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Critical behavior in the dielectric properties of random self-similar composites
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A theory for the dielectric properties of self-similar composite media is presented, in which inclusions
of one component are introduced recursively into a second component. The spectral-representation for-
malism, which gives a material-independent description of the recursive process, is used. General ex-
pressions are derived for critical exponents that describe the behavior of the dc conductivity, the static
dielectric constant, and limits of the spectral function near the percolation threshold. The critical ex-
ponents depend on the form of the average dielectric function used at each stage of the recursive pro-
cedure. The Maxwell-Garnett and Bruggeman forms of this average dielectric function are chosen as ex-
amples. Applications of the theory to some dielectric properties of brine-filled porous rocks are dis-
cussed.

I. INTRQDUCTI(ON

There has been long-standing interest in the problem of
deriving dielectric properties of a mixture from those of
the individual components. %"ell-known theories for the
average dielectric function are like those of Bruggeman
and Maxwell-Garnett; these theories have been used ex-
tensively (for a review, see Ref. l), but the systems to
which th.ey are applicable are limited.

Recently there have been many theoretical studies on
the dielectric properties of porous systems; however,
correct modeling of these continuous systems has been
difIicult. In trying to explain the dielectric properties of
petroleum-bearing rocks, Sen, Scala, and Cohen, ' Men-
delson and Cohen (with corrections by Sen), ' Sheng and
Callegari, and Sheng, have used approaches based on
geometric modeling and efFective-mediurD theories.
Lysne and Korringa have given theories to explain the
ac response of a mixture. Halperin, Feng, and Sen' and
Sen, Roberts, and Halperin" have used a scaling analysis
to estimate the critical exponents for the electrical con-
ductivity, elastic constants, and Quid permeability near
the percolation threshold of a class of disordered continu-
um systems. A review of the properties of porous media
and theoretical e6'orts to explain them can be found in
Refs. 12 and 13.

A di8'erent approach to explaining the dielectric prop-
erties of porous media, based on the spectral representa-
tion, ' ' was adopted by Stroud, Milton, and De. ' A
more general theory was given by Ghosh and Fuchs it
was shown that scaling, similar to that exhibited by
discrete systems, occurred in porous rocks.

Computer experiments to simulate random composites
have been done mainly on discrete systems. The geome-
trical properties and dielectric response of random resis-
tor networks (RRN), made up of a mixture of conducting
and insulating lattice sites and/or lattice bonds, have

been the object of continuous study. For reviews, see
Refs. 19—22, and for a collection of articles on the state
of the art, see Refs. 23—25. Additional material on disor-
dered systems and their dielectric properties has ap-
peared in the conference proceedings mentioned in Refs.
26 and 27.

These computer experiments on discrete random com-
posites reveal several kinds of critical behavior and asso-
ciated critical exponents. Some quantities with critical
behavior, such as the correlation length, are geometrical,
while others, such as the electrical conductivity, are relat-
ed to transport phenomena. Most of the geometrical ex-
ponents have been related among each other through
scaling and hyperscaling laws, and there has been some
progress on finding relations between critical exponents
for transport and geometrical properties.

In this paper we study the dielectric properties of a
two-component random composite system in which in-
clusions of one component are introduced recursively on
larger and larger scales into a second component. The
theory is a generalization of difFerential efFective-medium
theory (DENT), which was proposed by Bruggeman.
In DEMT an infinitesimal fraction of the first component
is introduced at each stage, whereas in our theory this
fraction can be finite. In addition, we allow an arbitrary
mixture equation, which gives the average dielectric func-
tion at each stage of the recursive procedure, as well as
an arbitrary dimensionality of the space.

The paper is organized as follows: In Sec. II the recur-
sive procedure is described and the spectral representa-
tion for the average dielectric function is introduced.
This representation allows us to define the form of the
mixture equation used at each stage of the recursive pro-
cedure in a completely general way which depends only
on geometry and is independent of the dielectric func-
tions of the two components. Section III shows how the
new spectral function at each stage can be calculated by a
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one-dimensional map. A geometrical construction is de-
scribed which allows the changes in the spectral function
to be visualized. In Sec. IV critical exponents for the dc
conductivity, static dielectric constant, and upper and
lower limits of the spectral function are defined, and gen-
eral expressions for these exponents are derived. The
critical exponents are calculated for two simple stagewise
mixture equations: Maxwell-Garnett theory and Brugge-
man effective-medium theory. In Sec. V applications of
the theory to dielectric properties of brine-filled porous
rocks are discussed briefly.

II. AVERAGE DIKI.KCTRIC FUNCTION
OF COMPOSITE

A. Recursive construction of system

In the proposed recursive construction, we start with
pure component 2 and randomly make holes, filled with
component 1, with filling fraction fi. This is the end of
the first stage, as shown in the left-hand panel of Fig. 1.
The holes can have different sizes and shapes, and the
dimensionality d of the system is arbitrary. However, for
simplicity the figure shows the holes as two-dimensional
spheres (circles) of the saine size. We assume that the
hole regions are not connected. At the end of this first
stage, the average dielectric function e"' of the composite
depends on f i and the dielectric functions e, and ez of
the two components,
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(2.1)

where the form of the function M depends on the
geometry of the composite.

In stage 2 of the recursive construction, shown in the
right-hand panel of Fig. 1, larger holes are made with the
same filling fraction f, in the composite medium and are
again filled with component 1. Stages 1 and 2 are self-
similar in the sense that the geometry of the larger holes
in a box of side I. in stage 2 is similar, on the average, so
that of the smaller holes in a box of side I. in stage 1. The

average dielectric function e' ' at the end of stage 2 is
then given by the same mixture function M as in stage 1,
with the dielectric function of the "host" medium 2 set
equal to the average dielectric function e'":

e' '=M(e, ,e"I,f, ) . (2.2)

In writing Eqs. (2.2) and (2.3), we have assumed that, at
each stage, the host medium (the medium surrounding
the holes formed at that stage) is efFectively homogene-
ous. This implies that the average size of the holes in a
given stage should be at least as large as the average dis-
tance between the holes in the preceding stage.

The quantities f, and f2=1 f i are—the fixed filling
fractions used at each stage of the recursive construction.
We shall use P'i~' and PIzj' to denote the actual filling frac-
tions of components 1 and 2 at the end of stage j. Since
the actual filling fraction of component 2 is multiplied by
f2 at each stage, we have

(2.4a)

(2.4b)

Equation (2.4b) shows that, even for a small initial filling
fraction f, of holes, the hole component 1 will eventually
fill space as the iteration proceeds: lim P',~'= 1.

B. Spectral representation

If the function M in Eqs. (2.1)—(2.3) is known explicit-
ly, as, for example, in Maxwell-Garnett theory (MCxT)
or Bruggeman symmetric effective-medium theory
(EMT), the average dielectric function e'~' at the end of
stage j can be found by the iterative procedure described
by these equations, for given values of e„ez, and fi.
However, it is more useful to describe this iterative pro-
cedure using the Bergman spectral representation, '

which must be valid for any composite system, even if the
mixture function is not known explicitly. This represen-
tation contains a spectral function and percolation
strengths, which convey the essential information about
the geometry of the system at any stage of the recursive
procedure, without using specific values of e& and e2.

