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Spin correlations in the antiferromagnet MnS, based on an inherently frustrated face-centered-cubic
lattice have been investigated by quasielastic neutron scattering above the Néel temperature. The diffuse
scattering above Ty is centered at an incommensurate position k=(1,k,,0) and is temperature depen-
dent. The component k, increases continuously from k,=0.40 at T=115 K to k,=0.44 at a tempera-
ture just above Ty =48.2 K. At Ty, a first-order phase transition takes place and k, jumps abruptly to
the commensurate value k, = 1. The ratio of the correlation lengths along and perpendicular to the in-

commensurate modulation is very close to unity at Ty. The spatial correlations extend only over little
more than one unit cell (§=8 A) even just above T. The inverse time correlation increases continuous-
ly with temperature from 0.16 THz at Ty up to 2.9 THz at 150 K, the highest temperature investigated.
Mean-field calculations of the diffuse scattering in a framework of a Heisenberg Hamiltonian with ex-
change up to the fourth neighbors agree reasonably well with the experimental data. However, such cal-
culations fail to explain the centering of the diffuse scattering at the incommensurate wave vector.

I. INTRODUCTION

The magnetic semiconductor MnS, orders with the
type-III antiferromagnetic structure! with the wave vec-
tor k=(1,,0). The antiferromagnetic phase transition
at Ty, =48.2 K is found to be of first order.>”* Accord-
ing to Rossat-Mignod,®> the type-III antiferromagnetic
structure should be classified as a commensurate struc-
ture. The classical behavior in such a case would be
second-order phase transition from the paramagnetic to
an incommensurate phase at T which undergoes a lock-
in transition to a commensurate phase at lower tempera-
tures. The first-order phase transition in MnS, directly to
the commensurate phase is unusual and its origin is an
important problem to investigate. Diffuse neutron
scattering above T gives valuable information in such
cases. It samples the short-range-ordered spin fluctua-
tions and yield broad approximate Lorentzian peaks in
reciprocal (Q) space. Their positions and widths directly
determine the structure and the inverse correlation
lengths of the fluctuations. Diffuse neutron-scattering in-
vestigations have revealed®’ the origin of the first-order
phase transitions in UAs and CeSb. UAs undergoes a
first-order phase transition at Ty =126 K to the type-I
antiferromagnetic structure. Above Ty the diffuse
scattering was found to be anisotropic and centered about
a wave vector that suggests a tendency to order with an
incommensurate type-I ordering. CeSb orders at
Tny=16.4 K in a first-order phase transition to a modu-
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lated commensurate phase.® Diffuse scattering above Ty
shows fluctuations corresponding to the type-I phase.’
Our preliminary studies of magnetic diffuse neutron
scattering!® in MnS, showed spin fluctuations centered at
the incommensurate vector k=(1,0.44,0). We have now
performed more detailed diffuse neutron-scattering inves-
tigations on MnS, as functions of both scattering vector
Q and energy E and have determined the inverse space
and time correlations as functions of temperature.

We have organized the present paper in the following
way. In Sec. II we recapitulate the crystal and magnetic
structure of MnS,. The experimental procedure has been
described in Sec. III. Section IV gives the results of the
diffuse scattering investigations as a function of Q
whereas in Sec. V we describe similar diffuse scattering
investigations as a function of energy. In Sec. VI, a sim-
ple exchange model which reproduces the experimental
two-dimensional diffuse scattering distribution reasonably
well, is presented. Section VII is devoted to the discus-
sion of the results and Sec. VIII gives the summary and
the conclusions from the present investigations.

