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Below the freezing temperature T~, the configuration space of spin glasses is characterized by the ex-
istence of quasidegenerate equilibrium states whose number increases drastically as the temperature is
lowered. The observed time dependence of the dynamical properties (aging e6'ects) can be understood as
the trend of the system towards thermal equilibrium between all accessible states. We present a series of
temperature cycling experiments on the time decay of the remanent magnetization in Ag:Mn(2. 6 at. %).
The results are consistent with the picture of an ultrametric organization of the metastable states, pre-
dicted by the Parisi solution of the Sherrington-Kirkpatrick model. Within this interpretation, the tern-
perature dependence of the height of the barrier between two states is determined experimentally. We
also establish a quantitative relationship between the barrier height 6 & and the Hamming distance d &

separating two metastable states a and P. This experimental result is compared with numerical simula-
tions on mean-field spin glasses.

I. INTRODUCTION

The nature of the dynamics of spin glasses has received
a great deal of attention in the literature, both from ex-
perimental as well as theoretical points of view. Two
theoretical perspectives have dominated. Qn the one
hand, the mean-field approach of Sherrington and Kirk-
patrick' (SK) and its replica symmetry solution by Par-
isi ' has been applied in the thermodynamic limit
(X~~ ) to an ordered infinite set of response times. On
the other hand, the phenomenological approach of the
droplet model, based on theories developed for the
random-field Ising model (RFIM), has been applied to
the aging and time decay of the thermoremanent magne-
tization (TRM). We shall present, in this paper, a series
of experiments which show the consistency of the aging
phenomenon within an ultrametric organization of meta-
stable states, the latter predicted by the Parisi solution.
Within this interpretation, we shall experimentally estab-
lish a quantitative relationship between the barrier height
6 & and the Hamming distance d

&&
separating any two

metastable states cr and 13.
' We shall compare these re-

sults with numerical simulations"' on mean-field spin
glasses, thereby establishing a quantitative link between
experiment and theory for spin-glass dynamics.

The paper is organized as follows. In Sec. II, we intro-
duce the concept of aging in spin glasses from the waiting
time dependence of the thermoremanent magnetization
relaxation. In Sec. III, we introduce our interpretation of
dynamics within the Parisi solution. In particular, we
review the consequences of an ultrametric (hierarchical)
tree for the metastable (energy minima) states. We recall
a series of experiments performed by Refregier et al.
which have already been analyzed along these lines. We

then present a set of experiments which give further sup-
port to the hierarchical picture. In Sec. IV, we show how
one can measure the temperature dependence of the
height of a given barrier between two metastable states if
an ultrametric organization of these states is present. '

The procedure follows from the hierarchical nature of the
evolving free-energy landscape in configuration space as
the temperature is lowered. Finally, in Sec. V, we obtain
experimentally a quantitative relationship between the
barrier height 6 & and the Hamming distance d &

be-
tween metastable states cr and P. Experimentally realiz-
able time scales limit d

& to only a few percent of phase
space. Within this volume, b & is shown to grow ex-
ponentially with increasing d„&.This functional form for
b, =f (d) will be compared with the predictions of numer-
ical simulations by Nemoto" and Vertechi and
Virasoro. ' Qur results are summarized in Sec. VI.

II. AGING IN SPIN GLASSES

Two properties appear necessary for a physical system
to exhibit spin-glass behavior: (a) frustration (the interac-
tion between spins is such that no configuration can
simultaneously satisfy all bonds and minimize the energy
at the same time, see Fig. I) and (b) randomness (the
spins must be positioned randomly in the sample). These
two properties lead to highly degenerate free-energy
landscapes.

Experimentally, the prototypical spin glasses are dilute
magnetic alloys formed from a noble metal host (Cu, Ag,
Au) and a magnetic impurity (Fe, Mn). In such systems,
the exchange interaction between spins is mediated by the
conduction electrons. The indirect coupling which re-
sults is known as the Ruderman-Kittel-Kasuya-Yosida
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FIG. 1. Frustration e6'ect: Energies of configurations I and
II are the same. No matter in which direction spin S3 points, it
cannot satisfy all bonds and minimize the energy at the same
time.

