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Diluted antiferrornagnets in a magnetic field:
A fractal-domain state wvith spin-glass behavior
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The phase diagram of diluted Ising antiferromagnets in the limit of high external magnetic fields
B and strong dilution is investigated by a Monte Carlo simulation. The two relevant lines in the
B Tpla-ne of the phase diagram, B,q(T) which marks the onset of hysteretic effects and B,(T)
above which antiferromagnetic long-range order is no longer stable are determined. Between these
two lines there is a broad range of high fields and low temperatures with the characteristics of a
frozen domain state. The irreversibilities observed in this state and the scaling behavior of B,q(T)
both give evidence for the occurrence of a spin-glass phase. A further investigation of the relevant
scaling laws for the domains leads to the conclusion that the domain state consists of fractal domains
becoming stable for high magnetic fields.

I. INTRADUCTIDN

There have been several studies on the behavior of
random-field systems. Experiments are normally per-
formed on diluted Ising-type antiferromagnets in a uni-
form external magnetic field (DAFF) which belong to the
same universality class as the random-field Ising model
(RFIM). i Surprisingly, the phase diagram of the DAFF
in the limit of strong disorder and high fields is still
not very well understood despite many efforts. Several
possibilities have been discussed in the literature: (i)
the existence of a transition from antiferromagnetic or-
der to paramagnetic behavior which is of second order
for all temperatures;2 (ii) the existence of a tricritical
point with a crossover to a first order transition for low
temperatures;s (iii) the existence of a spin-glass phase
for low temperatures and high fields;4 and (iv) the ex-
istence of a stable domain state.

The complexity of the problem is due to the forma-
tion of a domain state with extreme relaxation times, a
characteristic feature of the DAFF. This domain state
is thought to be metastable for lower fields. It is ob-
tained by cooling the system in an external field from
the paramagnetic high temperature phase. From neu-
tron scattering experiments it was concluded that this
field cooled state is frozen at low temperatures. 7 The
mechanisms which are responsible for the correspond-
ing hysteretic properties of the DAFF have been investi-
gated experimentally, ' theoretically, and in computer
simulations. o Apart from this a non-exponential de-
cay of the remanent magnetization of the field cooled
state after switching oA' the external field has been found
experimentally and further investigated theoretically, ii
and in computer simulations, respectively. 2

In this paper we want to focus on the phase diagram
of the DAFF and the physics of the domain state, es-
pecially its thermodynamic properties, scaling behavior,

and fractality. The paper is organized as follows.
In the second section we will describe the methods

to determine the relevant lines of the phase diagram,
i.e. , B,q(T) marking the onset of hysteretic effects and
B,(T) above which antiferromagnetic long-range order is
no longer stable.

In the third section we analyze and discuss the phase
diagram. For high magnetic fields we find a scaling
behavior for B,q(T) roughly in agreement with the de
Almeida —Thouless (AT) line known from the conven-
tional Ising spin glasses which we consider to give ev-
idence for a spin-glass-like behavior. This result is sup-
ported by recent experimental investigations of strongly
diluted FeZnF2 in high magnetic fields. 5

In Sec. IV we endeavor for a deeper insight in the
physics of the high field domain state. The domains turn
out to be fractal with a scaling behavior deviating from
the usual assumption of the Imry-Ma argument~4 which
of course is only expected to be valid in the limit B ~ 0.

II. DETERMINATION OF
THE PHASE DIAGRAM

The Hamiltonian of the DAFF in units of the coupling
constant J reads

II = ~iEjoioj —B Eioi)
(i ~) i

where a, = +I and e; = 0, I. Only nearest neighbor in-
teraction is considered. In our Monte Carlo simulation
we used helical boundary conditions and the heat-bath
algorithm. The size of the system during the simulation
of the phase diagram was 61 x 61 x 60. For the investiga-
tion of the structural properties of the domain state we
simulated systems with a size of up to 145 x 145 x 144
spins in order to observe even larger domains. The di-
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lution was 50%. The program was written in C and the
simulation was done on an IBM RS6000 workstation.