II. CRYSTAL AND MAGNETIC STRUCTURE OF MnS,

The magnetic semiconductor MnS, crystallizes with
the pyrite structure (Pa3, a;=6.104 A at 295 K) which,
along with the closely related marcasite and arsenopyrite
structure, are exhibited by a large number of compounds
with diverse electrical and magnetic properties.!! In
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these compounds the cations are sixfold coordinated by
distorted octahedra of anions whereas the anions are
tetrahedrally (distorted) bonded to three cations and one
anion forming covalently bonded anion pairs (Fig. 1).
The structure can be viewed as the rocksalt structure in
which the anions are replaced by covalently bonded
dumbbell-shaped anion pairs placed in between cations
and directed along {111). The structure therefore does
not retain the full symmetry of the space group Fm3m of
the rocksalt structure and has a lower symmetry space
group Pa3.

Figure 2 illustrates the type-III magnetic structure of
MnS,. The magnetic unit cell is doubled in one of the cu-
bic (100) directions. The magnetic structure can be con-
sidered to consist of antiferromagnetic layers 4,B, 4,B,
where A and B are obtained by reversing the spin direc-
tions. The spins are oriented along the cubic direction
for which the magnetic cell is doubled. This is a single-k
structure and it cannot be distinguished from a double-k
or a triple-k structure unless one applies uniaxial stress or
external magnetic field. By applying a magnetic field
parallel to [100] and [110] we have recently established
that the magnetic structure of MnS, is actually of the
single-k type.!?

III. EXPERIMENTAL PROCEDURES

We have used a natural single crystal of MnS, (hauer-
ite) of octahedral shape with linear dimensions of about 1
cm for the present investigations. We have performed x-
ray- and neutron-diffraction measurements!® on parts of
the crystal at several temperatures and the structural
refinements using these data showed that the quality of
the crystal is very good. Magnetic diffuse neutron-
scattering investigations have been performed with the
four-circle-diffractometer-cum-triple-axis  spectrometer
D10 situated in the guide hall of the High Flux Reactor
of the Institut Laue-Langevin. The crystal was fixed to
the four-circle helium-flow cryostat by aluminum foil
without using any glue to reduce the background scatter-
ing. Neutrons of wavelength 2.36 A were provided by a
pyrolytic graphite monochromator (PG 002) in combina-

FIG. 1. Crystal structure of the pyrite-type MnS,.
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FIG. 2. Type-IIl single-k antiferromagnetic structure of
MnS,. The solid and open circles represent atoms with oppo-
sitely directly spin orientations. The sulfur atoms have been
omitted.

tion with a PG filter. During the experiment we have
employed D10 in the two-axis configuration for the in-
tegral scans and in the triple-axis configuration for the in-
elastic scans. In the latter mode, a PG 002 analyzer was
used and the collimation was typically 30’-60'-60"-40".

IV. MAGNETIC DIFFUSE SCATTERING
AS A FUNCTION OF Q

MnS, undergoes a first-order phase transition from the
paramagnetic phase to the type-III phase at about
Tny=482 K. We have redetermined the Néel tempera-
ture by measuring the temperature dependence of the in-
tensity of the scattered neutrons at a reciprocal point
Q=(1,1.4,0), which is close to the magnetic Bragg
reflection (1,1.5,0) in the ordered state. The integral neu-
tron intensity at this point is proportional to the static
susceptibility. Figure 3 shows the temperature depen-
dence of the scattered neutron intensity at Q=(1,1.4,0).
Below Ty, the neutron intensity increases slowly with in-
creasing temperature until, at Ty =48.2 K, the intensity
jumps by a factor of about 3.3 and then again decreases
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FIG. 3. Temperature variation of the intensity of the scat-

