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Structural and vibrational model for vitreous boron oxide
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The glass structure of B203 is thought to contain a large number of threefold six-member regular pla-
nar rings. The Raman spectrum shows a highly polarized and very sharp peak at 808 cm '. A Bethe
lattice of boroxol rings is used here to investigate the vibrational density of states and the polarized Ra-
man response. The results reproduce the experimental spectra extremely well and also explain the isoto-
pic shifts of the modes when one substitutes "0 and ' B. Through the calculation of local densities of
states in boron or oxygen sites, one could obtain the participation ratio of all the modes, allowing a
quantitative examination of the nature of any region in the spectrum, and a comparison with inelastic-
neutron-scattering data.

I. INTRODUCTION

Borate glasses are currently of great interest due to
their potential use in microelectronic devices. Particular-
ly important is the fact that they become fast ionic con-
ductors when properly doped with alkali metals. ' There
is a well-founded suspicion that this behavior is strongly
related to a structural change in the glass, since the
number of oxygen atoms belonging to boroxol rings, as
detected by NMR, diminishes drastically with doping.

The structure of pure vitreous Bz03 is worth studying
with care since there is not yet a conclusive model. Some
authors believe that nearly all the boron atoms are in
regular B303 planar rings, and that half of the oxygen
atoms serve as bridges between rings. If this is so, this
glass represents a beautiful realization of a material with
short-range order due to the chemical bonding, and also
with intermediate-range order (the boroxol rings), but
without long-range order, since it is amorphous. Thus,
the main cause of disorder is not wrong bonding, or dis-
tortion of the bonds, but the nearly random angle be-
tween the plane of a ring and the plane of the B—O—B
bridges. Molecular orbital calculations in a cluster of
two isolated boroxol rings show that an angle of 32 be-
tween the plane of a ring and the plane of a bridge is
favored, although this seems not to be the case in the
glass network. There is little dispersion of the B—O—B
angles, being 120' in the rings and —130 in the bridges.

In the doped material this regular structure is
modified, the boroxol rings disappear linearly with the
alkali-metal concentration, and local configurations
emerge. The main feature at low concentrations is the
creation of tetrahedral boron sites. These sites have been
detected by NMR, infrared, and Raman studies, by

which one concludes that there is one tetravalent boron
for each alkali-metal atom introduced in the network for
concentrations smaller than 0.4. These experiments
would be of great help to investigate the structural
changes induced by the impurities in the glass, if there
were a solid theoretical framework to interpret them.
Particularly, Raman-scattering experiments should give
valuable structural information once a reasonable model
for the vibrations and the Raman response is at hand.
The purpose of this paper is to provide a reasonably easy
theoretical model to interpret such experiments.

In Sec. II a theory to study the vibrations of a Bethe
lattice of boroxol rings is developed, using an extension of
the Born Hamiltonian, with central and noncentral
forces, and a Green's-function formalism. The vibration-
al density of states is calculated as the trace of the imagi-
nary part of the Green's function. The Raman response
is calculated following a model devised for SiOz, and an
approximate expression to investigate the infrared activi-
ty is used. In Sec. III, the results from the theory are dis-
cussed and compared with previous theoretical calcula-
tions and with the experiments. Finally, in Sec. IV, a
summary of the results is presented, and possible exten-
sions of the theory to the doped case are outlined.

II. THEORETICAL MODEL

As a first approximation to model the structure of the
glass, one could use the idea of a continuous random net-
work, which preserves the local coordination of all sites
throughout the lattice and has been extremely successful
in other materials, as vitreous silica. The main problem
when one is interested in a microscopic description of the
whole glass is that one cannot state the coordinates of all
the atoms, since they are at disordered positions. There-
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fore, one has to use a mean-field theory at some stage, if
one needs an infinite disordered system, with short-range
order only. It is here that the Bethe lattice has proven
useful: It has been used to describe the vibrations of a
continuous random network of one-component amor-
phous semiconductors and of more complicated net-
works, such as vitreous SiQ2. '