(RKKY) llltel action, the range dependence of which ls
given, ln d =3, by
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FIG. 2. Typical magnetization vs temperature measuring cy-
cle for a Ag:Mn(2. 6 at. %) sample in a field H. Cycle
1 —+2~3~4~5 corresponds to a zero-field-cooled (ZFC) pro-
cedure. When 2 is reached, the external field is applied. Cycle
5 —+4~6 corresponds to a field-cooled (FC) procedure where
the sample is cooled in a field. T~ is the temperature T at which
the maximum of the magnetization occurs for a given field upon
ZFC. It is also the temperature where the FC magnetization be-
comes roughly T independent (branch 4~6).

where r;.=r; —r, r, and r being the spatial positions of
spins I and J, and kg the Fermi wave vector of the coIl-
duction electrons. Because of the oscillating term in the
numerator of Eq. (1), this interaction can be either fer-
romagnetic or antiferromagnetic depending on the dis-
tance between spins. Combined with randomness, the
RKKY interaction results in frustration. In the experi-
ments to be presented below, the sample used was
Ag:Mn(2. 6 at. %) (the same sample as in Ref. 15) unless
stated otherwise.

Insulating spin glasses can also exist. Typically, they
are formed from magnetic compounds diluted with a
nonmagnetic element. Frustration arises, for example,
from ferromagnetic near-neighbor bonds together with
next-near-neighbor antiferromagnetic bonds. A review of
the material science aspect of the problem can be found
in Ref. 16.

The universal signature of systems exhibiting spin-glass
behavior is the magnetic susceptibility g at low fields,
shown in Fig. 2. When the sample is field cooled (FC),
protocol 5~4~6 in Fig. 2, yFc becomes temperature in-
dependent below the glass temperature T . When a
zero-field-cooled (ZFC) procedure is followed, protocol
1~2~3 in Fig. 2, yzpc exhibits a cusp at T . The
diA'erence ypc —yz„cis the irreversible part of the mag-
netization. As long as the field remains constant in the
spin-glass phase ( T(T ), the magnetization M(H, T) is
essentially constant, independent of time. However, if
the spin-glass sample is cooled in a field down to a tem-
perature To & T, and one waits a time t prior to cutting
the field to zero, when the field is switched o6; one ob-
serves a thermoremanent magnetization which decays in
time. The decay of the TRM depends on t . ' Therefore,
the field-cooled state is not the equilibrium state of a spin
glass. The remanent magnetization immediately after
switching o6' the field decreases substantially as T is ap-
proached (see Fig. 3). ' We refer to experiments at a

III. DYNAMICS QN THE HIERARCHICAL TREE

A. Justi6cation of the use of ultrametricity

The solution of the SK spin glass proposed by Parisi
generates a large number of pure states characterized by
an overlap function q & between any two states a and P,

(2)

Here, m, is the thermal average of the magnetization at
site i in state o., and N is the total number of spins. For
simplicity, we shall restrict ourselves to Ising spins in the
remainder of this manuscript. Our sample is Ising-like
for small magnetic fields (H (380 Oe) as shown by Fert
et a/. ' The self-overlap q is the Edwards-Anderson
order parameter qEA, whose temperature dependence is
exhibited in Fig. 4. It is clear that

1 — qE&(T) q p —qEA(T) 1 . (3)

Parisi showed that the set of Iq & I is in fact a continu-
ous function q (x) (at H=O), from —

qEA to qE~, with x a

fixed temperature To as conventional TRM decay experi-
ments.

As can be seen in Fig. 3, the time decay of the TRM
slows down as t, the time spent in a field below T, in-
creases. Though there is no satisfactory theory for the
form of the TRM time decay, we shall make use of it as a
signature of the initial state just before the field is cut to
zero. This aging or memory efFect is observed to speed
up as the glass temperature T is approached. ' The ag-
ing in spin glasses, and the reason why the system tends
to reach equilibrium faster as T is approached, are the
issues to be discussed in the next sections.
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FIG. 3. Thermoremanent magnetization (TRM) decay of a
sample of Ag:Mn(2. 6 at. %) (Tg =10.4 K) cooled in a field
H=0.2 Oe, at three different reduced temperatures
T/Tg 0 77 0 865 0 96 Curves ( 1 ) and (2) correspond to wait-

ing times t„=10sec and 3X10 sec, respectively. It is ob-
served that the relaxation rate decreases with increasing waiting
time and decreasing temperature. In particular, close to the
glass temperature Tg, aging effects tend to disappear (Ref. 36).

1,0

probability defined between 0 and 1. Because of the sym-
metry of the problem, it is sufficient to consider the range
0~ q (x) ~ qEA. The quantity q (x) is a multivalued order
parameter for the infinite-range SK spin glass.