tered neutrons from MnS, at Q=(1,1.4,0). This intensity, at a
point slightly away from the magnetic Bragg peak position of
the ordered phase, is proportional to the static susceptibility.
The discontinuous jump in intensity at T =48.2 K corresponds
to the first-order phase transition.
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with increasing temperature. This behavior is typical for
a first-order phase transition and is very similar to that
observed, for example, in UAs by Sinha et al.b Figure 4
shows the temperature variation of the diffuse scattering
in Q scans along b* through the magnetic superlattice
point (1,%,0) together with a similar scan in the long-
range-ordered phase. At 7=106.0 K, a rather weak
magnetic scattering contribution is observed which be-
comes increasingly more prominent at lower tempera-
tures. The solid curves are the results of the least-squares
fit to the experimental data with a Lorentzian function
convoluted with a Gaussian resolution function. The
asymmetry of the background seen in Fig. 4 is due to a
neighboring maxima of the diffuse scattering. This can
be seen in the two-dimensional scans presented in Sec.
VID. We have checked in detail that the assumed be-
havior of the background does not influence the results
for the position and width of the Lorentzian up to tem-
peratures around 70 K, well above T. The centroid of
the diffuse scattering does not coincide with the com-
mensurate superlattice point (1,2 ,0) but corresponds to an
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FIG. 4. Magnetic diffuse neutron scattering of MnS, in Q
scans parallel to the modulation vector at different temperatures
above Ty. The magnetic Bragg peak at a temperature below Ty
is also shown for comparison. The solid curves fitted to the data
are of Lorentzian form, convoluted with the Gaussian resolu-
tion function determined from a similar scan below 7.
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FIG. 5. Temperature variation of the incommensurate com-
ponent of the vector at which the diffuse magnetic neutron
scattering is centered.

incommensurate position k=(1,ky,0), which is weakly
temperature dependent. Figure S shows the temperature
dependence of the component k, of this incommensurate
vector. The component k, increases continuously from

k,=0.40 at T=115 K to k,=0.44 at a temperature just
MnS,
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FIG. 6. Diffuse magnetic neutron scattering of MnS, in Q
scans perpendicular to the incommensurate modulation at
different temperatures. The solid curves fitted to the data are of
Lorentzian form convoluted with the Gaussian resolution func-
tion.



44 SPIN CORRELATION IN THE FRUSTRATED ...

above Ty =48.2 K. At Ty, k, jumps abruptly to the
commensurate value 1. Such behavior has been observed
for the first time to our knowledge in any magnetic sys-
tem. Figure 6 shows the temperature dependence of the
Q scans parallel to a* around Q=(1,1.44,0). The diffuse
scattering is well centered at the commensurate value
k,=1. Figure 7(a) shows the temperature variation of in-
verse correlation lengths parallel and perpendicular to
the incommensurate modulation obtained from the scans
of Figs. 4 and 6. The ratio of the correlation lengths
parallel and perpendicular to the modulation vector is
about 1 close to T, but it increases with temperature at-
taining a value of about 1.8 at 7=115 K. Due to the un-
certainty of the background, the correlation length paral-
lel to the modulation vector obtained by the fitting pro-
cedure is uncertain. We are therefore not certain wheth-
er the anisotropy in correlation lengths at temperatures
higher than about 70 K is really physical. The correla-
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tion length just above Ty is only about 8 A along these
two directions. Figure 7(b) shows the temperature varia-
tion of the peak intensity of the diffuse scattering as a
function of temperature. The peak intensity is propor-
tional to the susceptibility. The peak intensity increases
as the temperature decreases and approaches Ty. Al-
though the antiferromagnetic phase transition in MnS, is
of first order, one can perhaps assume critical behavior of
the correlations lengths at least close to the phase transi-
tion temperature. Also, in strongly frustrated systems,
the critical region is known to be extended. We have
fitted the correlation lengths to the three-dimensional
Heisenberg critical exponent v=0.7020.