The spectral representation for Eq. (2.1), which gives
the average dielectric function at the end of stage 1, can
be written in two alternative forms:

If the same construction is repeated recursively, the aver-
age dielectric function at the end of stage j is

(2.3)
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FICx. 1. First two stages in the construction of the self-similar
composite medium. Characteristic lengths I. and I.' for stages 1
and 2 are shown.

(2.6)
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f iCi =o"'/o i . (2.7)

C] can be considered as the fraction of component 1 that
contributes to dc conductivity; i.e., isolated regions, dead
ends, or a tortuous conducting path in component 1 tend
to decrease C&.

The term C, (e, /ez —1) in Eq. (2.5) could be obtained
by replacing G, (n) by G, (n)+C, 5(n) and extending the
range of integration so as to include the point n =0.
From this point of view, the existence of percolation is
equivalent to a special surface mode at n =0, which we
can denote as the "percolation mode. " C, can then be
considered as the "strength of the percolation mode. "
We assume that Cy =0 in our specific system.

Similarly, the percolation strength C2 is related to the
dc conductivity of a composite in which component 2 is a
conductor and component 1 is an insulator, and G2(n) is
related to the surface-mode spectrum. In our specific sys-
tem, Cz &0.

where f, +fz
= 1. Here C, and C2 are known as the per-

colation strengths of media 1 and 2, respectively, whereas
Gi(n) and G2(n) are the spectral functions, defined for
0 & n & 1. The percolation strengths must lie in the range
(0,1},and the spectral functions are non-negative.

The spectral function Gi(n) is closely related to the
surface-mode spectrum in frequency regions where
Re(e, /e2) (0. To show this relation, let component 1 be
a free-electron metal described by the Drude dielectric
function e, = 1 —co /co(co+iy), where cuz is the bulk-
plasma frequency and y is the electron-scattering rate,
and let component 2, which we consider as a host, be vac-
uum (@2=1). Then the denominator of the integrand in
Eq. (2.5) is co(c—o+iy)/co~+n. Suppose that Gi(n) has
a peak at n =no. Gi(n}= A5(n no). —Then the integral
in Eq. (2.5) reduces to 2 /[no co(—co+iy )/co ], and there
will be an absorption peak, i.e., a peak in Im[e"'(co)], of
width Ace-yea and area proportional to 3 centered at
the frequency coi=+no co . The spectral function for
Maxwell-Cxarnett theory, which applies to a dilute system
of spherical particles, is G, (n) =6(n nt ) w—ith
no =(1 f, )/3. He—nce there is a corresponding absorp-
tion peak at coo=+(1 f, )/3'~, t—he well-known Mie
resonance, corresponding to the dipole surface mode for
small metallic spheres. If the particles are irregularly
shaped and/or the system of particles is not dilute, the
spectral function can be expected to broaden into a con-
tinuous function of n, and the peak in Im[e'"(co) ] is cor-
respondingly broad; one can say that the surface mode
spectrum becomes continuous. The variable n can be
considered as a "depolarization factor, " and G, (n) is the
distribution of depolarization factors associated with the
geometrical shape of the regions occupied by component
1.

Consider a general composite in which component 1 is
in a connected region. If component 1 is a conductor
with dc conductivity u

&
and component 2 is an insulator,

then the composite will have a nonzero dc conductivity
o."'. We shall show later that the percolation strength
C& is related to the ratio of these dc conductivities:

Since Eqs. (2.5) and (2.6) are alternative representations
for the same composite, Gi(n) and G2(n) are not in-
dependent, but are related by

finG, (n) =f2(1 n)G—2(1 —n) . (2.8)

There are also sum rules, for a space with Euclidean di-
mension d,

1Ci+ f G, (n)dn =1, (2.9)
p

1

nG) n n= 1 (2.10)

with analogous expressions involving Cz, G2(n), and f2.
A third sum rule which involves both percolation
strengths is

i G2(n)f, C, +f,C, +f,Jp 1 —n
(2.11)

If the mixture function (2.1) is known explicitly, the
percolation strengths and spectral functions can be deter-
mined. ' ' ' For example, consider Eq. (2.5), which con-
tains Ci and Gi(n). To find C„ let e,~~, while E2
remains finite. Then the integral in Eq. (2.5) can be
neglected, and if C, )0, e"'—+~. Equation (2.5) then
reduces to

(2.12)

G, (n) =(m f i )
' lim Im(e~" /ez 1), —

s —+P
(2. 13)

where (e"'/e2 —1) must be expressed as a function of
(n +is ) by making the above substitution in Eq. (2.1).

Similarly, Cz and Gz(n) are given by

f2Cz = lim (e'"/e2) =o'"/o2, (2.14)

(2.15)

where (e'"/ei —1) must be expressed as a function of
(i'd+is) by making the substitution (ei/E, —1)
= —(n+is) in Eq. (2.1).

III. RECURSIVE CALCULATION
OF SPECTRAL FUNCTION

A. Spectral representation

It will be most useful to describe the recursive relations
(2. 1)—(2.3) with the spectral representation in Eq. (2.6),
which contains the spectral function G2(n) In partic. u-

The right-hand side of Eq. (2.12) can be found directly
from Eq. (2.1). In the co~0 limit, one can write
ei =e', + (4mi /co)o. , and e'"=e' + (4mi /co)o'", where o,
and o'" are the dc conductivities of component 1 and the
composite, respectively. Then lim, „(e'"/e, )

"o'/ . oaind so Eq. (2.12) is equivalent to Eq. (2.7).
In order to find Gi(n), replace the integration variable

n in Eq. (2.5) by n', substitute (e, /e2 —1) '= (n+is), —
where 0&n & 1 and s &0, let s —+0, and take the imagi-
nary part of the equation. One gets
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lar, Eq. (2.6) is the spectral representation for the average
dielectric function e") at the first stage [Eq. (2.1)]. For
stage (j) one replaces e'" by e'j' and Ez by e'j "; thus the
spectral representation for Eq. (2.3) is

(j)
&m —l=pzj cz' ——1 +, dn

o (ez/e, —1) '+n

—l=fz Cz
(j —i)

&m —1
If we use the variables defined by Eqs. (3.2), we can
rewrite Eq. (3.9):

Gz(n)+
0 (e(j "/e) —1) '+n

If the variables x and x., defined by

ez/e, —1 = —1/x,
e(j)/e, —1=—1/x.

are introduced, Eqs. (2.6) and (3.1) become

dn . (3.1)

(3.2a)

(3.2b)

+I dn
cz(j) ) g, (j,n )

x 0 x

The dielectric properties of the recursively constructed
composite can then be described by determining how the
percolation strength cz' and spectral function gz(j, n)
change as the stage index j increases, given that initially,
at stage j= 1, cz" =Cz and gz(1, n )=Gz (n ).