The number Xz of metastable states, or equivalently
the number of relative minima of the free energy can also
be computed. "" They correspond to the number of
solutions to the TAP equations. For an Ising spin glass
close to Tg, Nz increases exponentially with decreasing T,
or with increasing r =1—T/T:

Ns =exp[(8181)Nt ] . (4)

As a consequence, the complexity of the free-energy
landscape in configuration space increases markedly as T
is lowered. A typical experimental sample contains
N = 10 spins, so that, for t=0 1%., Ns =exp(10), but for
t=1.0%, Ns =exp(10 ). The existence of a very large
number of states suggests the existence of a very complex
phase space. This will be shown to result in a wide spec-
trum of activation energies (energy barriers) separating
these states. If the system is to reach internal thermal
equilibrium upon cooling below T, all the barriers must
be surmounted because of the ultrametric relationship be-
tween states (see discussion below). We shall show that
this is possible only extremely close to T . Otherwise, the
size of the phase space and the height of the barriers is
such that one cannot expect to reach equilibrium during
experimentally accessible time scales. '

The structure of the organization of the metastable
(pure) states was studied in detail in Refs. 9 and 26.
The authors showed that any three states a, P, and y
having mutual overlaps q p, q z, and q&z obey a property
called ultrametricity: at least two of the three overlaps
are equal and the third is larger than or equal to the other
two. This property can be translated mathematically
into a treelike organization of the states a, P, and y. ' In
Fig. 5, we have constructed an ultrametric tree with the
vertical axis corresponding to the overlap function q (x).
In this arrangement, in order to find the overlap q &

be-
tween those (pure) states a and P associated with free-
energy minima labeled a and P, one need only find the
closest common ancestor to a and P and "read" the value
of q at that level of the tree. The higher one has to move
up the tree, the smaller the value of q. Equivalently, the
larger the number of spins pointing in opposite directions
between a and P, the smaller q &. Thus, q &

is a measure
of the "resemblance" between states a and P, equivalent
to Eq. (2).

A property shown in Ref. 26 is that all the pure states
in the same hierarchical (ultrametric) tree have the same
magnetization. This is why the magnetization, and hence
the susceptibility in the Parisi solution, is temperature in-
dependent for T & Tg. The ultrametric tree is completely

Temperature T
il

qEA~

'0
0 0,5 1,0

FICJ. 4. Temperature variation of qEA(T)=q(x=1) (taken
from Ref. 35), where Tg = 1. In the inset, the temperature varia-
tion of 5q«/5T vs t (t = T/Tg ) is represented.

FICx. S. Ultrametric (hierarchical) organization of metastable
states at two temperatures T, and T, (T, )T2). At T~, a, P,
and y are metastable states (relative minima of the free energy
in configuration space). As observed, the mutual overlaps q &,

q~~, and q» are such that q ~ =q» & q~&. As the temperature
is lowered from T& to T2, state a gives "birth" to N states
which are the new metastable states at T2. q«( T) denotes the
maximum value of the overlap function at temperature T.
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specified once the field 0 (and therefore the magnetiza-
tion) and the total number of spins K are defined. If a
tree is constructed for all metastable states at T=O
(where qE~=l), the tree at a given temperature To,
0& To & T, is the same, except that the lower branches
corresponding to q )qE~ ( To ) are removed.

This construction can be interpreted physically by
starting from the high end of the temperature scale, T .
As the temperature is lowered from, say, T, to T2
(Ts ~ T, Tz), a given metastable state a at T, gives
"birth" to X new states at T2. These new states are the
metastable states at T2. Conversely, if the temperature is
raised from T2 to T„the X states will merge into the
single state o. at T&. This is pictured in Fig. 5.

B. Experiments of Refregier et al. (Ref. 8)

Temperature T

T--
0

To-dT

tw

————q
I

h,
,
{T )

—~ ——
q {T)

EA o

;{T-dT)

——~ ———
q (T,-dT)

I( Overlap q

Refregier et ah. performed two classes of experiments
on an insulating spin glass which clearly showed how a
hierarchical organization of rnetastable states can ex-
plain, in a simple manner, the dynamics observed in their
samples. In the first class, the sample was field cooled to
a temperature To. After a waiting time t, the tempera-

1

ture was lowered to T
&

and kept there for t . The tem-
3

perature was then raised back to To, and after a time t 2'
the external field was cut to zero and the TRM decay
subsequently measured. It was observed that, if the am-
plitude of the temperature step dT = To —

T& was not too
small, the relaxation was identical to the conventional
TRM decay at To after a waiting time t =t +t . The

1 2

system apparently remained frozen (did not age) while be-
ing held ("waiting") for t at T, . In the second class of

3

experiments by Refregier et al. , the sample was again
field cooled to To. After a waiting time t„,the tempera-

1

ture was raised to T& for a short time, and then cooled
back to To. After a time t at To, the field was cut to

2

zero and the decay of the TRM measured. It was shown
that, if the temperature increase, dT was larger than a
certain (small) value, the relaxation of the TRM was al-
most indistinguishable from the TRM decay at To after a
waiting time t . Thus, only a small increase in tempera-

2

ture was sufFicient to reinitialize the aging process at To.
It is important to note that, in both classes of experi-
ments, a minimum temperature step was required to
remain frozen or to reinitialize, respectively.