The case of 8203 is more complicated because of the
presence of intermediate-range order in the form of
boroxol rings. Since most experimenters believe that the
concentration of rings is very high, it is imperative to in-
clude them in the network model. Because there are no
rings in a Bethe lattice, one can assume that all boron
sites "contain" boroxol rings in such a way that one
treats a boroxol ring as a single site. If this is the case,
one can construct a three coordinated Bethe lattice in
which each vertex is a ring. This has been done using a
central-forces model" and including noncentral forces, '

with limited success.
In this paper we improve the Hamiltonian in order to

account for the lack of cylindrical symmetry of the bonds
in the rings. It is worthwhile repeating the construction
of the Bethe lattice in detail here, since it has never been
published before. For a Hamiltonian quadratic in the
displacements, the associated Green's function obeys the
equations

M„(l)co G„„(l,l') =5„„5(l,l')

+g g D„„-(l,l")G„-„(l",l'), (1)

where M is the mass at site I in the direction of one of the
three Cartesian coordinates p. The matrix of force con-
stants D is formed with the second derivatives of the po-
tentia1 with respect to the Cartesian components of the
displacements. In order to solve Eq. (1) for each frequen-
cy cu, one must define the structure. Our model will con-
sist in a Bethe lattice of boroxol rings. Figure 1 shows
the local arrangement of two boroxol units joined by an
oxygen bridge. For a bond along the z axis (direction 1),
as the one joining atoms 0 and 1 in the figure, the interac-

tion matrix is

P„O 0

D)= 0 Py 0

0 0 o.

(2)

—33 ——11—w =Rw R

—12 —2—2 —1w = —DA 'D

L

where a is the central-force constant, P is the orienta-
tional restoring force for motions perpendicular to the
ring plane (see frame of reference in Fig. 1), and P is the
orientational restoring force constant for motions in the
plane. The Born Hamiltonian contains only one noncen-
tral force P, but this is unrealistic in the case of a ring,
since that would mean that the bonds are cylindrically
symmetric, which is obviously not the case in the ring.
There is a general problem with the Born noncentral
force, since it gives a fictitious restoring force for a pure
rotational mode due to difFerence of displacements per-
pendicular to the bond. These false vibrational modes are
encountered only at low frequencies, since P is small.

Let us choose the boron atom 0, attached to the bridge
labeled 1 in Fig. 1, and rename it as boron 1, then, omit-
ting the index p, one writes Eq. (1) using 3X3 matrices
for the boron self-correlation 6 as

[MIco +D'+D +D ]G"=I+D'g"+D2F '+D3F ',
(3)

where M is the boron mass, D2 and D3 are obtained by
rotating D1 around the x axis by 3m/2; that is,
D2=R D1R, and the primed matrix means that the
force constants of the bond bridging between rings are
di6'erent from the ones inside the ring. The Green's func-
tion g is taken between the boron site and the bridging
oxygen, and the Green's function I' is between the boron
and the neighbor oxygen in the ring. There are similar
equations for 6 and 6 . First one can eliminate the
coordinates of the oxygen in the ring by defining a 9 X 9
matrix 8'composed of 3 X 3 blocks w, which are

w
&&

=MIco +D', + g (DJ DJ AJ 'DJ ),— .

j@1

—22 ——11—~w =R w

—13 —3—3 —1
w= —DA'D

T
W21 W 12

T
W31 =W13

—23 ——12—w =R w R

(4)

FIG. 1. Geometrical arrangement between two boroxol rings
in the B&03 network. When considering atom 0, the z axis is
taken in the direction 0-1.

—32 ——13—w =Rw R

where Ai =mIcu +D2+D3, with I the oxygen mass
and A2, A 3 being 3m/2 rotations of A

&
through R.

Dyson's equation can be written

3

g w „G"'=5;J+D'gj' . .
k=1

When the primed interactions are zero, one gets the
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—12 ~13—3 ~32~22 —12r2

—13 12r 2 —23—33 ~13—3

Sl 1 =I,
(8b)

(Sc)

—2 —22 —23—33 —32

—1
r3 l833 1832M 22 l823 (9b)

In order to solve Eq. (6), one needs the equations for
the bridging oxygen-boron correlations g. Care roust be
taken to explicitly write the orientation of the bond
bridging to the neighbor ring. The g for this bond is ob-
tained from the one considered before by an angle 0 rota-
tion around an axis perpendicular to the bond direction
(which gives the B—0—B angle), followed by an angle P
rotation parallel to the bond, which gives the relative
orientation of the joint rings. Now the renormalized
self-energies depend on the rotations

A,'( 8, P ) =mI a1 +D,'+ Pj 8~ D,'8jPj

(10)

where aj = A j( —8,$).
Thus, the equation of motion for the correlation be-

tween any 8—Q pair is

A,'(8, $)g j' =D,'Gj' +P, D'G„"+,

This equation is written in the frame of reference of ring
n, with the z axis oriented along bond j, joining to ring
n +1.