C, i G, (n)
=fz +

x o x —n
dn (3.3)

Cz i Gz(n)+ dnox. I
—n

2XJ Xj

By de6ning a function

Cz i Gz(n)h(x)= fz +I dn
x o x —n

(3.4)

x, =h(x),
xz =h(x, ) =h(h(x)) —=hz(x),

x, =h(x, ) =h(h(h (x)))=—h3(x ),

(3.6a)

(3.6b)

(3.6c)

x =h(x. ,):—h (x),
where we have used the notation

(3.6d)

Eqs. (3.3) and (3.4) can be written concisely as a recursive
chain of equations:

B. Maxwell-Garnett theory

The simplest example of the recursive procedure de-
scribed in the previous section is provided by Maxwell-
Garnett theory, which is discussed in Appendix A. That
is, MGT is used for the mixture function M in Eqs.
(2. 1)—(2.3), with component 1 taken to be the spherical
inclusions that are surrounded by component 2. If the
mixture function for MGT is written in the form of the
spectral representation (2.6), one finds for d=3 dimen-
sions, at stage 1, the percolation strength Cz =2/(2+ f, ),
whereas the spectral function consists of a single surface
mode, Gz(n) = A 5(n no) —where A = 1 —Cz and
no = 1 fz /3 = (2—+f, ) /3. For example, if f, =0.1, we
have no=0. 7 and Cz=0. 645. Note that the function
Gz(n) gives the surface-mode spectrum for spherical
holes of vacuum (1) surrounded by a conducting medium
(2), and the depolarization factor for this surface mode
approaches no= —,

' for low hole density fi ~0. For this
geometry the spectral function G, (n), which gives the
surface-mode spectrum for conducting spheres (1) sur-
rounded by vacuum (2), is more commonly used.

The function h (x), defined by Eq. (3.5), is

h, (x)=h(x),

h, (x)=h(h, i(x))=h, i(h(x)) .
(3.7) h(x)= fz +

X no
(3.11)

Equations (3.6a)-(3.6d) show how x, which is related to
the average dielectric function e' ' after j stages, is found
by iteration, using the map xj+ i

= h (xj ), where the func-
tion h depends only on the quantities fz, Cz, and Gz(n)
for the first stage.

The dielectric function e' ' at stage j must also be ex-
pressible as some function M' ' of the dielectric functions
e& and ez of the two components and the actual 611ing
fraction Pz(j):

&(j)—~(j)(& & y(j))

The spectral representation of Eq. (3.8) is of the f«m
given by Eq. (2.6), except that, on the right-hand side, we
must rePlace fz by Pzj', the actual filling fraction, Cz by
cd', the actual percolation strength, and Gz(n) by
gz(j, n), the actual spectral function, at stage (j):

At stage j the iterated function hj(x) is of the form (3.10).
However, the spectral function gz( j,n ) is not continuous,
but consists of discrete modes with strengths akJ' and
depolarization factors nk( j),

gz(j, n ) = g a k(5j(
)—n nk(j)),

k

and so Eq. (3.10) becomes
(j) (j)

x.=h (x)= P(j) + g x nkJ

(3.12)

(3.13)

In order to understand how the spectral function
changes as the recursions proceed, it is useful to describe
a graphical method for ending the values of nk~' for the
modes at stage j. For a physical composite with possibly
complex dielectric functions e& and cz, the variable x,
defined by Eq. (3.2a), can be complex. In the graphical
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method. , we restrict x to be real and plot the function
y =h(x) and straight liney =x in the region 0(x (1, as
shown in Fig. 2. Equation (3.11) shows that the modes at
stage 1 correspond to zeros of h (x), which occur at x =0
and x =n o

=0.7. The value x =0 is the percolation
mode, and the value x =0.7 is the surface mode. We
shall also use the notation (r, j = I0,0.7j to denote the
zeros of h (x } at stage 1: h (r, ) =0.

Similarly, Eq. (3.13) shows that, at stage j, the modes
are given by the set of values tr jat wh. ich h (rj }=0.. If
one of the Irj j is zero, there is a percolation mode
(czar')0), whereas the nonzero values of Ir j are the
depolarization factors nk

' for the surface modes.
For example, at the second stage we want to find the

zeros Ir2j of h2(x). On Fig. 2, draw a line vertically
from the zero of h (x) at x =0.7, which is point 1. This
vertical line meets the line y =x at the point x =y =0.7.
A horizontal line through this point intersects the curve
y =h(x) at the two points (marked with the number 2) at
x =0.52 and 0.82; these are zeros of h2(x). Similarly,
starting from the zero of h (x} at x =0, which is already
on the line y =x, a horizontal line intersects the curve at
the points x2=0 and 0.7; these are also zeros of h2(x).
Hence there are four zeros of h2(x), I r2 j = I0,0.7,
0.52, 0.82j; r2=0 is the percolation mode, and the three
nonzero values of r2 are the depolarization factors nk '

for the surface modes. Note that the set I r, j is included
in r2

Repeating this procedure for stage 3, we find four new
values of r3 (marked with the number 3), as well as the
four values in the previous set I r2 j, giving
Ir3j = I0,0.7,0.52,0. 82, 0.41,0.75, 0.56,0.87j. Hence
there is still a percolation mode and seven surface modes
with nk '&0. At an arbitrary stage j, we find one per-
colation mode and 2j—1 surface modes.

This graphical procedure can be proven algebraically.
Suppose that at any stage j, r~ is a root of hj(x) =0 or

h. (r )=0. (3.14)

Then the intersection of the vertical line x =r with the
line y =x defines y =r., and the intersections of the hor-
izontal line through this point (rj, r~ )wit.h h (x) defines
two values rj+, such that h(r +, )=r Hence, from Eq.
(3.7),

h)+i(rj+i):h (h(r +i))=h (r )

or, from Eq. (3.14),

(rj+i) =0 . (3.15)

I 1
gz(j, n)= ~.

~

lim Im
~i'~&' s-o h, n is— (3.16)

However, this procedure does not work for a numerical
calculation in this case, where g2(j, n) is of the form
(3.12). We must start with Eq. (3.13) and subtract the
1/x term (so that the percolation mode does not appear
in the final result), giving a function

Thus r +i is a root of h +i(x)=0, and its value corre-
sponds to a surface mode at stage j+1.

The fact that the modes Ir~. j in stage j also appear in
the following stage j + 1 is a consequence of the percola-
tion mode; i.e., h (0)=0. Using Eq. (3.14), we have
hj+i(rj)=h(hj(rj))=h(0)=0, which shows that r for
stage j is indeed a zero of h~+, (x), the iterated function
for the following stage.

The spectral function g2(j, n ) at stage j could, in prin-
ciple, be found by letting x =n —is, where s & 0, and cal-
culating x =h (x) iteratively using Eqs. (3.6). Then Eq.
(3.10) would give

j.o
x (3.17a)

0.8

0.6 x nJJ(')
(3.17b)

0.4

0.2

0.0
0.0 0.) 0.2 0.5 0.4 0.5 0.6 0.7 0.8 0.9 ~.0

The term Pzj'cz~'/x in Eq. (3.17a) is known since
Pzj'=($2)J, and as will be shown in Eq. (4.15), c21' =(C2 )J.
Again, we let x =n —is and take the imaginary part of
Eq. (3.17), but do not go to the limit s —&0. In place of
Eq. (3.16), we have

FIG. 2. Function y=h(x) for the iterated MGT, given by
Eq. (3.10), in d =3 dimensions aiid with initial filling factor
f, =0.1. A graphical method described in the text, which uses
the functions y =h(x) and y =x to locate the positions of the
new surface modes that appear in successive stages, is illustrated
for the first three stages. The x values of the points marked 2
and 3 correspond to the depolarization factors nk ' of the new
surface modes that appear in stages j =2 and 3.

g, (j,n)=(~$2J') '1m', (x)

1 J s(')"
(n n„'J')'+s'—

(3.18a)

(3.18b)

Hence the true spectral function (3.12) is approximated
by peaks of width s and areas akj', centered at n =nk '.