In order to determine the phase diagram we com-
puted the magnetization M(T) and the internal energy
E(T) during field cooling (FC) from the completely dis-
ordered paramagnetic state and field heating (FH) from
the long-range ordered antiferromagnetic state (for de-
tails see Ref. 10). Due to the freezing of the system
during FC there occur irreversibilities the onset of which
marks B~q(T). Figure 1 shows four of the computed E(T)
loops. The heating or cooling rate was 100 Monte Carlo
steps (MCS) per point with a corresponding tempera-
ture interval of 0.01. For low B the energy of the system
during FH is lower than during FC (upper curve). The
opposite behavior is found for higher fields where the do-
main state reached upon FC carries less internal energy
(the two lowest curves). In the crossover region the dif-
ference between the energies of FC and FH procedure is
too small to determine B,q(T) (see the loop for B = 1.2
in Fig. 1). But in this region information can be gained
from the corresponding magnetization loops.

Figure 2 shows M(T) loops for the same fields as in
Fig. 1. The magnetization during FC is always higher
except in the limit of very high fields where there is prac-
tically no significant difFerence between the two magneti-
zation curves. Therefore, in comparing E(T) and M(T)
loops we have the possibility to determine B,q(T) for all
possible values of B The cor.responding data B,q(T) ob-
tained from extensive Monte Carlo simulations are sum-
marized in the phase diagram Fig. 3 where we used tri-
angles for the M(T) data and crosses for the E(T) data.

The second relevant line in the phase diagram is B,(T).
In Fig. 1 the energy obtained through FH is smaller than
the energy obtained through FC for low fields. Hence in
this regime we can conclude, that a long-range ordered
state is the stable ground state for T —+ 0. This behavior
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FIG. 2. Magnetization vs temperature as in Fig. 1

is reversed for higher fields where the energy obtained
through FC is the smaller one. Hence we conclude that
the domain state is the stable phase for higher fields.
Therefore, in the low temperature regime we can estimate
B,(T -+ 0) as that field where practically no difFerence
in the energy of the FC and FH loops for T —+ 0 occurs.
This point is marked in the phase diagram by a circle on
the B axis.

In order to further estimate the critical line we have
looked for the maximum of BM/OT during FH which
marks the critical temperature in the crossover regime
from random exchange to random field behavior, i.e. ,

in the limit of small B The c.orresponding data T,(B)
are shown as filled circles in Fig. 3.
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FIG. 1. Internal energy vs temperature during FH and
FC, for four different magnetic fields: B = 0.8, 1.2, 1.6, 2.2
(from above).

FIG. 3. Phase diagram of the DAFF for a dilution of 50%
determined as explained in the text. The lines are guides to
the eye only.
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A very accurate determination of B,(T) for higher
fields turns out to be di%cult as we will argue in the
following. B,(T) is expected to be nearly constant for
low temperatures. In order to determine the critical line
we have to cross it. This can be done by choosing a
path through the phase diagram with constant tempera-
ture changing the field. A determination of the relevant
critical properties like the order parameter or the energy
E(B) during field increasing (FI) and subsequently field
decreasing (FD) has been done but the results are only
in qualitative agreement with those of the corresponding
FC-FH procedures. As an example Fig. 4 shows a E(B)
FE-FD loop for a temperature of T = 0.4. The rate of FI
or FD was 100 MCS/point. A regime of a stable domain
state between B,q(T) and B,(T)—marked by the point
of intersection of the FI and FD curves —is obvious.
However, in these procedures we are too far away from
thermal equilibrium. On the one hand the domain state
is frozen even for B ~ 0 and it shows an aging phenom-
ena known from spin glasses: the energy can be lowered
by annealing the system. At the same point in the phase
diagram the energy of the domain state reached through
FC is lower than the energy reached through FD. On the
other hand even the long-range ordered state is frozen for
higher fields and the ground state of the DAFF is non-
trivial also in the low field limit where long-range order
occurs (see the irreversibilities of the long-range ordered
state investigated in Refs. 8 and 10).