k=kit%, T>T,,

where the reduced temperature t=(T —T.4)/T.s and
T.q is the effective Néel temperature. The perpendicular
correlation «, data which have been measured very accu-
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FIG. 7. Temperature variation of (a) the full width at half maximum (FWHM), which is proportional to the inverse correlation
length, parallel and perpendicular to the modulation vector and (b) the peak intensity. (c) gives the log-log plot of the inverse correla-
tion lengths vs reduced temperature. The straight line corresponds to the three-dimensional Heisenberg critical exponent v=0.7020.
The effective Néel temperature obtained from the least-squares fit is T =35.0(5) K.
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rately can be fitted to the three-dimensional Heisenberg
exponent v=0.7020 very well by varying the effective
Neéel temperature T.4. Figure 7(c) gives the log-log plot
of the temperature variation of the perpendicular correla-
tion length corresponding to the effective Néel tempera-
ture T.+=35.0(5) K. However, as is seen from the same
figure, the parallel inverse correlation length does not fit
very well to the above values of v and Ty for tempera-
tures higher than about 70 K. We have already men-
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FIG. 8. (a) Quasielastic diffuse neutron magnetic scattering
from MnS, in energy scans at several temperatures above Ty.
The solid curves fitted to the data are of Lorentzian form convo-
luted with the Gaussian resolution function. (b) Energy scan
just below Ty showing inelastic excitations (spin waves). The
solid curve is the result of the least-squares fit of two Gaussians
for the spin-wave peaks along with a Gaussian for the elastic
peak and a Lorentzian describing the longitudinal fluctuations.
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tioned that our determination of the parallel correlation
length is not very accurate above 70 K due to the slop-
ping background the origin of which is still to be investi-
gated. The solid curve in Fig. 7(b) is the result of the
least-squares fit of the peak intensity data using 7' .z=35
K, which gave the critical exponent y =1.35, a value
close to the theoretical three-dimensional Heisenberg
value ¥ =1.375.

V. MAGNETIC DIFFUSE SCATTERING
AS A FUNCTION OF E

We have investigated the magnetic diffuse scattering
from MnS, as a function of the energy transfer at several
positions in reciprocal space. Figure 8(a) shows the tem-
perature dependence of such energy scans at
Q =(1,1.5,0). The solid curves are the results of least-
squares fits of the data with Lorentzian curves convolut-
ed with the Gaussian resolution curve obtained from the
energy scan with vanadium. The full width at half max-
imum (FWHM) which is proportional to the inverse time
correlation of the spin fluctuations is plotted as function
of temperature in Fig. 9. The FWHM of the resolution is
0.19 THz. Figure 9 also shows the FWHM of the energy
scans at Q=(1,1.44,0). From this figure we notice that
the inverse time correlation is not very sensitive to a
small change in Q (AQ, =0.06) close to the zone bound-
ary and that data for Q=(1,1.5,0) and Q=(1,1.44,0) lie
on a common curve. This is understandable because,
even just above Ty, the inverse correlation length is large
(the scattering is broad in Q) and we are still very far
from critical behavior. The inverse time correlation of
the spin fluctuations increases continuously with temper-
ature from 0.16 THz just above T’y up to 2.9 THz at 150
K, the highest temperature at which the energy scan has
been performed. As in the case of the spatial spin correla-
tions, there is also no divergency of the spin correlations
in time at the phase transition, which is consistent with
its first-order nature. This is illustrated in Figs. 8(a) and
8(b), which show energy scans just above (49 K) and just
below (48 K) Ty =48.2 K. While the frequency spectrum
of the magnetization fluctuations is purely quasielastic
above Ty, sharp inelastic excitations (spin waves) appear
in the long-range-ordered phase. Note that, in the inves-
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FIG. 9. Temperature variations of the full width at half max-
imum (FWHM) of the energy scans of MnS,.
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tigated temperature range above Ty and throughout the
Brillouin zone, the energy width of the spin fluctuations
stays always significantly smaller than the incident energy
of E=3.55 THz. This justifies our integral measurements
discussed in Sec. IV. The integrated intensity from our
energy scans follows well the behavior of the peak inten-
sity from the integral scans shown in Fig. 7(b).