Figure 3 shows the approximate spectral functions
gz(j, n ) for stages j=2 and 3, calculated with Eqs.
(3.17a) and (3.18a), as well as the stage 1 spectral function
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FIG. 3. Approximate spectral functions for the iterated
MGT, with initial filling factor f, =0.1. The value of the small
parameter used to give the peaks a finite width is s =2X10 '.
(a) Stage 1: spectral function is G2(n). (b) Stage 2: spectral
function is g&(2, n ). (c) Stage 3: spectral function is g2(3, n ).

gz(l, n)—:G2(n), whereas Fig. 4 shows gz(j, n) at stage

j=10. From the graphical construction shown in Fig. 2,
it is obvious that the mode with the smallest n value,
which we denote n2L, keeps moving to the left and will
approach the value 0 as j~ao, and the mode with the
largest n value, which we denote n zU, moves to the right,
approaching 1 as j—+ ~. These two fixed points, 0 and 1,
are intersections of the liney =x and the curve y =h (x).

single discrete surface mode, is actually valid only for
spherical inclusions with an infinitesimally small filling
fraction fi. If the inclusions of medium 1 have irregular
shapes or if f, is not very small, so that interactions be-
tween the randomly located inclusions become impor-
tant, Gz(n) will broaden into a continuous function of n

We assume that G2(n) is different froin zero only for n

between a lower limit n2L, and an upper limit n2U; i.e.,
G2(n)=0 for n &n21 and n )n2U, where 0&nz~
~n2U&1. We shall call n2L and n2U the "takeoff" and
"touchdown" limits, respectively, for G2(n). The spec-
tral functions for the Bruggeman effective-medium theory
(discussed in Appendix A), random resistor network
models of composites, and of physical composites, such
as porous rocks, are of this form. In MGT the takeoff
and touchdown limits coincide: n2I =n2U =(2+f i )/3.

The spectral function g2(j, n ) for stage j of the recur-
sively constructed composite can be calculated using the
procedure discussed in the previous sections. We set
x =n is, fin—d h (x) from Eq. (3.5) [or directly from the
mixture function (2.2)], and iterate h (x) for any desired
number of stages (j), giving x.=h~(x). Equation (3.16) is
then used to

find

g(j, n).
We shall show that n21' and n2U, the takeoff and

touchdown limits of g2(j,n ), can be located by a graphi-
cal procedure similar to that used for MGT, and that as
j~ ao, 7l 2L, ~0 and Pl 2 U ~1.

We have assumed that, at the first stage, the inclusions
of medium 1 are completely surrounded by medium 2;
hence Ci =0 and Cz )0. From Eq. (3.5), which defines
h (x), it follows that h (0)=0. If we set x =1 in Eq. (3.5)
and use the sum rule (2.11), we find h (1)=1. Thus x =0
and 1 are the fixed points of the map, x =h (x }.

In order to visualize the graphical construction, it is
convenient to imagine replacing the continuous first-stage
spectral function G2 ( n } by a very large number of
discrete surface modes separated by a very small spacing
hn,

C. General spectral function

MGT for the first stage of our iterated composite sys-
tem, in which the spectral function G2(n) consists of a Q.7

06— g2(3, n)
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FICz. 4. Approximate spectral function g2(10, n ) for stage 10
of the iterated MGT, with fi

=0. 1 and s = 5 X 10

FIG. 5. Spectral functions G2(n), g2(2, n), and g2(3, n) for
the first three stages of the iterated EMT, with f, =0.1. The
figure shows how the takeo''limit n2L moves to the left and the
touchdown limit n 2'U moves to the right as the number of stages
(j) increases.
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Gz(n)= g Ak5(n n—k), (3.19)

where A k
=G2 ( nk )/hn E. quation (3.5) then becomes

C2 Akh(x)= f2 + g
k k

(3.20)

This is similar in form to Ii (x) for MGT [Eq. (3.11)],ex-
cept that there is a closely spaced distribution of surface
modes with nk spanning the range between nzL and n2U,
instead of a single surface mode at no. At stage j the
spectral function g2(j, n ) again consists of discrete sur-
face modes, and so it can again be represented in the
form of Eq. (3.12), giving Eq. (3.13) for x . The same
graphical procedure which was described for MGT can
again be used; the only di6'erence is that at the first stage
one begins with many closely spaced nonzero roots
I ri j

=
I nk j of h (x)=0 instead of only one nonzero root

I"] =n p ~ As the iteration proceeds one can follow the
motion of the smallest nonzero root to the left and the
largest root to the right, so that, at any stage j, the
takeoff'limit is nzjl' =min[r~ j =minInkj'j, and the touch-
down limit is nz~ U= maxIr jJ=maxjnkj'j. (The percola-
tion mode, which corresponds to r =0, is not considered
in the above discussion. ) The surface modes that appear
between these takeo''and touchdown limits will be close-
ly spaced, in contrast to the large gaps that occur be-
tween the modes when MGT is used.

In order to illustrate the procedure described above, we
show in Fig. 5 the EMT spectral function G2(n) at stage
1, with initial filling fraction f i =0.1, together with the
functions gz(2, n ) and g2(3, n ) for the second and third
stages, respectively. The takeo''and touchdown limits at
stage 1 are, respectively, n2L =0.35 and n2U=0. 92. At
stage 2 these limits are nial'=0. 27 and nzU=0. 95; and at
stage -3, nzl =0.23 and nzU=0. 97. Figure 6 shows the
function y =h(x) in the regions where it is real,
0&x &n21 and n2U &x &1, together with the line y =x.

The graphical construction used to find the takeofF'limits
at the three stages is shown by the dashed lines that go in
vertical and horizontal steps from points 1~2~3 on the
left-hand side, with n z~z' being the abscissa of the point j.
It is clear from this construction that, as one continues
the iterative procedure, the points on the left side ap-
proach the fixed point x =0; hence lim. n2(~~) =0. In a
similar manner, on the right side we find the touchdown
limits n 2U, which approach the fixed point 1 as j—+ ~.