These two facts lead to an uncertainty in the deter-
mination of B,(T) which cannot be solved just by an
increase in computer time. Therefore we have excluded
the results from FI-FD loops from the determination of
the phase diagram and we present Fig. 4 here only for
a better understanding of the change of stability in the
system.

III. ANALYSIS OF THE PHASE DIAGRAM

The phase diagram shown in Fig. 3 is divided into three
parts, two of which can be identified easily: the high
temperature paramagnetic phase and the low tempera-
ture antiferromagnetic phase which is stable for small
fields. In order to further investigate the phase dia-
gram we have looked for the scaling behavior of B,q(T)
and B,(T). Both of them are expected to scale with
(Tjy —cB —T) ~ for low fieldsi where 4„ is the
crossover exponent from random bond to random-field
behavior. Figure 5 shows a double logarithmic plot
of B, versus T —T~ and B,q versus T —T,qQ where
T,qp ——T,q(B ~ 0). The symbols correspond to those
of Fig. 3. The way we have chosen to obtain the param-
eters is the following.

At first we neglect the correction term —cB which
is expected to be small. Fitting the three data for the
lowest fields to

B, = a(Trv —T)

we get the values C„= 1.41, T~ ——1.88, and a = 2.17.
Next we fitted the data of B,q(T) in the same tempera-
ture region —i.e. , using the first seven points —to

Beq —a (Teq p T)

obtaining the values 4„= 1.41 + 0, 14, T,qQ
——2.01,

and a = 3.21. As expected we get the same value of
@„as for B,(T). Apart from this the values for the
crossover exponent we obtained are in very good agree-
ment with experimental results. 6 In contradiction to
experimental results T,qQ differs from T~. This of course
is also obvious in Fig. 3 and we attribute it to dynamical
effects which will be discussed later.

In order to investigate the infIuence of the parameter c
we fitted the data with a small correction term following
a mean-field calculation of Cardy who found c = T~y,
where y is the susceptibility, Therefore we have taken a
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FIG. 4. Internal energy vs field during FI and FD for a
temperature of T = 0.4.

FIG. 5. Logarithmic plot of the phase diagram (see Fig. 3)
as explained in the text.
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value of c = 0.01 for the fit corresponding to y = 0.07
which is roughly in agreement with our M(B) data. How-
ever, this correction did not lead to a significant change
of @co.

As is obvious from Fig. 5 and also from Fig. 3 there is a
crossover to another scaling behavior for higher fields. To
obtain the corresponding exponent 4 we fitted the high
field data —the last seven points —to (T,qo

—T)@~2 us-
ing the same value for T,qo as before. The value obtained,
4' = 3.27 + 0.05 is just in between the theoretical value
of 4~T —3 for a spin-glass replica symmetry breaking
line and the experimental value C = 3.4 found recently
in these systems.

Here some comments on the dynamical eA'ects already
mentioned earlier are in order. As is well known from spin
glasses the position of a dAT line depends on the cooling
or heating rate which is used in experiments and simula-
tions, respectively. In our simulations this eKect could be
observed also by calculating phase diagrams with B,q(T)
obtained through runs with diferent heating or cooling
rates. The position of the dAT line then changes as well
as the value of B,~(T) in the crossover regime but this
has practically no influence on the exponents 4«and
4~~. Note that it is even this efFect that explains the
diA'erence between T~ and T«o. In the limit of very long
cooling or heating rates T,qo tends to T~. The phase
diagram which is shown here is the one we obtained for
the slowest cooling or heating rate.