These results were discussed in terms of an ultrametric
(hierarchical) organization of the metastable states. In
Fig. 6, we represent at each level (corresponding to a
different temperature) the free-energy surface (following
the approach of Dotsenko ). The horizontal axis corre-
sponds to the difFerent metastable states at the given tern-
perature. Now, according to this hierarchical arrange-
ment, we can make the plausible physical assumption
that the smaller the overlap between states a and P (the
more reversed spins between them), the higher will be the
energy barrier between them because a larger number of
spins must be fIipped. This will be true on the average,
with exceptions not very probable.

FIG. 6. Hierarchical organization of metastable states. The
coarse-grained free-energy surface is represented at each level
corresponding to a given temperature. When the temperature is
decreased, each valley subdivides into others. The times t and
t ~ which are necessary to explore, at To and To dT, respec-
tively, the region of phase space bounded by the same barriers
are indicated. The closest common ancestor to all states within
the space bounded by 5; at To and To —dT is the same, and its
corresponding value of the overlap function is q1. The sketch
also shows that, as the system explores more of phase space, it
encounters ever increasing barrier heights, and that the free-
energy surface has a self-similar structure.

Then, within the context of an ultrametric organiza-
tion of metastable states, aging as well as the experiments
previously described can be understood as follows. The
system is cooled down to a temperature To, populating a
single or small number of states. As it ages for a time t
it distributes its population among more and more states
by overcoming ever increasing energy barriers. This is
pictured in Fig. 6. If we suppose that the system jumps
over a a barrier via a thermally activated process, then
after a time t„,the explored subspace is characterized by
a highest barrier

b, ,„(Tto)= Tl o(nt /ro),

where ~o is a microscopic attempt time.
e first cl ss of exp '~eats T& =To dT, dT&0,

can then be described in the following manner. After
waiting at To for a time t, a certain number of metasta-

1

ble states are populated. As the temperature is lowered
to T„those states give "birth" to new ones (see Fig. 6).
During the subsequent waiting time t, the system is po-3'
pulating the new metastable states. It is a much slower
process than at To because (a) the temperature is lower
and (b) the height of a given barrier increases rapidly
with decreasing temperature (this result will be proven in
Sec. IV). The second factor will turn out to be the most
important. If, after the waiting time t, the system is3'
unable to populate more than the descendant states of
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those which have been populated at To after a total timet, the metastable states will merge into their ancestors
1

as the temperature is raised back to To, thereby erasing
the aging process at T, .

The second class of experiments, T, = To+ d T, d T & 0,
can also be interpreted using this approach. The states
populated during t at To will merge into fewer ones or

1

eventually a single one as the temperature is raised (de-
pending on the magnitude of the temperature rise). In
particular, if the temperature T, is such that
q ~E(T, ) ~ q„where q, is the value of the overlap func-
tion of the closest common ancestor to all states popu-
lated during t at To (see Fig. 6), then one expects that

1

the aging that occurred during t would be completely
1

erased because all the states have merged into a single
parent. As Tis lowered back to T0, aging restarts.

We can summarize the previous results in the following
way. If a spin glass is cooled to a temperature To & T, a
short positive temperature step will reset the aging pro-
cess. A negative temperature step will not modify the ag-
ing process. This experimental observation is well de-
scribed by an ultrametric organization of metastable
states.

C. Temperature cycling experiments:
Inhuence of a temperature step

and waiting time on the TRM decay

In order to further test the validity of the ultrametric
organization of metastable states and to get a more quan-
titative picture of the continuous ramification of phase
space as the temperature is decreased, we have carried
out a series of TRM decay experiments. In these experi-

ments, the system ages at a temperature To+dT (dT & () )

and, prior to cutting o6' the field, the temperature is
lowered or raised to To. As an example, the TRM decays
at To=9.0 K are exhibited in Figs. 7 and 8 (for To d—T
and To+ d T, respectively). A sample of Ag:Mn(2. 6
at. %%uo )(T~=10.4K )wa sused .

