 2.8255 2.8062 2.7726
a, —128.0 —30.0 —11.3061 —11.0852 —10.9869 —10.8185
as 4096.0 624.0 249.5302 79.3675 78.7335 77.7696
ag —163 840.0 —16392.0 —8267.693 —2700.723 —696.655 —694.816
ap 7 340032.0 484032.0 224790.03 126 167.19 33630.39 7042.6

o
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This provides an important check for our finite lattice re-
sults and extrapolation procedures.
We consider then the Hamiltonian

H=Yn;n;;—t Y (c;[,cj,,-i-H.c.)
i [

o

where the second term is taken as a perturbation and we
treat lattices of N sites, with periodic boundary condi-
tions. We take as our basis set the usual occupation num-
ber states, eigenstates of H,, which are conveniently
represented in terms of 2N bits of a single computer
word. Since we are considering the half-filled case n =1
and since it is known? that the ground state has S =0 the
size of the basis is reduced from 4" to the following di-
mensions for N =2, 4, 6, 8, 10, respectively: 4, 36, 400,
4900, 63 504. Matrix elements of ¥ can be easily comput-
ed with the aid of logical bit operations, and only nonzero
elements of V are stored. The unperturbed ground state
is highly degenerate, lying in the subspace with all sites
singly occupied—the dimensionality of this subspace be-
ing 2, 6, 20, 70, 252 for the above values of N. The de-
generacy is not lifted in first order, but is lifted complete-
ly in second order. According to standard degenerate
state perturbation theory the second-order energy change
[the coefficient a, is (2)] is given by the largest eigenvalue
of the matrix W with elements

W, = i (i|V|k><k|V|j),

k=my+1

€0 €

where mg,m are the dimensionalities of the unperturbed
ground-state subspace and total space and g; are the un-
perturbed energies. W is itself of dimension m,. The
corresponding eigenvector of W gives, as usual, the
correct linear combination of basis states for the zeroth-
order wave function. Once this has been obtained the
perturbation equations can be solved iteratively to obtain

(2r — 1)1 J2§(2r —1) s
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values of the successive a, coefficients.

In Table I we give values of these coefficients for the
linear chain for N =2, 4, 6, 8, 10 and, for comparison, the
values for NV = obtained from (4). By inspection it is
apparent that the a,(N) coefficients are converging to the
known a,( ) values, and for » <8 the N =10 results are
within a fraction of a percent of the N = oo values. How-
ever for »>8 larger lattices are needed. For the one-
dimensional Hubbard model the asymptotic form of the
finite-size correction to the ground-state energy per site is
known® to be
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FIG. 1. Coefficients a,,a,,a¢ of the ground-state energy of
the one-dimensional Hubbard model versus 1/N2 The lines
represent the known asymptotic finite-size correction limits, Eq.
(5).
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TABLE II. Coefficients in the perturbation expansion for the ground-state energy of the two-
dimensional Hubbard model. Coefficients to a4 to 12 significant figures can be obtained on request.
xEy=x X 10".
N 4 8 10
a, 0.12E2 0.5E1 0.4920E1
a, 0.48E3 —0.14E3 —0.9930E2
ag 0.3994E5 0.832E4 0.5709E4
ag —0.4196E7 —0.6314E6 —0.4112E6
ap 0.495 6E9 0.5414E8 0.3349E8
ap —0.6282E11 —0.4995E10 —0.2928E10
a, 0.8349E13 0.4839E12 0.2687E12
a —0.1148E16 —0.4853E14 —0.2555E14
ag 0.1619E18 0.4996E 16 0.2494E16
ax —0.2330E20 —0.5250E18 —0.2484FE18
and hence is obtainable in closed form as
alN—a!*'~C,/N? (5) go=—+[(1+64:%)172—1]

with C,=7?/3, C,=u*/6, C¢=7°/9, .... In Fig. 1
we show a plot of these coefficients versus 1/N?, together
with the known asymptotic behavior.