In the Bethe lattice one must define two transfer ma-
trices, one relating two rings through a bond j,

T 6~i =Gj'—j—nm —n + l, m (12)

and another one transferring information to difI'erent bo-
ron sites within a ring

Gki Gji—j k —nm —nm (13)

where it is obvious that t.; =I. With these definitions one
can immediately solve for a given boron self-correlation
(call it site 1 in ring 0)

solution for the ring alone 60= 8'
One can further simplify the equations by solving for

the self-correlation at the boron site 1,
3

E1G„'„'=I+g S1jDj'g j„',
j=l

where the subindex n has been introduced to state that all
the correlations are taken inside the ring n. The bridging
oxygen can be taken to belong to this ring or to the
neighbor one, but in this latter case another local frame
of reference should be used. The matrices in (6) are
defined as

3

E1=+ S1 W1,
j=l

—1 —1 —1 —1 —1—1 —1 ~ —lj—j—jlD' T =D" E —D'a 'D' —~ S .X t
j&l

3

Wji ~i 1 +jtj1
i=1

' —1(Deff )T

It is clear that these equations cannot be solved unless
alh the relative orientations are specified. One can make
two reasonable approximations: First one assumes that
the angle 0 is fixed and the same in all the bridges, and
second that the angle P is completely random and statisti-
cally independent. As it is, this latter assumption is not
essential, and one could treat the problem for another
choice of angles, or even for a favored angle. However,
the problem becomes scalar when one averages over P,
since aH the matrices are symmetric. In particular, the
ring-to-ring transfer matrix becomes diagonal and its
solution is given by

Tl1 T22 z (~11 +~22 ) T33 ~33

where

(17)

1 —I I —1 I.—1 —12 —2 —21 —13 —3 —31 ]

XD' ' I ]
8D'— (18)

and where ( ) means an average over P. The
local density at the boron site is given by
pj's

= —(2M')Im TrGOO/vr, where the Green's function is
the P-averaged version of (14). Equations (17) and (18)
are solved self-consistently to a desired degree of accura-
cy. The self-correlations at the oxygen sites can be ob-
tained with the quantities already calculated, for in-
stance, for a bridging oxygen one obtains

G,b=(A', —D', Z, 'D', 8D', Z, 'D', 8)—
where Z1=MIco +D', —gj&, ((LI ) D') is the-
eQective impedance of the rings. Analogously, one can
obtain expressions for the self-correlations of the oxygen
in the rings 6„, although for practical purposes it is
better to define a 27 X27 matrix for a ring with three oxy-
gen bridges and invert it directly, with Bethe lattices (Z)
properly attached to the outer bonds. The total density is
then written

2'
3

Im Tr(6MG+6mG„+3mG, „) . (20)

One can also obtain information from the partial densi-
ties at a boron site, at an oxygen in the rings, or at a
bridging oxygen, with the imaginary parts of 6, 6„,or
G,b, respectively. There are several parameters to adjust,

where LIj=Dj'[Aj'(8, $)] 'D '+D.j' Tj. The effective in-
teractions with the exterior of the ring are

D eff' —D &

[ A &

( 8 y ) ]
—1

y T8TD &

There are various ways of analytically solving the
equations for the Bethe lattice. A convenient way is to
find a complete set of equations for the transfer matrices
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namely the force constants in the rings a, P„and P», the
corresponding force constants for the bridges a', P„', P»,
and the bridging angle 0. With these many degrees of
freedom, one might obtain fairly reasonably looking den-
sities of states for several very difFerent sets of parame-
ters. Therefore, a model for the spectral responses in Ra-
man and infrared experiments is needed.