We present in Fig. 7 the results of a class of experi-
ments where the sample is field cooled to To dT—( To =9
K, H=0.2 Oe). After a waiting time r =3X10 sec, the
temperature is raised to To and the field is subsequently
cut to zero. The decay of the TRM is then recorded.
Four difFerent values of dT were used: 20 mK (A), 40
mK ( ), 60 mK (Q), and 80 mK (A). The solid lines
represent the relaxation corresponding to conventional
TRM decay measurements at To after waiting times
t =3X10, 10, 3X10, and 10 sec. In particular, it is
observed that aging at T0 —40 mK for a time t =3 X 10
sec, and aging at To for t =10 sec have identical TRM
relaxations. This property will be used jn Sec. IV to
evaluate the temperature dependence of the height of a
specific barrier h(T). Our main observations are (a) the
larger the temperature step dT, the shorter the waiting
time at To necessary to obtain the same TRM relaxa-
tion, and (b) for d T ~ 60 mK, the shape of the TRM re-
laxation using the temperature cycle described above is
the same as that of a conventional TRM at To, with an
appropriate waiting time. This is at least true in our ex-
perimental time range and within our experimental reso-
lution. (A dc Squid magnetometer is used in the mea-
surements. ) However, for dT ~ 80 mK, the TRM relaxa-
tion curve cannot be superposed onto one obtained in a
conventional experiment. This is valid independently of
how long one waits at To 80 mK.

The results of a second class of experiments are
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FIG. 7. Effect of aging in a field (H=0.2 Oe) at To —dT and
measuring the time decay of the TRM, for different dT. The
solid lines correspond to the conventional TRM decay at To =9
K, with waiting times t„=3 X 10, 10, 3 X 10, and 10 sec. The
data were obtained by field cooling to To dT [dT=20 mK—
(A), 40 mK (C'), 60 mK ( ), and 80 mK (A)], and waiting for
t„=3X 10 sec before switching off the field and measuring the
time decay of the TRM. The resulting relaxations can be com-
pared to reference relaxations at To with effective waiting times
decreasing with increasing dT.

FIG. 8. Effect of aging in a field (&=0.2 Oe) at To+dT and
measuring the time decay of the TRM at To for different dT.
The data correspond to dT=40 mK (K) and 80 mK ( ), after
waiting in a field for t =10 sec. The solid lines correspond to
conventional TRM decays at TO=9 K, with waiting times
t =3 X 10, 10, 3 X 10, and 10 sec. The relaxations obtained
using the temperature cycling procedure described above can-
not overlay the conventional TRM decay at To. See text for dis-
cussion of this point.



I.EDERMAN, ORBACH, HAMMANN, OCIO, AND VINCENT

presented in Fig. 8. The sample is now field cooled to
To+dT, dT &0. After a time t =10 sec, the ten. pera-
ture is lowered to To, the field is removed immediately
after, and the decay of the TRM is subsequently mea-
sured. Two diFerent dl s are presented: 40 mK (A ) and
80 mK ( ). We represent with solid lines the relaxation
corresponding to classical TRM decay measurements at
To, with waiting times t =3X 10, 10, 3 X 10, and 10
sec. This second class of experiments exhibit the follow-
ing features: (c) for short observation times, the observed
TRM decays lie below the t = 10 sec conventional refer-
ence curve, and (d), for large observation times, the
curves are above. The larger the d T, the more
amplified are observations (c) and (d).

The above observations can be described, again, in a
very simple way using the hierarchical organization of
metastable states presented in Sec. III A. In the first class
of experiments where the sample ages at a temperature
To d T the complexity of the free-energy landscape is
higher, and the aging process slower, relative to that at
To. Thus as dT increases, the region of phase space pop-
ulated during a given fixed waiting time at To —dT is
bounded by barriers whose height at temperature To de-
creases (see Fig. 6). From Eq. (5), this implies that the
efFective waiting time at To decreases with increasing dT
[observation (a)]. In the discussion above, it was assumed
that the thermal weight of a state and its descendants
remains unchanged when compared with a reference
state and its descendants at the corresponding tempera-
ture. This assumption may only be true as a first-order
approximation. This can be seen as follows. Let X]
states be populated at temperature To —dT. As the tem-
perature is raised to To, that number decreases to No (see
Fig. 6). Immediately after To is reached, the system will

be in equilibrium within the populated subspace if the
thermal weight of each one of the Xo states is equal to
the relative weight of their descendants at To —dT. As
dT gets larger, this approximation becomes less valid.
Thus, in the first class of experiments described above
(aging at To dT), the TRM de—cay, for large dT, corre-
sponds to a combination of the normal continuation of
phase-space exploration at To and a reequilibration
within the subspace populated while waiting in a field at
To —dT. Therefore, the shape of the decay will difFer

from the conventional TRM decay at To, regardless of
waiting time [observation (b)].