A. Behnition of critical exponents

1. Exponents tz, s2, and lz

The occurrence of critical behavior in the properties of
a composite in the neighborhood of a percolation thresh-
old, as the filling fraction of the components are varied, is
well known. EMT is the simplest example of a mod-
el dielectric function which has a percolation threshold,
with its associated critical behavior. The host medium 2
in our recursively constructed system also has a percola-
tion threshold which can be approached from only one
side. If component 2 is a conductor which surrounds the
insulating inclusions of component 1, the system has a
finite dc conductivity. As one recursively introduces
more inclusions of component 1, thereby removing the
conducting component 2, the dc conductivity of the com-
posite decreases and approaches zero as the 611ing frac-
tion P2'~' of component 2 goes to zero. Hence the percola-
tion threshold is $2, =0. However, since $~2~')0, one
only approaches the percolation threshold as the number
of iterations increases and never actually reaches the
threshold or passes through it.

For this case where component 2 is a conductor and
component 1 is an insulator, we define a critical exponent
t2, which describes the behavior of the dc conductivity of
the composite near the percolation threshold, o.

-($2) ', or more precisely,

(4.1)

0.8

0.6

04

where we have used Eq. (2.4a) to write $~2J "/P2'~'=f2.
A second critical exponent s2 describes the behavior of
the real part of the static dielectric constant,

S~e' -(Pz) ', or

(4.2)

Q.O 04 0.6 0.8 ).0 We are using the notation

&(j ) —&&(j ) + &
&~I(j )

m m m

FIG. 6. Functiony=h{x) for the iterated EMT, in d =3 di-
mensions, and with initial filling fraction f, =0.1. The graphi-
cal construction described in the text is used to locate the tak-
eo'' limits n21' and the touchdown limits n2U for the first three
stages.

=e'( j)+4mE o.(j)/a),

for stage (j), in the co~0 (dc) limit. We have shown in
the preceding section that the takeo'' limit n 21' for
g2(j, n ) approaches zero with increasing number of itera-
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tions. Hence we define a third critical exponent lz

governing the behavior of the takeoff limit, nil -($2) ',
or

This gives xj /xJ+, =f2 C2, and Eq. (4.9) becomes

(j+1)/ (J)
m m J 2 2 (4.11)

(j+1}
lim, , =(f2) ' .

n2L
(4 4)

Since Eqs. (4.1), (4.2), and (4.4) are valid near the percola-
tion threshold, one might expect that limit j—+ ao should
appear in all three equations, not just in Eq. (4.4). In Sec.
IV B it will be shown that Eq. (4.1) is true for all values of
j, and so the limit j~~ is not needed here. We shall
also find that e' (j) behaves differently in two distinct
large-j regions; therefore, a simple limit j~~ in Eq.
(4.2) would be misleading.

o"'/o 2= lim e'"/@2=f2C2,
N~O

(4.12)

which is the same as Eq. (2.7), with components 1 and 2
interchanged. If Eq. (4.11) is combined with Eq. (4.1), the
result is

f2C2 (f2)' (4.13)

ol

If we write Eq. (4.11) for the first stage (j+1=1),then
O'J' must be replaced by o.2, giving

2. Exponents tz, sz, Qnd lz
lnC2

r, =1+
lil

(4.14)

(j+1)
lirn

~(j)
m

=(f2) ', (4.5)

lim
J—+ oo

&(j+1}
()

&m
(4.6)

(j+1)

j~~ n 1JL

(4.7)

Note that the takeoff limit n &~&' for gi (j,n ) and the touch-
down limit n', JU for g2( j,n ) are related by

n1L 2U
(j) — (j) (4.8)

We similarly consider the case where the inclusions of
component 1 are a conductor and the surrounding com-
ponent 2 is an insulator. Three critical exponents are t1,
s1, and I1, defined by the equations

Hence the conductivity exponent t2 is determined by the
initial filling fraction f2 and percolation strength C2.

The percolation strength c2( ' at stage j can be found by
taking the co—+0 (or xJ~O, x —+0) limit in Eq. (3.10),
which becomes 1/x. =g(2J)e2(J)/x. Comparing this with
Eq. (4.10), we get

cj=(C )i (4.15)

The exponent s2 for the real part of the dielectric func-
tion can be found by starting with Eq. (3.1). Since com-
ponent 2 is conducting, the composite system remains
conducting throughout the iterative procedure. We as-
sume that the frequency co is not zero, but is low enough
that ~e(i)~ &&e,. Then the denominator of the integrand
in Eq. (3.1) can be replaced by n, and Eq. (3.1), with j re-
placed by j +1, can be separated into its real and imagi-
nary parts:

which follows from Eq. (2.8). Since limi „nz~U=1, we
have lim n(~L'=0, showing that Eq. (4.7) is the ap-
propriate defining equation for the critical exponent l1 as-
sociated with the takeoff limit for g i (j,n ).

&(j+1)
&m

I(j)—1 =f2C2
E'1

, G, (n)
+f2

o n
dn (4.16a)

B. General expressions for the critical exponents &~~(J'+1) P C &~~(j)
~m ~ 2 2~m (4.16b)

1/xj=fqCq/x/, = =(f2C2) /x . (4.10)

1. Exponents tz, s2, and lz

We begin with the case where component 2 is a con-
ductor and component 1 is an insulator. The conductivi-
ty exponent t2 can be found by going to the co~0 limit
and using Eq. (4.3) for e(J) and the similar expression
e2=ez+(4mi /co)cr2 for the dielectric function of the con-
ductor. From Eqs. (3.2a) and (3.2b), we find
x ice/cr z~-O and xj iso/c7(~) ~0-, and

(j+1)

(j) (4.9)
~m J+1

In the iterative equations (3.3) and (3.4), the term con-
taining the integral is negligible in comparison with the
term containing C2, and so we find

Equation (4.16a) gives the result that as the iteration
proceeds, e'J' approaches a fixed limit e, which we
denote as the "plateau" value. Writing e'~ =E'J+"=e
in Eq. (4.16a), the solution for e is

f2 i G2(ii)
e =e, 1+ fo n

dn (4.17)

(e'(J+" e)/(e'(J) —e )=f C &1—, (4.18)

which shows that the difference between e' and its limit
ez becomes smaller as the number of iterations increases.
Since E' =E' ' for large j, it follows from the defining

The evaluation of Eq. (4.17) for MCxT and EMT is dis-
cussed in Appendix B.

Using Eq. (4.17), one can rewrite Eq. (4.16a) in the
form
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equation (4.2) that

s2=0 . (4.19)

Then Eq. (4.20) can be written: R n'J+"=n' '
L+2L 2L

n 21 /n 2jr = 1/RL(j+ i) (j)— (4.23)

I (n(j+')) =n(j'
2L n 2L

We make the linear approximation, near x =0,

Ii (x)=Rl x,

(4.20)

(4.21)

At a fixed (nonzero) frequency, e2 is large but finite,
and so is e'J). Equation (4.16b) shows that e"j' becomes
smaller as j increases, and so, with su%.ciently many
iterations, the condition

~

e(j)
~
&)e for the validit f E

( . ) breaks down, and one finds that e'J) eventually be-
comes smaller than e and approaches e&. Figure 7
shows a plot of e' ', calculated using EMT, as a function
of the filling fraction P')j' for several values of f . A
folioo ows a curve from right to left with increasing j„e'~)
first approaches the plateau value e, but eventually ap-
pI'oaches E'i = 1.