The model used to obtain the Raman and infrared
responses of the Bethe lattice is similar to the one used
for vitreous Si02. There it is shown that the main contri-
bution to the polarized Raman activity is proportional to

lA
O~c

h

O

CENTRAL FORCE THEORY FOR BOROXOL RINGS
130 +=470 N/m

co Im g g v„'G„,(l, l')v', (21)
p, v 1, 1'

where v„' is the p component of the sum of all the vectors
along the bonds arriving to a site l. In principle, the sum-
mation over sites should include all the correlations in
the Bethe lattice, and this can be carried out; however,
one obtains unphysical results. Previous work on Si02
has shown that a reasonable picture of the Raman spec-
trum can be obtained by summing up only the nine sites
belonging to a ring and its three bridging oxygens.

In a similar way, it has been shown' that the infrared
reAectivity at normal incidence can be calculated from

co Im Tr g e(l)G(l, l')e(l') (22)

where e (I) is the dynamical charge associated with site 1.
Since we are interested in looking only at the possibility
of infrared activity of a given mode and not at the rela-
tive intensities of the peaks, we will not attempt to derive
expressions for the dynamical charges, which could be
cumbersome and probably inaccurate. ' Therefore, we
use the values +1 for the ions, and calculate Eq. (22) in
the same cluster as for the Raman.

III. RESULTS

Due to the freedom one has to choose the set of param-
eters in the theory, the first calculations were made using
parameters of previous models in the hterature that can
be thought of as limiting cases of our theory. Galeener
and Thorpe' have exhaustively studied the bands ob-
tained from an arbitrary network with a model with cen-
tral forces only. In particular, they have solved the case
of a network containing boroxol rings for an arbitrary
value of the bridging angle 8. In Fig. 2(a) there is a
sketch of the allowed bands for 0= 130 and
a=470 Nlm (in central forces only, P=O). There are
five bands of s-like states, each with ~eight N/3, six non-
dispersive p-like states, which appear as 5 functions with
weight N/6, and one 5 function in the rniddle of the
high-frequency band with weight N/3. The results of the
calculation using the same parameters in our theory are
shown in Fig. 2(b), where one can see that the predictions
of Fig. 2(a) are found exactly. The bands at very low fre-
quency are the modes driven to co=0 when all the non-
central forces are very small (in the calculation shown in
the figure, all the P's are 0.03, to avoid infinities).

In Fig. 2(c) the calculation of the Raman response is
shown, and one notices three bands, one from 450 to 610

(c)

O~

IX

I I I I I I

250 500 750 1000 1250 1500 1750 2000

WAVE NUMBER (cm '}

FIG. 2. (a) Schematic representation of the vibrational den-

sity of states of a network of boroxol rings, obtained with a
central-force model, from Ref. 15. (b) Vibrational density of
states calculated using the same parameters as in (a), an imagi-
nary part of 5 cm ' was added to the frequency. (c) The Raman
response corresponding to the spectrum in (b).

cm ', another from 620 to 800 cm ', and a small one at
around 1350 cm '. The greatest response arises from the
lowest band edge, which corresponds to a mode in which
all the oxygen atoms breathe in phase. This Raman spec-
trum does not compare well with the real experiment, in
which the main response is found at 808 cm '. This is
not surprising since the central-force model is not able to
account for all the modes. The theoretical response is
easy to interpret from simple ideas: the bands which ex-
hibit calculated Raman activity are modes in which there
is some mixing of the molecular modes of the ring with
symmetry A &, and the 5 functions are modes which origi-
nate from the molecular modes of symmetry E' and A z.

To explore our theory further, we show in Fig. 3 the
results of the calculation for the ring along; that is, three
boron atoms, three oxygen atoms in the ring, and
three exterior oxygen atoms attached to the borons. The
irreducible representations of the D3h group give
2A', +3E'+ Az as true vibrations. The A

&
modes are

Raman active and the three E' modes are infrared active,
fulfilling the exclusivity rule for structures with a center
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FIG. 3. Molecular modes calculated for an isolated boroxol
ring with three outer oxygen atoms. The Raman and infrared
activity of the modes, calculated with Eqs. (21) and (22), are also
shown.

of symmetry. The A2 mode is silent. The value of
a=940 X/m was chosen in order to compare to the cal-
culation by Kanehisa et ah. " who adjusted this value to
have the A

&
mode at 800 cm '. Unfortunately, when the

network is attached to this ring, the effect is to broaden
the A

&
mode to a band, and the sharp peak that appears

at 900 crn is due to a p-like state, which is not Raman
active and does not broaden because it is a nondispersive
state in the central-forces model. This means that the ap-
parent fit for a=940 N/m is fortuitous, and the true a
must have a different value.