The second class of experiments can also be described
following the approach of Sec. III A. The sample is now
field cooled down to To+ d T. After a time t, X', meta-
stable states are populated at that temperature. As the
temperature is lowered to To, each one of those states
gives "birth" to new ones (see Fig. 5). Thus, when the
field is cut to zero and the decay of the TRM measured,
the shape of the decay will reAect two processes. First, at
short times the system populates the states created by
lowering the temperature. This is a fast process because
it corresponds to populating states very close in phase
space (large overlap) or, similarly, states separated by
very small barriers [compared to h, ,„(To, t ) ]. Thus, the
decay of the TRM is faster than in a conventional experi-

In this section, we exploit the temperature cycling pro-
cedure of Sec. III C in order to obtain a direct measure-
ment of the temperature dependence of the height of a
given barrier h. We will extract from our measurements
(5h/5T) as a function of b, .

The procedure comprises two steps. First, the sample
is cooled in a field H=0.2 Oe to a temperature To. After
a waiting time t, the field is cut to zero and the decay of
the TRM is measured (see solid lines in Fig. 7). Next, the
system is cooled in the same field from above T down to
To dT (dT)0—), with dT((T, TO. After a waiting
time t, the temperature is raised to To, the field is im-
mediately switched ofF, and the decay of the TRM subse-
quently measured. In this procedure, the times t and t ~

are chosen so that both decays of the TRM are identical.
This was shown to be possible in Sec. IIIC for small
enough dT.

Using the interpretation of aging given in Sec. III, we
can give a physical interpretation to these experiments.
In both cases, just before switching ofF the field, the tem-
perature and field are the same. By choosing t and t„.
appropriately, the TRM decays can also be made the
same. Therefore, the region of phase space populated
just before the field is cut to zero must be the same. This
region of phase space can be characterized by the largest
barrier overcome during the aging process, given accord-
ing to Eq. (5) by,

b, ( To, t ) = Toln(t /ro)

at To, and

(6a)

(6b)b, (TO dT, t )=(T —doT)ln(t ./ro)
at To dT Substracti—ng (6.b) from (6a) for small dT, one
obtains

b(To, t ) —b(TO dT, t .)=(56/5T)r r —dT

ment [observation (c)]. Second, at long times, it popu-
lates the region of phase space not populated immediately
after cooling from To+dT to To. In the previous sec-
tion, it was shown that, the higher the temperature, the
faster the aging process. Therefore, for a fixed waiting
time t at To+dT, the larger the dT, the longer it takes
the system, at To, to begin to explore states in the second
stage of the time-evolution process. This is the reason
why, as d T increases, the system seems to have aged more
at large observation times than it would have for a time
t at temperature To. the TRM decay is slower at long
observation times than the reference one at To with the
same waiting time [observation (d)].

Thus, as in Sec. III 8, the results presented in this sec-
tion can be nicely explained in the context of an ul-
trametric organization of metastable states. It is ob-
served that it is possible to find a time t such that aging
at temperature To —d T for a time t„.is equivalent to ag-
ing at To for a time t (as long as d T is small). This is not
possible when aging at To+dT. The first of these two
properties will be used in the gext section.

IV. TEMPERATURE DEPENDENCE
QF BARRIER HEIGHTS
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FIG. 9. Plot of 5A/5T vs 6 at the reduced temperature
T, = To/T~ =0.865 for the Ag:Mn(2. 6 at. %%uo )(T~=10.4K)sam-
ple. It is found that ~55/5T~ increases linearly with increasing
6, and can be expressed by (55/5T)z z = —a(T0)6+b(TO).

0
All quantities are given in units of Tg.

as a function of 5=5( To, t ). By choosing different
values of t, different barriers can be probed. This pro-
cedure would normally be very time consuming, but the
trick of Ref. 13 was used to shorten the measurement
time, leaving the nature of the experiment the same.