VI. MEAN-FIELD CALCULATIONS
OF THE MAGNETIC DIFFUSE
NEUTRON SCATTERING ABOVE Ty

A. Magnetic diffuse neutron-scattering cross section

In order to obtain a deeper understanding of the
paramagnetic magnetization fluctuations, we have per-
formed model calculations of the magnetic diffuse
neutron-scattering cross section. This cross section is
directly proportional to the generalized wave-vector-
dependent susceptibility tensor and thus measures the
Fourier components of the microscopic magnetization
fluctuations. In our case, we can assume the validity of
the so-called “quasistatic approximation”!* at all temper-
atures between Ty and 100 K, since the measured energy
width of the magnetization fluctuations (<1 THz) always
stays much smaller than the energy equivalent kT of the
corresponding temperature and also than the energy of
the incident neutrons (3.5 THz). Thus, we can write the
energy-integrated magnetic diffuse neutron-scattering
cross section in the form!*

do —ow k8T
=N(yry)?|F(Q)|%e 2%

) g’uk
X 3 (8,5~ 0,0p) S x5(Qe TP TP
ap dd’

Here N denotes the number of wunit cells,

yro=0.539X 10712 cm the coupling constant, F(Q) the
magnetic form factor for a single Mn?* ion as a function
of the scattering vector Q, e ~ 2% the Debye-Waller factor,
28,(Q) the tensor of the generalized susceptibility. The
term (85— QaQB accounts for the fact that only mag-
netic moment components perpendicular to the scatter-
ing vector contribute to the scattering process. The sum
over d,d’ runs over one unit cell and the indices d,d’ la-
bel the magnetic ions within one cell at positions p;,p .

B. Model Hamiltonian

In the temperature range considered, MnS, behaves as
a Mott insulator and we can attribute each Mn?" jon a
spin of fixed magnitude S =3 and an angular moment
L=0. Since the free Mn?% ion has a spherical symmetri-
cal ground state, we neglect the single-ion anisotropy in
the cubic crystalline field. Assuming that the Mn?* spins
are coupled via an isotropic exchange only, we then end
up with a simple Heisenberg exchange Hamiltonian

> Jia,raSwuSra 2
,ra

where J;; ;4 is the exchange integral between a spin Sy,
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in the unit cell with label d and another spin S; ;.. For a
Mott insulator, only short-range exchange interactions
have to be considered. In our case, an inspection of the
exchange paths lead to the conclusion that nearest-(J,)
and next-nearest-(J,) neighbor interactions should be
dominant. This is supported by calculations!® that indi-
cate that J, and J, are comparable and J; is only about
4% of these values.

C. Generalized susceptibility

The wave-vector-dependent susceptibility Y35.(Q) of (1)
can be calculated for the model Hamiltonian (2) in the
framework of molecular-field theory. While molecular-
field theory is exact in the limit 7T— oo, it will give
sufficiently good results for the magnetization fluctua-
tions as long as short-range order (SRO) can be neglected.

According to de Gennes and Villain,'® the mean-field
expression for the wave-vector-dependent susceptibility
in the paramagnetic state is given by

X35(Q)= 8up8 3[4 NQ Ny (3)

Evidently, the susceptibility is a scalar quantity in the
paramagnetic state. The matrix 4 is given by

A Q= —2_s

aa(Q TS(S+1) %
with J;;(Q) as the Fourier transform of the exchange in-
tegrals. This form of y is a generalization of the Curie-
Weiss law y=C /(T —®). Equations (1)—(4) allow the
calculation of the magnetic diffuse neutron-scattering
cross section as a function of Q and T for given exchange
parameters J, J,, J3, and J,.

- 2Jdd'( Q ) (4)

D. Comparison with experiment

At T=65 K we have performed linear scans in the
(001) reciprocal-lattice plane. In order to correct for nu-
clear background scattering, the same scans were repeat-
ed at 7=200 K. Figure 10(a) shows the distribution of
the modulation of the magnetic diffuse intensity resulting
from a difference (65—200 K) in form of a contour plot.
Maxima are observed close to the points (£,1,0), (3,1,0),
(1,2,0), etc., but already from this plot a shift of the
centers to incommensurate values can be noticed.