To summarize, the phase diagram we obtained is in
good agreement with the works of Refs. 5 and 4. We
conclude that the domain state is a stable phase between
the AT line and B,(T) with the characteristics of a spin
glass. In contrast to usual spin glasses the spin-glass
phase here is field induced. Without an external field
the system is long-range ordered and there is no frustra-
tion. In order to further investigate the nature of the
domain state we now want to focus on the structure of
the domains.

IV. THE STRUCTURE OF
THE DOMAIN STATE

The first estimate of the influence of random fields
on d-dimensional spin systems has come from Imry and
Ma. Their argument can easily be transferred to the
DAFF: comparing the number of vacancies in a finite
part of the lattice with radius R one finds a statistical
surplus of vacancies in one of the antiferromagnetic sub-
lattices. This leads to a net magnetization which couples
to the homogeneous external field decreasing the energy
of the system by

(4)

This fact explains the existence of finite domains. On
the other hand there is an increase in energy through the
broken bonds in the domain wall:

Eg R"

Assuming a long-range ordered 3D system, the influence
of an external field cannot break long-range order because

the wall energy of a growing domain crosses the volume
part of the energy for increasing R. The conclusion then
is that the long-range ordered state of the DAFF is the
stable one and the domain state is only metastable due
to energy barriers.

Of course, this is a ground-state argument in the limit
of small B where the domains are assumed to be large
and randomly selected so that the statistical square-root
argument holds. It is further assumed that the doma, ins
are not fractal.

To further investigate these two assumptions in the
limit of higher fields we have directly computed the vol-
ume V (number of spins), surface F (number of unsat-
isfied bonds), and radius R (root of the mean-squared
distance of spins) of the domains formed. Apart from
this we have calculated the wall energy (number of bro-
ken bonds) and the domain magnetization Mv in order
to get a deeper insight into the stability of the domains.

The way of computing these quantities is as follows:
as initial configuration we take a completely random
99 x 99 x 98 system and make rapid quenches to low tem-
peratures and high external fields, i.e., in the regime of
the spin-glass phase. We then observe the development of
the system by carrying out a cluster analysis with a suit-
able adjusted Hoshen-Kopelman-type algorithm. 2 This
algorithm pieces the system into domains of connected
and antiferromagnetically ordered spins. From the com-
pletely disordered state after a few MCS a domain state
develops consisting of domains with sizes on all possible
lengths. Surprisingly, there occur also two large perco-
lating domains penetrating each other. Penetration is a
property of the DAFF which can be observed on smaller
length scales as well. The importance of penetration will
be discussed later.

The two percolating clusters below B,z(T) could be
observed also in larger systems with a size of up to 145 x
145 x 144 spins —the largest system we have simulated so
far.

Figure 6 shows the frozen domain state of a 99 x 99 x 98
system after a relaxation time of 100 MCS for a temper-
ature of T = 0.4 and a field of B = 3.0 (all figures shown
in the following have been calculated from correspond-
ing runs at this point in phase diagram). This system of
course is not in thermal equilibrium. A real equilibirium
cannot be reached even with longer thermalization due to
the aging phenomenon. Very long simulations at selected
values of parameters have shown that there is no qualita-
tive change in the behavior of the system. We believe this
to be the case in general so that relatively short simula-
tion are sufricient to investigate typical domain proper-
ties. Figure 7 shows one of the smaller domains isolated
by the cluster algorithm. Its size is V = 1618 spins.

The above procedure, rapid quench of a, paramag-
netic system, short thermalization, and subsequent clus-
ter analysis is done for typically 14 lattices to get a suf-
ficient large number (typically 100000) of domains. The
above-mentioned physical quantities are calculated and
then averaged over all domains having equal volume in
order to get a higher accuracy.

Figures 8 and 9 show the corresponding double log-
arithmic plots for V, F, and R. The large percolating
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FIG. 6. Frozen domain state of a 99 x 99 x 98 system. The
two phases are represented in light and dark gray. Vacancies
are not shown.