In Fig. 9, we present the results obtained at TO=9 K
(T~ =10.4 K) for the range of barriers that can be ex-
plored within laboratory time scales (all quantities are ex-
pressed in units of T ). We set ro —10 ' sec, in accor-
dance with the T of our sample. Within the small range
of b, explored, (5b./5T) is well approximated by a linear
function of 6 and can be expressed as

(55/5T)r r = —a( To)b, + b(T o),

where a ( To ) and b ( To ) are two positive constants de-
pending only on To. ' They are exhibited in Figs. 10 and
11, respectively, for four measurement temperatures
To =8, 9, 9.5, and 10 K. We sketch in Fig. 6 how a given
barrier evolves between To and To —dT. That figure im-
plies that b, ( To dT) ) b, (To). —The results summarized
in Eq. (8) prove this relation, and further show that the
larger the barrier, the faster it grows with decreasing
temperature. Our results, Eq. (8), are consistent, in the
range of 5 explored by us experimentally, with an ex-
ponential growth of barrier height with decreasing tem-
perature. This shows why aging slows down so markedly
upon lowering T, ' and increases in rate so rapidly upon
increasing T. ' A numerical integration of Eq. (8)
should, in principle, give A(T). However, the rate of in-
crease of barrier height 6 with a significant drop in tem-
perature is so great that large barriers cannot be probed
during laboratory time scales [see Eq. (5)]. At a given T,
we are limited to that narrow range of b,(T) for which t
appearing in Eq. (5) lies within laboratory accessibility.
This means that unless Eq. (8) can be extended experi-
mentally to a larger range of 6, we cannot determine how
a particular barrier height changes over the full range of
temperatures 0 ~ T ~ T .

0.75 0.80
I

0.85 0,90 0,95 1.00

FIG. 10. Values of a(T) extracted from Fig. 9 given for the
four reduced temperatures T„=To /T~ =0.769, 0.865, 0.913, and
0.952. The error bars are determined by the procedure used
when computing lim5z 056/5T (see Ref. 13).

V. BARRIER HEIGHT AND HAMMING DISTANCE
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FIG. 11. Values of b (T) for the same temperatures as in Fig.
10.

We introduced in Sec. III the concept that the free-
energy landscape becomes more complex in a hierarchi-
cal fashion as the temperature is lowered. In particular,
the number of metastable states grows rapidly with de-
creasing temperature. " Physically, this implies that
the maximum distance between states in the subspace en-
compassed by a given barrier at temperature T increases
as the temperature is reduced. The Hamming distance is
a measure of the difference between metastable states,
and therefore proportional to the size of the region of
phase space' which separates these states. The Ham-
ming distance between two states a and P, d &, is given
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b 10

d &=(I/4N) g (m; —mP) =
—,'(qEA q—&) .

The prefactor —,
' is chosen so that the size of phase space

is 1 at T=O and zero at T= Tg ( —qE~ q & q«).
From Fig. 6, we see that the Hamming distance ex-

plored at temperature T0 during a wait time t is given
by

To t )=( /2)[qEA(To) ql] (10a)

d(T, dT, t —)= '[q«(T-, dT) —q, ], — ( lob)

where q, is the same as in (10a) since the closest common
ancestor remains the same. Equations (10a) and (10b)
give the Hamming distance of the space bounded by the
same barrier at the two temperatures T0 and T0 —d T. If
dT &(T, To, upon substracting Eq. (10b) from Eq. (10a),
one Ands

d(To, t )
—d(TO dT, t, )—

=(5d/5T)r

,'(5qE~/5T—)

Equation (11) shows how the Hamming distance evolves
with temperature. In the Parisi solution, q EA corre-
sponds to the self-overlap (overlap between a state and it-
self) ~ In terms of the multivalued order-parameter func-
tion q(x), qEA=q(x= 1). We have plotted q«and
(5qEA/5T) as a function of temperature in Fig. 4. Com-
bining Eqs. (8) and (9), we obtain

where q &
is the value of the overlap function correspond-

ing to the closest common ancestor to the populated
states. According to the protocol presented in Sec. IV,
the Hamming distance at temperature T0 —d T explored
within the same barriers is

(total size of the phase space) at that temperature is

d,„=q«(0.865T~)=0.16. This means that, by waiting

10 sec instead of 10 sec, the increase in explored phase
space is only 4.3% of the total. Clearly, time scales
beyond the age of the universe would be required to reach
equilibrium (explore all of phase space) even at 0.865T .
Because a(T) is an increasing function of T close to T
[a(T) increases with T and (5qE~/5T) is almost con-
stant], and because the maximum value of d becomes
smaller as T increases, one can expect to reach thermo-
dynamic equilibrium within experimental time scales only
extremely close to the transition temperature '