The shortcomings of a central-force-only model were
pointed out by Galeener and Thorpe' some time ago.
There is a calculation made with a "ball and stick" hand-
made model, ' built to interpret neutron-scattering exper-
iments, in which one value of a and only one value of P
are considered for all bonds. That model contained 75 Jo
of boron atoms in boroxol rings. In Fig. 4 we reproduce
the histogram made in Ref 16 for the total density of
states (DOS), together with the result from our model for
the appropriate values of a=420 X/m, P=0.2a, and
0= 120 . It is seen that the two results compare well: all

FIG. 4. Comparison between the vibrational density of states
obtained with a central-force theory for a ball and stick model
(histogram taken from Ref. 16), and the one obtained with the
present model for the same set of parameters. The lower section
shows the result for the Raman (solid line) and infrared (dashed
line) responses for the same model.

the bands with their relative weights are reproduced by
the Bethe lattice model, even the relative weight of peaks
4 and 6, which was noted as a virtue of the calculation.
Unfortunately, this choice of parameters is not appropri-
ate to explain the Raman response. In order to illustrate
this, we show in the lower section of Fig. 4 the result for
the Raman and infrared responses from our calculation.
Although the infrared spectrum shows the two main
peaks at 720 and 1260 cm ' seen in the experiment, the
main Rarnan line at 808 crn ' is found at around 600
cm ', corresponding to peak 3.

The above comparisons have been useful in order to
test our theory. The molecular ring modes are at the pre-
dicted frequencies and give the correct Raman and in-
frared activity, and the Bethe lattice sufFices to reproduce
the spectra of other models, even when the proportion of
boron atoms in the rings is not 100%%uo. The puzzling
thing is that not one of these choices give the correct Ra-
man spectrum.

The experimental Raman spectrum of vitreous B2Q3
(Ref. 17) is shown in Fig. 5, in which the reduced HH and
HV polarized spectra are taken from Ref. 12. It is seen
that the main feature is a highly polarized peak at 808
cm ', which is extremely narrow for a glass, and other
minor peaks at 470, 605, 670, 732, 1260, 1329, and 1460
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FIG. 5. Experimental polarized Rarnan spectrum of 8203,
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with vertical lines in Figs. 5 —7 as a guide to the eye.

In order to get a narrow line at 808 cm ' despite hav-
ing an infinite network of rings, one has to decouple the
3 ', mode of the rings from the rest of the lattice. It has
been shown' that a certain ratio between the central-
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FIG. 7. Theoretical infrared activity (a) and polarized Ra-
man spectrum IIHH —, IHv I (b) fo—r the density shown in Fig.
6(a).
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FIG. 6. Theoretical densities of states for 820, . An irnagi-

nary part of 15 cm ' was added to the frequency.

force and the noncentral-force constants gives perfect
decoupling of regular planar rings in vitreous Si02. It is
easy to show that, for a threefold regular ring with inter-
nal angle 0'=120, this ratio is a/P=3. One has a rela-
tive freedom to deviate from the exact value of this ratio,
since the calculations show that substantial changes in
a/P do not produce a broadening of the peak larger than
15 cm ' [as it was shown for threefold rings in vitreous
SiOz (Ref. 10)]. With this in mind, the parameters used
to fit the vibrational spectrum of B203 are shown in Table
I. The angles are given by experiment, ' and the force
constants varied by trial and error to achieve a best fit.
As indicated earlier, primes denote quantities in the
bridges between rings.

The fact that we find p )p, is consistent with our in-
tuition that angular restoring forces in the plane of a
B—0—B must be larger than those out of the plane. The
fact that primed quantities are generally smaller than
unprimed ones reAects the expected greater stiffness of
the ring, and the compression of 0' relative to 0.