Another method for extrapolating from the finite lat-
tice results to the infinite lattice is to consider the expan-
sion (2) as a power series for E; in the (complex) variable
t and to use Padé approximants to investigate the posi-
tions and nature of the singularities. In this way one can
investigate the way in which the singularities change as N
increases and infer something about the nature of the
singularities for the infinite lattice. We first consider the
one-dimensional case. For N =2 the ground-state energy

and thus has square-root singularities on the imaginary
axis at £0.125i. For N =4 Villet and Steeb® have ob-
tained a closed expression of €, which can be written in
the form

sin 6+ *1~:cos 0

go=1—(1+161)!? Ve

’

where

tan 30 = — ———(1+4812+3361*+409615)!/2 .

12V3¢2

TABLE III. Poles and residues (in parentheses) from Padé approximants to (d /dx)In Ey(x) (x =t2)
for a finite cell with N =10 on the square lattice. Note that the negative poles correspond to poles on
the imaginary axis in the ¢ plane, whereas positive poles correspond to poles on the real axis in the ¢

plane.

[N,D] Poles and residues

[7,11] —0.008 62 —0.009 54 0.0678
(0.053) (0.055) (—0.030)

8,10] —0.008 65 —0.009 83 0.0926
(0.060) (0.060) (—0.072)

[9,9] —0.008 64 —0.009 74 —

(0.058) (0.058)

[10,8] —0.008 63 —0.00976 _—
(0.057) (0.059)

[11,7] —0.008 63 —0.009 66 0.0585
(0.056) (0.056) (0.053)

[6,11] —0.008 63 —0.009 62 0.0845
(0.055) (0.056) (—0.020)

[7,10] —0.008 63 —0.009 63 0.0651
(0.056) (0.056) (—0.027)

[6,10] —0.008 62 —0.009 58 0.0680
(0.054) (0.055) (—0.030)

[5,10] —0.008 63 —0.009 61 0.0589
(0.055) (0.056) (—0.015)
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This result provides a check on our perturbation pro-
cedure. There are square-root singularities at
t ==10.25i{, t =+0.1536i, + ==30.185%0.252i, and these
are consistently detected by a Padé analysis of the series.
In practice the most consistent results are obtained by
analyzing the series for the derivatives or logarithmic
derivative. The series for N =6, 8, 10 have been ana-
lyzed in a similar way. In all cases the singularities lie ei-
ther on or clustered around the imaginary axis, with the
magnitudes of the real parts of complex singularities de-
creasing with increasing N. From this we might conjec-
ture that for N = oo the singularities in g lie entirely on
the imaginary axis. This is indeed correct as Takahashi
has shown’ that for N =« g, has logarithmic singulari-
tiesatt ==xin/4, n=1,2,....

Finally we turn to the two-dimensional case, where we
consider periodic cells with N =4, 8, 10 on the square
lattice. In Table II we give the values of the perturbation
coefficients. It is clear that, except perhaps for the lowest
coefficient a,, there is insufficient data for any reasonable
estimate of the infinite lattice coefficients to be made by
extrapolation. Padé approximant analysis of the finite-
lattice series, which have been computed to order 14
yields interesting results. For N =8 we find a sequence of
singularities on the imaginary axis at
t ==+0.090i, ¢t ==+0.092i, t ==x0.097i,. . ., with no indi-
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cation of any singularities on the real axis. This is very
similar to the one-dimensional lattice and suggests the
same kind of analytic structure. For N =10 we again
find singularities predominantly on the imaginary axis at
t ==0.093i, t =10.098i. However there is also a con-
sistent singularity on the real axis. Some typical results
are shown in Table III. The singularity on the real axis
at t+0.25(£0.05) lies well outside the radius of conver-
gence of the series, which is determined by the closest
singularity to the origin. We have to admit the possibili-
ty that it is spurious, and does not represent a true physi-
cal singularity in ;. Yet is occurs in at least half of the
high-order Padé approximants and it is tempting to con-
jecture that it represents a real phase transition, presum-
ably a metal-insulator transition, at U/t =~4. Although
we do not expect such a finite-U transition at precisely
n =1 an infinitesimal departure from half-filling could
give rise to a finite U, and the singularity we observe
might be indicating this. This result, if confirmed, would
suggest that the phase diagram of the two-dimensional
Hubbard model is significantly different from the one-
dimensional case. Further work is in progress.
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