We have reproduced, in Fig. 12, the results obtained by
Vertechi and Virasoro ' for the theoretical relationship
between barrier height and Hamming distance. They are
based on numerical simulations using the Thouless-
Anderson Palmer (TAP) equations at T and H=O. One
observes that, for Hamming distances d ~0.5 (at T=O),
b, (d ) saturates. That is because this region of d corre-
sponds to the time-reversal states. For small d (d &0.2),
we plot 1nk as a function of d in Fig. 13. The result is
of the form b, =0.13 exp(11.4d), qualitatively the same as
that which we extracted from our experiments in Eq.
(13)~ That the prefactor of d inside the exponential is not
the same from experiment a,„(0.865Tg ) =38.1+9.5 and
theory a,h„(OTg)=11.4 is most probably a consequence
of the different sizes of the experimental (N =10 ) and
the numerical simulation (N= 96) samples, and the
difference in temperatures. Notice also that the absolute
values of the barrier corresponding to a given Hamming
distance from experiment [h(d =0.0068)-32 and theory
[h(d =0.04)-0.2] are not the same. We attribute this
difference to the size dependence of barrier heights.
Indeed, Vertechi and Virasoro show' that the relation
b, =f (d) is size dependent. Confirming this experimen-
tally would be a very important result. The static Parisi

5b, /5T
5d/5T z =r, 5d z-= y„

5A

~qEA T = To

=a( To)5 f3( To), — (12)

for the range of b, we explore experimentally. In Eq. (12),
a( To ) and P( To ) are positive constants, dependent only
on temperature. They are equal to 2a/(5qE~/5T) and

2b/(5qE~ /5T), respectively, where a and b are defined in
Eq. (8). Integration of Eq. (12) gives

I I I I

l

I I I I
l

I I I I
l

I I

p
f3 ' (3

(]
~( p

r ~- I )+
)~ 6' r

X

h(d) —/3/a = [h(do) —P/a]exp[a( T)(d —do)], (13)

where d0 and d are the Hamming distances between
states separated by barriers of height b, (do) and b (d), re-
spectively, at temperature T. In order to appreciate the
implications of Eq. (13), we have evaluated the difference
in Hamming distance at T =0.865T between the states
separated by barriers of height h(t =10' sec ) =30 and
b, ( t = 10 sec) =32. Using Eq. (13), one obtains
d 32

—d30 =0.0068. The maximum Hamming distance

I. . . I l I I

o.4 O. 6

FI(». 12. Numerical simulation by Vertechi and Virasoro
(Ref. 12) giving the relation between barrier heights 6 and

Hamming distances d, at T and H= 0, for spin-glass samples of
different sizes N=48 (+), 64 (0), and 96 ( ).
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FIG. 13. Plot of lnS, vs d for 0.025 ~ d ~ 0.2, where b, and d
where determined for a sample of N=96 (Ref. 29). The data are
compatible with an exponential increase of 6 with distance d, as
found from experiment [see Eq. (13)].

solution separates the pure states by infinite barriers in
the thermodynamic (N~~) limit. Therefore, infinite-
time scales would be necessary to observe aging efFects.
The fact that, experimentally, we use a very large, but
nevertheless finite, sample, could explain why dynamics
within laboratory macroscopic time scales are observed
at all.

VI. CONCLUSION

From a new set of temperature cycling experiments on
a canonical spin-glass Ag:Mn(2. 6 at. %), we have
confirmed that the dynamic properties of spin glasses can
be interpreted in terms of an ultrametric (hierarchical)

organization of metastable states. Aging can be under-
stood as the system populating more and more of phase
space by hopping over barriers which increase in height
as the Hamming distance between the initial and final
states gets larger (the overlap between states gets small-
er). We show experimentally that a given barrier in-
creases its height very rapidly as the temperature T is
lowered. Therefore, we can explain why dynamics slow
down so very rapidly with decreasing temperature. Fi-
nally, a quantitative relation between a barrier height 5
and its corresponding Hamming distance d is established
experimentally. It is qualitatively the same as that ob-
tained from numerical simulations on mean-field spin
glasses, establishing a link between experiment and
theory of spin-glass dynamics. In the range of barriers
that can be explored during experimental time scales, 5
increases exponentially with d. As suggested in Sec. V, 6
should also be an (increasing) function of the number of
spins X. In particular, in Ref. 12, it is proposed that
6 ~ N with a=0.34+0.08. Physical samples of different
sizes could test this. For example, our results suggest
that, for mesoscopic-size systems, equilibrium may be
reached for any 0( T & T within laboratory time scales.
It is also possible that, for some insulating spin glasses,
the effective X is smaller. This may indicate why aging
disappears, for instance, in Euo 4OSro 6OS for
T 0.86T .
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