The partial densities of states at the three different sites
in the network, and the total density, from Eq. (20), are
shown in Fig. 6. It is seen that the spectrum consists of
two bands, separated by a gap from 900 to 1200 cm
The upper band is mainly due to boron motion, although
a contribution of the oxygen motion in the rings is notice-
able, particularly the high-frequency band arising from
the broadening of the A2 ring mode. The motion of the
bridging oxygen is confined to the low-frequency band,
and a narrow peak, due to oxygen motion, appears at 808
cm
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TABLE I. Parameters used.

Force constants (N/m )
a'

Angles (deg)
0 0'

590 78.5 210 320 78.5 130 120

In Fig. 7(a) the calculated infrared response is shown,
one notices the two main infrared peaks at 714 and 1564
cm '. There is a small infrared activity from the band
around 900 cm '. These modes are not detected in the
experiments, although a hint of the existence of these
modes is suggested in the unpolarized Raman spectrum;
therefore, one should not regard this as a disagreement
between theory and experiment. Figure 7(b) shows the
calculated Raman response, the peak at 808 cm ' is the
largest feature, as in the experiment. The half-width is
around 15 cm ', and its height is about 50 times larger
than the other peaks, as in the experiment. This peak is
still reasonably narrow despite of the deviation from per-
fect decoupling: a/P =2.8 and a'/P'=3. 2. The other
peaks correspond roughly to the observed peaks in Fig. 5,
except for the feature at around 720 cm '. We have ex-
amined the frequency shifts of the modes in Fig. 6(a)
when the calculation is made with m =18 instead of
m =16, and with M =10 instead of M =10.8. In Table
II the results of these calculations are compared with the
experimental isotopic shifts.

It is seen that, although the frequencies of the modes
are in error by as much as 7%%uo, the quite varied calculat-
ed isotopic shifts are in impresive agreement with the ex-
periment. The experimental data and the uncertainties
were taken from Ref. 15, and the blanks mean that there
are no data available. This isotope shift analysis strongly
supports our choice of force constants and our identi-
fication of atomic motions with experimental peaks.

IV. CONCLUSIONS

The model we have presented for the structural and vi-
brational properties of pure glass B203 has the following
characteristics.

(l) It includes short-range and intermediate-range or-
der by simulating the amorphous network with a Bethe
lattice of regular boroxol rings, which can be solved ex-

actly. It was shown that the fact that, in the real glass,
not all the boron atoms form rings is not crucial as far as
the vibrational density of states is concerned.

(2) The model is an extension of former simpler mod-
els, and one reproduces these models as limiting cases.
We believe that the Hamiltonian used is the simplest one
that enables one to fit all the experimental features in the
vibrational spectra.

(3) The model reproduces reasonably well the frequen-
cies and the participation ratio of the modes, except that
the calculated gap is too wide. We believe these
discrepancies are both faults of the Born Hamiltonian.
The reason for not using a more realistic Hamiltonian,
viz. , a complete valence force model, is that we are look-
ing for a simple model that captures the behavior of pure
B203 and facilitates future calculations that will include
alloying with dopants. We plan to study the vibrational
signatures of the changes of structure induced by doping.

(4) Our generalization of the Born Hamiltonian to in-
clude different noncentral-force constants for motion in
the plane of the ring and out of the plane proves to be
useful, since we are able to reproduce the infrared activi-
ty of the out-of-plane modes at the correct frequency,
with no real complications for the calculation. The final
equations turn out to be scalar and the averaging over
dihedral angles restores the cylindrical symmetry.
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TABLE II. Isotopic shifts.

Theory

Frequency of the
mode for ' 'B ' 0

(cm ')
Experiment Theory

10B 16O
2 3

Experiment Theory

Isotope shifts (cm ')
10.8B 18O

2 3

Experiment

430
536
666
714
804

1306
1392
1566

470
500
605
732
808

1329
1460
1560

4
4
2

18
0

42
39
40

0+4
4+4
6+4

18+6
1+2

44+8
43+8
45+8

—20
—24
—34
—14
—46
—14
—21
—30

—25
—28
—35

—48
—9

—15
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