FIG. 8. lnE vs ln V.

domains result in the single points for large volume in
Fig. 8. A definition of R for percolating clusters in a sys-
tem with periodical boundary conditions is useless, there-
fore the corresponding points are neglected in Fig. 9. The
following scaling relations hold:

with D = 2.0+0.1. The first relation V I" is a common
feature for highly diluted objects. Because most of the
surface is inside the domain the surface is proportional

to the volume. ~ Much more interesting is relation (7),
which means that the domains are fractal (the Euclidian
dimension is D, = 3). The fractal dimension D = 2 is
known from the so-called "lattice animals" in the three-
dimensional percolation problem and it has been deter-
mined exactly. Our conclusion is that the magnetic do-
mains of the DAFI" show the same fractal behavior as
the —in our system much smaller —clusters of the perco-
lation problem.

It should be mentioned that the graph R(V) has a
small negative curvature. The value D = 2 is the limit
for small R. In the limit of large R where our data are
less accurate this value changes to D = 2.2. We attribute
this to the above-mentioned problem of an accurate def-

3.0—
~S

~ ~

S

ge J

'S

1.0-
P

~ S

0.0-

+ SbC, h SSar -1.0
0.0 2.0 4.0 6.0 8.0

FIG. 7. One typical domain of the domain state Fig. 6
with a volume of V = 1618 spins.

lnV
FIG. 9. ln R vs ln V.
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inition of B in finite systems: when the largest distance
between spins of the same domain reaches the size of the
system the mean-square deviation of the spins becomes
artificially small due to the periodical boundary condi-
tions.

Figures 10 and 11 show the scaling behavior of E~
and M~. The following relations hold:

with ~ = 0.995 + 0.001, 8 = 0.72, and

Mv =tU' (9)

with g = 0.996+0.001 and t = 0.38. From Eq. (9) we can
conclude that there is a strong deviation of the scaling
behavior from the usual assumptions (see also Ref. 23).
This can be understood by the fact that the form of the
domains is not random. Instead very complicated struc-
tures arise (see Figs. 6 and 7). Typically, domains are in-
terpenetrating so that even large domains for which the
statistical argument was thought to hold can draw ad-
vantage from random field Huctuations on small length
scales. The domains then carry magnetization which is
directly proportional to its volume and not to its square
root.

Equation (8) is as expected E~ F. From the equal-
ity of the two exponents 0 and o it follows that it now
depends on the external field and on the prefactors s
and t which contribution to the total domain energy is
the most important. By doing simulations for difI'erent
external fields we have found that these prefactors are
slightly field dependent. However, a comparison of the
prefactors shows that in the case shown here (B = 3.0)
the energy decrease due to the domain magnetization is
larger than the increase due to the domain-wall energy.

This explains the stability of domains for high fields and
low temperatures.

V. CONCI VSIONS

Vk have determined the random-bond —random-field
crossover exponent within a Monte Carlo simulation.
Our result C„= 1.41 is in very good agreement with
experimental findings.

Apart from this we have shown that there is strong
evidence for the existence of a spin-glass phase in the
DAFF model. The main support comes from an AT-
type line which is in agreement with recent experimental
and theoretical findings. This evidence is supported by
other well-known features of the DAFF like the occur-
rence of irreversibilities and the occurrence of thermore-
manent magnetization also typical for spin glasses.
Even quantitatively the decay of the remanent magneti-
zation agrees with that of the remanent magnetization of
spin glasses: the decay follows a power law in time with
the exponent proportional to the temperature.

We have estimated the critical line B,(T) The spin-.
glass phase between this line and the AT line can be
understood as a stable domain state. In analyzing the
structure of the domains we found them to be fractal.
Due to this fractality and the interpenetrating nature
of the domains which are nonstatistical, the scaling of
volume magnetization and wall energy important in an
Imry-Ma-type argument deviates from usual assumptions
and might explain the stability of the phase.
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