We have performed the corresponding model calcula-
tions for various values of the exchange parameters,
keeping the Néel temperature of the type-III ordering
[Ty;=2S(S +1)(—4J;+2J,)] constant at 48.2 K. This
is, of course, not completely justified, as mean-field theory
does not correctly reproduce the ordering temperatures
and predicts a second-order phase transition in contrast
to the observation.

On the other hand, mean-field theory should at least
give qualitatively correct results at 7=65 K, since the
correlation length of about 5 A indicates that the short-
range order does not yet extend over large spin clusters
(compare the distance of R;=4.3 A for nearest and
R,=6.1 A for next-nearest neighbors). Figure 10(b)
shows a model calculation corresponding to the same sit-
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FIG. 10. (a) Contour plot of the magnetic diffuse scattering
intensity in the (001) plane. To suppress nuclear background,
the difference 65—200 K is plotted. Measurements were taken
as 10 scans of each 31 points along the b* direction. Contour
lines are equidistant (400 counts) between —200 and -+ 3800
counts. (b) Calculated magnetic diffuse scattering cross section
for the same reciprocal plane as in (a). Again, the difference be-
tween 65 and 200 K is plotted. A convolution with the resolu-
tion function was taken into account but is essentially negligible
since the longest axes of the resolution ellipsoid corresponds to
0.11 r.l.u. For this calculation we have taken J,=—2.31 K,
J,=—0.50 K, J3=0. Contour lines are equidistant (1 b/sr) and
lie between O and 13 b/sr.
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uation as in Fig. 10(a) for the values J,=—2.31 K,
J,=—0.50 K, and J3;=0 of the exchange parameters.
The convolution with the instrumental resolution func-
tion has been performed. The Mn?' form factor has
been included in the model calculations. Obviously, the
main features of the observed intensity distribution can
be reproduced. This includes the anisotropy of the width
of the diffuse scattering in the (A00) and (0kO) direc-
tions. Although we start from a Hamiltonian that has
full cubic symmetry, such an anisotropy is, of course,
possible since the reciprocal-lattice point at which the
diffuse scattering occurs has a lower point symmetry.
The peak positions are found to be commensurate and
the experimentally observed shift to the incommensurate
position cannot be explained in this model. This will be
discussed in detail in Sec. VII. It is important, however,
to note that ratios of J, /J, closer to one as suggested by
calculations of the exchange parameters'® are in clear
disagreement with our observations. With such values
for the exchange parameters, one would observe addition-
al maxima in the magnetic diffuse scattering due to criti-
cal fluctuations of the type-II antiferromagnetic ordering.

In order to exemplify the influence of the exchange pa-
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FIG. 11. Calculated difference between 65 and 200 K of the
magnetic diffuse scattering cross section. The same reciprocal-
lattice plane as in Fig. 10 is shown. J, and J, are the same for
all three figures (J;,=—2.60 K, J,=—0.60 K) while J;=0 in
(a), J3=—0.15 K in (b), and J;=—0.30 K in (c).

rameters for more distant neighbors, we have plotted in
Fig. 11 the calculated intensity distributions correspond-
ing to situations with three different values of the third-
neighbor exchange J; (J;=0.00, —0.15, and —0.30 K),
keeping J; and J, fixed (J/;,=—2.60 K, J,=—0.60 K).
Similar intensity distributions can be produced by small
ferromagnetic exchange between fourth neighbors
(J,>0). As can be seen from the figure, drastic changes
in the magnetic diffuse scattering cross section can be ob-
tained by very small variations of these more distant ex-
change integrals. Even so, values of J; and J, are small
as compared to J; and J,, they can in no way be neglect-
ed for an understanding of the magnetic properties of a
fcc antiferromagnet like MnS,. While in the case of Fig.
11(a) (J53=0) only fluctuations characteristic for the anti-
ferromagnetic ordering of type III are observed, one finds
spin correlations characteristic for the type-I structure
for J;=—0.30 K [Fig. 11(c)]. Figure 11(b) shows an in-
termediate situation with J;=—0.15 K. For this partic-
ular set of exchange parameters, the mean-field ground-
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state energy for the type-I and type-III antiferromagnetic
structures are identical. Thus, we do not obtain peaks of
diffuse scattering corresponding to one type of structure,
but instead ridges of scattering connecting maxima for
both types of structures.