The exponent I2, which describes the approach of the
takeofF limit n 2JL to the fixed point 0, can be found easily
from the slope of the function h(x) at x=0. One can
proceed using the graphical construction shown i F' 6Il 1I1 ig.

ternatively, using the arguments given in Sec III
hase n'J) = ~ OIle

as j(n2L ) —0 and hj+, (n21 ) —0, from which it fol-
lows that

Using Eq. (4.23) in Eq. (4.4), we find

l2= —ln(RL )/ln(f2) . (4.24)

RL =1/(f2C2),
and Eq. (4.24) gives

lnC2
l2 =1+-

lnf2

(4.25)

(4.26)

2. Expollellfs tg~ sg~ Q7ld lg

We now turn to the case where component 1 is a con-
ductor and component 2 is an insulator. Since the insu-
lating component 2 always surrounds the inclusions of
the conducting component 1 at every stage of iteration,
the dc conductivity of the composite is zero: o' '=0.
Hence, from Eq. (4.4), we have

(4.27)

The slope RL can be found by differentiating the function
h (x), defined by Eq. (3.5). The result is

2.0
I.9—
I.8—
1.7
l6-
l.5

I4
I.5

fl =0.05
f( =G.IO

fl =0.20

where RI is the slope of h (x) at x =0:

dhRL=
dx ~ —o

(4.22)

To find s& it is convenient to write the iterative pro-
cedure for going from stage j to stage j+1 using the
spectral function Gi(n). Equation (2.5), with Ci =0,
gives e' at stage 1. The equation which takes us from
stage j to stage j+1 is found by replacing e'"~@'-'+"
and @2~A(j) in Eq. (2.5):

(j+ i)
&m

(j)
(4.28)=1+f f . dn .'

~ (e, /e(j) —1)-'+n

Since component 1 is conductor, ~e) ~

—+ac in the n) —+0
limit, and so the term (ei/e~~) —1) ' in the denominator
of the integrand in Eq. (4.28) can be dropped, giving the
ratio of static dielectric constants,

&~(j+i)/ ~(j)—Rm ~m U (4.29)

I.O I I

IO-9 IO-8 IO-7 IO-6 IO5 IO" IO~ IO ~
I
0- I RU=1+y, f de .i G)(n)

o n

U»ng Eq (4.29) in Eq. (4.6), which defines s „we get

(4.30)

FIR. 7. Real part of the low-frequency dielectric function
e'J) against filling fraction Pzj' of medium 2 f d'

d=3. hd = . The dielectric functions of the components are e& = 1 and
=1+1.0X1 'Oi. Three values of the initial filling fraction

have been used: f, =0.05, 0.10, and 0.2. The actual filling frac-
(j)—s 1tion ~~2j =(1—

~ &)j takes on discrete values which decrease as
the number of stages (j) increases, and so actually each curve
consists of discrete points, which are not shown. The curves in
the figure, which have been drawn so as to pass through these
points, show how the values of (E'J' first approach a constant
plateau value e~ as the number of stages increases, but eventual-

ly approach the value e'J'=1 as j~~.

s, = —ln(RU)/ln(f2) . (4.31)

The actual value of e' +" can be found by usin E .
(i)— y using q.

', , which g~ves e =RUe2 at the first stage, together
with Eq. (4.29). The result is

(4.32)

which clearly shows how the static dielectric constant of
the composite can reach very large values, since it is mul-
tiplied by the factor R U & 1 at each stage of iteration.

The third critical exponent Ii, defined by Eq. (4.7), is
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found by first noting the relation (4.8) between the takeoff'
limit nI JL for gi(j, n) and the touchdown limit nz~U for
gz(j, n ). We have

(j+1)

n1L(j)

1 —n(j+"7f 2U

1-n'J'
2U

(4.33)

which we can find by following the touchdown limit n z~U

for gz( j,n ) in Fig. 6 as it moves to the right toward the
fixed point x =1. A linear approximation to h(x) near
x = 1 gives

1 —h (x) dh

1 x dx
(4 34)

If we let x = n z'U+" and note that h (x) =h (n 'zJU+" ) =n zJU,

Eq. (4.34) becomes

(j)

1
—n jU+" dx

By differentiating Eq. (3.5) and using h (1)= 1, we find

in[1+fid/(1 f,)]-
s, =-

ln(1 f,)—
in[1 f,d/(d ——1 f i )]-

ln(1 f,)—
(4.41)

(4.42)

known mixture functions: Maxwell-Garnett theory and
Bruggeman effective-medium theory. The difFerential
effective-medium theory, in which an infinitesimally small
fraction f, of component 1 is added at each stage, is ob-
tained by taking the limit f, ~0 for either MGT or
EMT.

The exponents Iz ( = tz ), given by Eq. (4.14), depend on
the percolation strength C2, which is given in Appendix
A for MGT and EMT. In order to find Ii ( =s, ), given
by Eq. (4.31), we must find RU using either Eq. (4.30) or
(4.37); this is done in Appendix B.

All quantities can be expressed in terms of the Euclide-
an dimension d of the space and initial fraction f, of the
inclusions of component 1 and are summarized below.

(i) Maxwell-Garnet t theory:

Gz(n)
=fz Cz+ f — dn

o (1 n)— (4.36) (4.43)

If we insert (1 n)+n —into the numerator of the in-
tegrand in Eq. (4.36), the integral can be split into two
parts and the sum rule (2.11) can be used, giving the ex-
pression 1+fz 1 G(zn) n(1 n) dn f—or the right-hang
side of Eq. (4.36). Finally, using the relation (2.8) to ex-
press the integrand in terms of G, (n), we find,

I1=s1=
ln(1 f,d)—
ln(1 f i)—

in[1 f,d l(d —1)]-
ln(1 f,)—

(ii) EfFective-medium theory:

(4.44)

(4.45)

dh

dx
(4.37)

d(1 f i)—
d —1 —f,d

' (4.46)

n'&+"/n'J' =1/R1L 1L U (4.38)

where R z is defined in Eq. (4.30). Combining Eqs. (4.33),
(4.35), and (4.37), we find

(iii) DifFerential effective-medium theory:

I1 =s1 =d

lz=tz=@ /e, =dl(d —1) .

(4.47)

(4.48)

Therefore, from Eq. (4.7), the critical exponent I i is

I i
= —ln(R U ) /ln( fz ) . (4.39)

We have found that li =si [Eqs. (4.31) and (4.39)] and
t, =0, and so the critical exponents satisfy

l, —S2+t, . (4.40a)

Similarly lz =tz [Eqs. (4.14) and (4.26)] and sz =0, from
which it follows that

12 —S2+t2 . (4.40b)

The relations (4.40a) and (4.40b) are valid also for EMT,
for which I =2, s =t =1,a=1,2, and as shown in Ref.
17, they are consistent with the scaling relations proposed
by Bergman and Imry and Stroud and Bergman.

C. Values of the critical exponents

In order to find specific values of the critical exponents,
we must specify the mixture function M in Eqs.
(2. 1)—(2.3). We shall consider only the two most well-

Table I gives values of the critical exponents and e&/e1
for MGT and EMT with two choices for f i (0.05 and 0.1)
in dimensions d =2, 3, and 6.

The conductivity exponent tz depends on f, and de-
creases with higher d. This behavior is quite different
from that of random resistor networks, where t2 is unique
for a given dimension d, independent of lattice structure,
and increases with d, starting from an approximate value
of 1.1 —1.3 in d =2 and reaching an asymptotic value of
3.000 for d ~6. ' ' The different dependence of t2 on
d arises because, in our system, every part of the conduct-
ing component 2 can contribute to the conductivity,
whereas in a random resistor network, there are isolated
clusters of conducting resistors and dead ends, which do
not contribute to the conductivity.

In Fig. 8 the critical exponents and plateau values are
shown as functions of the initial filling fraction fi in
d =3 dimensions for both MGT and EMT. For MGT all
quantities remain well behaved for all values of f, , but
for EMT, li (=si) diverges as f i

—+ —,', and lz (=tz) and
e /e& diverge as fi ~—', . These divergences are associat-
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TABLE I. Critical exponents l& ( =$& ), l& ( = t&), and plateau values e~ I6] for recursively construct-
ed composites, with initial filling factors f, =0.05, and 0.1 and dimensions d =2, 3, and 6.

l),$1
0.05 0.10 0.05 0.10 0.05 0.10

1.951
2.858
5.350

1.905
2.730
4.848

1.951
1.481
1.194

1.905
1.463
1.188

1.905
1.463
1.188

1.818
1.428
1.176

EMT 2.054
3.168
6.954

2.118
3.385
8.700

2.054
1.520
1.206

2.118
1 ~ 542
1.213

2.111
1.540
1.213

2.250
1.588
1.227

CL

N

5 I

/
l

.~~S((EMT)
~2(EMT)

3 I~S)(M

2—
t2(MGT)

.,(MGT)

op(EMT)

GT)

0 I I I I I I I I I

OO O. l 0 2 0 3 04 0 5 0.6 0.7 08 09 I.O

FIG. 8. Critical exponents $& and t& and plateau value e~, in
d =3 dimensions, for both MGT and EMT, as functions of f, .
In EMT, s, diverges as f, ~ 3, whereas tz and e~ diverge as

2
] + ~

ed with percolation thresholds that occur in EMT.
MGT can formally be used for any f i & 1, since com-

ponent 1 never percolates. However, this is not true for
EMT, in which there is a percolation threshold for com-
ponent 1 at f, =fi, =1/d= —,'. If f, —+ —,', then n, r ~0,
and so the touchdown limit for Gz(n) n~U= 1 n, L

~—1.
In Fig. 6 the entire right-hand branch of the function
h (x) for nzU & x & 1 disappears at the percolation thresh-
old. Therefore, the critical exponents l& and s„which
are related to the way in which n zU approaches 1 with in-
creasing j, diverge as f,~—,'.

The critical exponents lz and tz are not a8'ected by the
percolation threshold for component 1 at f, =f„ in
EMT, and so our assumption that component 1 does not
percolate has no significance for these critical exponents.
However, there is a percolation threshold for component
2 at fz

=f~, = 1/d or f, = 1 fz, = (d ——1 ) /d =—'„which
is where lz ( =t~ ) and e~/e, diverge. In Fig. 6 the entire
left-hand branch of h (x ) for 0 &x & n zL disappears when

f i ~—', since nial —+0; this accounts for the divergence of
lz ( = tz ). Even at the first stage, e'" diverges at the per-
colation threshold for the conducting component 2; this
divergence also occurs for the iterated value e' ' at stage

j and, hence, for the plateau value e .

V. DISCUSSIGN

We have shown that a recursively constructed system
exhibits critical behavior and have obtained general ex-
pressions for the critical exponents. We will not give an
extensive discussion of applications of the theory, but will
indicate briefly how it can be used to describe some prop-
erties of brine-filled porous rocks.

In brine-filled porous rocks, both the pore space, which
is filled with brine (the conducting component), and the
rock (the insulating component) must form connected
(percolating) regions. There also should be no isolated re-
gions of pore space; otherwise, it would be impossible to
fill all of this space with brine. The mechanical strength
of the rock implies finite areas of contact between the
rock grains. Therefore, the insulating component also
percolates, and also there should be no isolated regions of
this component.

In our recursively constructed system, it has been as-
sumed that only component 2 percolates, and so the
theory cannot be applied immediately to porous rocks.
However, the theory can be modified in order to give a
system in which both components 1 and 2 percolate.

One way to modify the theory is to let component 1 be
the conductor (brine) and go to any desired stage of the
recursive construction, adding inclusions of component 1,
just as before. A final additional step is to mix this com-
posite, in which component 1 does not percolate, with a
second composite in which component 1 percolates, using
an appropriate mixture function which retains the per-
colation of component 1. A similar procedure is used by
Claro and Brouers to explain the very high static dielec-
tric constant of certain brine-filled porous rocks. They
obtain a medium ( A) with a very high static dielectric
constant by using a chain of very close conducting
spheres of brine (component 1) in a matrix of rock (com-
ponent 2). Since the brine component does not percolate,
the dc conductivity of this mixture is zero. The final step
is to mix this medium ( A ) with a conducting medium
(B), having a dielectric function similar to that of brine,
using MGT in which medium (B) surrounds inclusions of
medium ( A). The final composite has both a high static
dielectric constant (from medium A) and nonvanishing
dc conductivity (from medium B). Our recursive con-
struction could be used in a similar way to obtain a medi-
um ( 3 ) with a high static dielectric constant by recur-
sively placing conducting spheres (component 1) into a
rock host.
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A second application of the theory is to derive Archie's
law for the dc conductivity of brine filled porous rocks,
o. -o bp', where p is the porosity (the filling fraction of
brine) and the exponent t is on the order of 2. Since the
system is conducting for an arbitrarily small brine-filling
fraction, it appears as if one could use our recursive
theory with component 2 as the conducting brine
(o 2=o.

b ) and component 1 as the rock. The exponent t
in Archie's law is the same as the conductivity exponent
t2 in our theory.

As we stated previously, the problem with this ap-
proach is that the rock component 1 does not percolate.
A solution to this problem, proposed by Sheng, is to ini-
tially use a mixture of rock and brine, instead of pure
brine, as medium 2. If the rock in this initial mixture has
filling factor f ( ', the rock can be made percolating by us-
ing EMT with fP' & —,'. Then, when inclusions of pure
rock are recursively introduced with filling factor f„the
actual filling factor of brine at stage j will be

y(J) —f(0)(f )J (5.1)

in place of Eq. (2.4a). The rock component will always
remain percolating because of its presence in medium 2.
Following reasoning similar to that which led to Eqs.
(4.10)—(4.12), the dc conductivity at stage j is

(J)— g(o)C(0) (f C )J (5.2)

where C2 ' is percolation strength of the rock in the ini-
tial mixture. Taking the ratios of Eqs. (5.1) and (5.2) for
successive stages, we arrive at Eq. (4.12) for the conduc-
tivity ratio and Eq. (4.14) for the conductivity exponent
t2, just as before.