The difference between the type-I and type-III struc-
tures can be understood in terms of a stacking sequence
of the 4 and B antiferromagnetic layers shown in Fig. 2:
The type-I structure is characterized by a sequence
ABABA. . ., the type-III structure by ABABA.... In
the situation of Fig. 11(b), both sequences become equally
probable due to a degeneration in energy and thus we
would expect a random sequence of 4B and 4B bilayers.
For the paramagnetic short-range order, this would re-
sult in an intensity distribution as shown in Fig. 11(b).

VII. DISCUSSION

Mn?* ions in MnS, form a face-centered-cubic (fcc)
sublattice. The fcc lattice is inherently frustrated with re-
gard to antiferromagnetic ordering and, therefore, exhibit
many different types of antiferromagnetic phases.
Nearest-neighbor Ising antiferromagnets on the fcc lat-
tice have zero-temperature ground states with large de-
generacies which are not just due the symmetry.!”!® At
any nonzero temperature, fluctuations break the degen-
eracies: entropy favors the ground state(s) about which
the density of states of low-energy excitations is the
greatest, producing a well-defined long-range order. Vil-
lain et al.!” called this phenomenon “ordering due to dis-
order” and noted that both thermal and quenched disor-
ders could induce long-range order. This idea has been
extended to the Heisenberg fcc antiferromagnets with
only isotropic exchange coupling which have also ground
states with continuous degeneracies.'”” Thermal fluctua-
tions do select special ground states, typically the col-
linear ones.

The spatial configuration of the magnetic moments of
the type-III magnetic structure is specified by the wave
vectors k; =27 /a(4,1,0) and —k,, k,=27/a(0,%,1) and
—k,, k;=2m/a(1,0,1) and —k; where a is the lattice
constant. The type-III antiferromagnetism is associated
with magnetic Bragg reflections at positions Gtk;, where
G is a reciprocal-lattice vector and i=1,2,3. Diffraction
experiments cannot distinguish between a single-k multi-
domain structure and a multi-k single-domain structure
in a cubic system without the application of magnetic
field or uniaxial stress. In the case of MnS,, we have,
however, established in our recent neutron-diffraction ex-
periment under magnetic field that the magnetic struc-
ture of MnS, is actually of the single-k type.!> There ex-
ist two possible cases of single-k type-III antiferromag-
netic structure. The first is collinear and corresponds to
the single-spin-density wave (SSDW) while the second
variety is called the helical spin-density wave (HSDW).
In our recent polarized neutron-diffraction experiment!?
using the generalized polarization device CRYOPAD, we
have established that the magnetic structure of MnS, is
really a collinear SSDW type.

Taking only the nearest-neighbor and next-nearest-
neighbor interactions J; and J, into account, the condi-
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tion for the stability of the type-III magnetic structure on
a fcc lattice is?°

J,/2<J,<0.