If one uses EMT with f, =f2 =0.5 for the recursive
construction, Eq. (4.45) gives t2=2, which is the desired
result. However, the filling factor p(2J) of rock becomes
small very rapidly as the number of stages increases, and
so it may be difficult to reach a specific value of $2.
Sheng used DEMT by going to the limit f,~0 and let-
ting the number of stages j~ (x), making it easy to reach
any desired value of PzJ'. However, our DEMT result in
Eq. (4.48), which was derived from the simplest MGT (or
EMT) with spherical inclusions of rock, gives t2=1.5,
which is too small. If one uses ellipsoidal inclusions, any
desired value of t2 can be obtained. The spectral function
G2(n) for ellipsoidal inclusions with depolarization fac-
tors n„nb, and n„ in the limit f, ~0, is

G2(n )=[5(n n, ) +5( —n nb)+5—(n n, )] /,3—(5.3)

1f2C2 = e'm" /@2= 1—
1 —n;

(5.4)

From Eq. (4.14), taking the limit f i ~0, we find the con-
ductivity exponent

where n, +nb+n, =1. If we use this spectral function in
Eq. (2.5) and go to the limit e2 —+ ao and e("—+ oo, we find
an expression for e("/e2. Then Eq. (2.6) immediately
gives

1 1

3,. 1 —n;
(5.5)
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APPENDIX A

For convenience, we present well-known results for
Maxwell-Garnett theory and effective-medium theory.
The Euclidean dimension of the space is d.

1. MGT

The equation for the average dielectric function e"' for
spherical inclusions with dielectric function e, and filling
fraction f„surrounded by a host with dielectric function

0

62, 1S

~(&)
m 2 f I 2

e(')+(d —1)e2 e, +(d —1)e2
(A 1)

To find C2 and G2(n ), it is easier to use an alternate pro-
cedure instead of Eqs. (2.14) and (2.15). Defining vari-
ables x and x, by Eqs. (3.2), we can rewrite Eq. (Al) as

For a spheroidal shape, we take n, =n
ll

and n,,
=nb =(1—nil)/2, giving

1 ' —3"'
(5.6)

1 pg
ll

a result also found by Sheng.
The value nil=0. 73, which corresponds to a prolate

spheroid, gives the desired result, t2 =2. It is clear from
Eq. (5.5) that t2 can attain large values if any depolariza-
tion factor approaches 1, which corresponds to very Hat
pancake-shaped ellipsoidal inclusions of rock. Values of
t2 as high as 4 have, in fact, been measured in some
rocks.

We have pointed out the values of /2 ( =t2) and s2 do
not depend on whether or not component 1 percolates,
since these exponents depend on the way in which the
takeoff limit n2L' approaches the fixed point x=0 of
/i (x). However, our assumption that component 1 does
not percolate (Ci =0) is important in the determination
of /, (=s, ), since these exponents depend on the ap-
proach of the touchdown limit n 2L toward the fixed point
x =1 of /t(x). If Ci &0, the fixed point of h (x) is x & 1,
and therefore Eqs. (4.39) for /i and (4.31) for si become
invalid. In future work the theory will be extended to the
case C

&
& 0. It w ill also be of interest to study the

frequency-dependent dielectric properties.
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d —1 1 1

d fz—x d f2—x —(1 f—2/d)

Comparison of Eq. (A2} with Eq. (3.3) gives

C =(d —1)/(d f —),
Gz(n) = A5(n n—o),

(A2)

(A3)

(A4)

MGT and EMT. The evaluation is simple for MGT,
since Gz(n) consists of a Dirac 5 function [Eq. (A4)]. In-
serting Eq. (A4) for G2(n) and Eq. (A3) for C2 into Eq.
(4.17), we arrive at Eq. (4.43) for e~/e, .

For EMT it is possible to evaluate the integral by using
the explicit function G2(n) given in Eq. (A9). However,
it is easier to use a series expansion method to find the in-
tegral. We introduce the variable x, defined in Eq. (3.2a),
into Eq. (3.1), which becomes

with 2 =(1 f2)/(—d f2)—=1—C~ and no=1 f2/—d.

2. EMT

The equation for the average dielectric function e"' is

(1)
&m C2 i G2(n)—1=f2 — +f dn

x o n —x
(81)

Expanding (n —x ) as a power series in x, we can write
Eq. (Bl) as

b+ [b'+4(d —1)~,/~, ]'"
E') 2(d —1)

(A6)

~(&)
&Z &m

e, +(d —1)e"' @2+(d—1)e"'

This is a quadratic equation for e' "/e„with the solution

(&)
&m f'2C2 i G2(n)—1=— +fz f dn

x o n

i G2(n)+fxf, dn+
n

(82)

where

b=fid —1+(d —1 —fid)e2/ei . (A7)

If the right-hand side of Eq. (A6), which is an explicit ex-
pression for e'~'/e„ is expressed in terms of x and ex-
panded in a power series, we find a result of the form

fzd —1

f2(d —1) '

1
0, f, &—

(AS)

The spectral function G2(n) is found from Eqs. (A7) and
(2.15}:

G2(n) =

d
2m(d —1)f~

[(n —n21 )(n~U n) ]'—

2U

0 n (n21, n )n2U

The percolation strength C2, which can be found
directly from Eq. (A5) using Eq. (2.14), is

f2C2 = —a

i G2(n)

o n
dn =ap

(84)

(85)

Equation (84) gives a result for Cz which agrees with Eq.
(AS), whereas Eq. (85) gives

i G2(n) d(1 f2)—
f2 dn=

o n (d —1)(fzd —1)
(86)

which we use in Eq. (4.17) to give Eq. (4.46) for e /ei.

ei —ix + o+aix+a2x + . (83)

The positive sign in front of the square root in Eq. (A6)
must be taken to calculate this power series, which is a
small-x expansion. Equating coefBcients of correspond-
ing powers of x in Eqs. (82) and (83), we find

where
(A9)

2. Determination of RU

nzU

with

=k+(k a)'"(k+ ~)'"—,

k = [2(d —1)+d(d —2)b, ]/d

b, =f2 —1/d .

(A 10)

(Al 1)

(A12)
R~=l+f, d/(1 fi) . — (87)

The quantity RU, which is used in the calculation of
the critical exponent s, ( =1, ), can be calculated using
any of the equivalent equations (4.30), (4.36), or (4.37).
For MGT it is easiest to use Eq. (4.30), with the spectral
function G, (n) =5(n no ), where no =—(1 f, ) ld, to-
give

APPENDIX 8

1. Determination of plateau value e~

The general equation (4.17) for e depends on the in-
tegral Jn 'G2(n)dn, which we must evaluate for both

For EMT it is easiest to use Eq. (4.37), in which dh /dx
must be evaluated at x = 1. We can find h (x) by starting
with Eq. (A6), introducing the variables xi and x defined
by Eqs. (3.2) and using the definition (3.5) for 'h (x). The
result is
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x, =h(x)

b —[b +4(d —1)(1—1/x )]'
2(d —1)

(B&)

In order to give the correct result h (1)= 1, we have used
a negative sign in front of the square root in Eq. (B8). By
direct differentiation we find

where

b =(f,d —1)+(d—1 f,—d )(1—1/x ) . (B9)
(B10)
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