On the basis of a localized effective electron model,'?
applying first-order exchange-perturbation theory, the
calculated exchange parameters can be made to satisfy
the above stability condition by a suitable variation of the
parameters resulting type-III magnetic structure of
MnS,, but the difference in stability with type-III struc-
ture is only very slight. We have demonstrated in Sec. VI
that, by choosing exchange parameters which satisfy the
above inequality, the diffuse magnetic scattering from
MnS, above Ty can be approximately reproduced by
mean-field calculations. However, no variation of the ex-
change parameters could produce the observed deviation
of the diffuse scattering maxima from the commensurate
Bragg positions of the type-III magnetic structure. Tak-
ing the third-nearest-neighbor exchange interaction pa-
rameter J; into account does not improve the situation.
The maximum positions of the diffuse scattering contours
are highly sensitive to the sign and magnitude of J; shift-
ing them from type-III to type-I and -II commensurate
positions readily. However, no choice of J,, J,, and J,
could reproduce the diffuse scattering maxima at the ex-
perimental incommensurate positions. It is also clear
that the inclusion of a higher-order neighbor interaction
parameter will not reproduce the incommensurate mag-
netic diffuse scattering maxima. The introduction of an-
isotropy term in the Hamiltonian can produce the maxi-
ma of diffuse scattering at incommensurate positions as
has been demonstrated by Sinha et al.® in UAs. Mn?™"
has a spherical %55, ground state with zero orbital mo-
ment and therefore possesses no single-ion anisotropy.
However, MnS, can have exchange anisotropy which
can, in principle, also produce diffuse scattering maxima
at incommensurate positions. It is to be noted that the
crystal structure of MnS, belongs to the low-symmetry
primitive cubic space group Pa3 having no fourfold axes
and mirror planes. The four S, dumbbells of the unit cell
are directed along four different body diagonal directions
(111). It is therefore likely that MnS, has an anisotropic
exchange interaction between the Mn?" ions via different
Mn?"-(S,)>"Mn?* superexchange paths. In this case, ex-
change interaction parameters become tensors and the
calculation of magnetic diffuse scattering involves too
many free parameters and has therefore not been at-
tempted. One can speculate that higher-order exchange
interaction like four spin interaction terms might also
lead to diffuse scattering maxima at incommensurate po-
sitions.

The first-order antiferromagnetic phase transition®~
of MnS, cannot be explained by symmetry arguments
within the framework of Landau-Lifshitz theory. The
temperature variation of the vector at which the diffuse
scattering maximum is centered (Fig. 5) suggests that the
antiferromagnetic phase transition in MnS, can perhaps
be understood as a first-order lock-in transition from the
incommensurate short-range order to the commensurate
phase at Ty.

4
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VIII. SUMMARY AND CONCLUSIONS

We have investigated the diffuse magnetic scattering in
the frustrated antiferromagnet MnS, based on a fcc lat-
tice above Ty. The diffuse scattering maxima are situat-
ed at incommensurate positions corresponding to a wave
vector=(1,k,,0) and their positions are temperature
dependent. The component k, increases continuously
with temperature from k,=0.40 at T=115 K to k, =0.44
at temperature just above Ty. At Ty=48.2 K, k, jumps
abruptly to the commensurate value k, =1. To our
knowledge such behavior has been observed for the first
time in any magnetic system. This result suggests that
the antiferromagnetic phase transition in MnS, can be
understood as the first-order lock-in transition from the
incommensurate short-range order to the long-range-
ordered commensurate phase at T. Mean-field calcula-
tions of the diffuse magnetic scattering by taking into ac-
count nearest-neighbor and the next-nearest-neighbor ex-
change interaction parameters agree reasonably well with
the experimental data, but such calculations fail to ex-
plain the centering of the diffuse scattering at incom-
mensurate positions. The introduction of even a higher-
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order neighbor exchange interaction parameter does not
improve the situation. The introduction of an anistropy
term in the Hamiltonian is necessary in order to explain
the centering of the diffuse scattering at incommensurate
positions as have been shown by Sinha et al.® in the case
of UAs. Mn?" ions are in the spherically symmetric
®Ss,, ground state with zero orbital moment and there-
fore possess no single-ion anisotropy. Introduction of an-
isotropic exchange interaction seems to be crucial for the
explanation of the centering of the diffuse magnetic
scattering maximum at incommensurate positions.
Higher-order exchange interaction such as the four-spin
interaction term in the Hamiltonian might also lead to
the same result. Such calculations are rather involved
and have not yet been attempted by us.
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