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The Kohlrausch-Williams-Watts (KWW) and the Havriliak-Negami (HN) relaxation functions have
been widely used to describe the relaxation behavior of glass-forming liquids and complex systems.
While the HN relaxation function is a frequency function, the natural domain of the KWW relaxation
function is time (although it has also been used with frequency-domain spectroscopies). A relationship
among the parameters of the two models is suggested by the fact that both models yield an accurate
description of real data. Nevertheless, this relationship cannot be an analytical one, since it is known
that the HN and the KWW relaxation functions are not exactly Fourier transforms of each other. In or-
der to Gnd out the nature of this relationship, a method which makes use of a distribution of relaxation
times is proposed here. Numerical simulations following the KWW model have been assumed to de-

scribe the relaxation behavior in time; likewise, the HN description was assumed to be vahd for the fre-

quency domain. From this work, a connection among the parameters of both models is obtained, which
is expected to be valid for those experimental data that can be described by either the KWW or the HN
model. This is the case for most, if not all, measurements on the dynamics in complex systems and
glass-forming liquids that frequently appear in the literature. The proposed procedure has been tested
by using dielectric-spectroscopy measurements, both in frequency and time domains to study the a relax-
ation in a glass-forming polymeric system, poly(hydroxy ether of bisphenol- A ).

I. INTRODUCTION

A theoretical description of the slow relaxation in com-
plex condensed systems is still a topic of active research
despite the great effort made in recent years. In the time
domain there seems to be a universal function that slow
relaxations obey. This is the well known Kohlrausch-
Williams-Watts (KWW) function, which is also currently
called a "stretched exponential, "

tt I

P(t ) =exp

where rww is a characteristic relaxation time and P is a
parameter ranging between 0 and 1. This function was
introduced in 1863 to describe mechanical creep in glassy
6bers' and was later used by Williams and Watts in 1970
to describe dielectric relaxation in polymers. Lately, this
function has been used to fit miscellaneous experimental
data, including data from mechanical, NMR, dielectric,
enthalpic, volumetric, dynamic light scattering, magnetic
relaxation, quasielastic neutron scattering, kinetics reac-
tions, etc. (for example, the general Refs. 3—5). Nowa-
days, it is also well known that the KWW law can be de-
rived from several different physical or mathematical
models ranging from models based on distributions of re-
laxation times to complex correlated processes (these
models have been summarized in several references; see,
for example, Refs. 6 and 7).

In order to analyze KWW in the frequency domain, a
Fourier transform is needed. However, it is well known
that there is no analytical expression for the Fourier

transform of the KWW function. Several numerical
methods have been used to Fourier transform the KWW
function and to interpret relaxation data from spectros-
copies in the frequency domain. However, it is also well
known that computation of Fourier transform poses nu-
merical problems originating from cutoff effects which
yield unwanted oscillations, especially when treating real
data.

On the other hand, the experimental relaxation behav-
ior of glass-forming liquids has usually been described
since 1967 through an empirical relaxation function in-
troduced by Havriliak and Negami (HN):

1

[l+(icos&) ]r

where v.~ is a characteristic relaxation time and a and y
are parameters ranging between 0 and 1, namely, this re-
laxation function has been widely used to describe data
from dielectric spectroscopies. ' Recently, this kind of
relaxation function has also been used by us to analyze
nuclear magnetic relaxation measurements' ' as well as
quasielastic neutron scattering data' ' in glass-forming
polymeric systems.

These results suggest that there should be a connection
among the parameters of the KWW and the HN func-
tional forms. The finding of the mathematical expression
of these relationships was the main purpose of this work.
To do this, and in order to avoid problems associated to
the numerical Fourier transform, we have developed a
method based on the introduction of a distribution of re-
laxation times, which, at least in a first consideration,
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should be interpreted only as a mathematical tool. There
is no need for KWW or HN functions to be used here, be-
cause the method can be equally valid if performed on
any relaxation function or even on real data.

The results obtained have been tested by using data
from dielectric spectroscopy, both in time and in frequen-
cy domains, corresponding to a relaxation in a glass-
forming polymer: poly(hydroxy ether of bisphenol-A )
(PH).

II. THKORETICAI. BACKGROUND

quencies cannot be defined. That the derivative diverges
as t~o could preclude a physical interpretation of the
KWW function.

The L(in') corresponding to the KWW function can
be written in the following way:

00

L (in~) = f exp( —xu )exp[ —u icos(mP) ]
7TX 0

X sin[u ~sin(mP) ]du,
where x =rlrww. This integral has a closed analytical
form for P=O. 5:

A. The K&%V function L (1 )
&

—1/2 —3/2 —1/4x
2 (10)

As it has been mentioned above, the analytical expres-
sion of this function is given by

P(t) =exp[ (t/r—ww

where 0 (P~ 1. Equation (1) can be correctly described,
from the mathematical point of view, as a superposition
of uncoupled Debye processes in the following way:

exp[ (t /rww)~—]= f exp( t /r)p(r—)dr, (2)

where p(r) is the distribution of Debye relaxation times.
In general it is not clear what p(r) physically means.
But, in any case, we can consider p(r) on Eq. (2) as a
mathematical tool. Due to the wide time range covered,
it is usually preferred to define the distribution in loga-
rithm of time instead of taking the linear time scale:

exp[ (t/rww)~]= f—exp( t/ )rL(l n—)rd in' . (3)

The connection between both distributions is given by
L (in') =rp(r )

An average relaxation time is usually defined in terms
of the y function as

(4)

which corresponds to the integrated area of the KWW
function. Higher moments are given by

&ww I (n/P)
P r(n)

which comes out from the definition of the moments of
the distribution:

(r"&=f "r"p(t)dr= ',
, f "t" 'y(t)dt . -

Likewise, an average frequency (which is difFerent to
1/(r&) can be defined

(~"&= f „p(r)«=( —1)"1 „d" (0)
dt"

x*(~)=x +(x, —x )
1

[1+(icorH) ]r
(12)

where g represents the asymptotical value of the sus-
ceptibility at high frequencies, and y, is the value of the
opposite limit. This expression is known as the
Havriliak-Negami (HN) function and has the following
associated distribution of relaxation times:

1 ( ~/rH ) ~sin( y 0)g(r)=—
~ [(rlrH) +2(rlrH) cos(am. )+1]r/

For diFerent values of the f3 parameter it is necessary to
evaluate the previous integral or alternatively the follow-
ing seiies form:

L(in') = ——g — sin(m13k ) —. (11)
1

"
(
—1)" . I (13k+1)
kf Pk+ 1k=0

Computation of the distribution function by calculating
the preceding integral or the series form is cumbersome
because there are terms which can take values many or-
ders larger than the final result of the summation. Thus,
a high precision is required for accuracy that is, many
significant figures must be retained in the computation.
Furthermore, algorithms which yield values for tri-
gonometric functions can fail when their arguments are
high, and this can become another source of error.

Qn the other hand, Provencher's coNTIN program
has proven to be a reliable tool to obtain p(r). As it will
be mentioned further, we have altered some of the vari-
ables in order to get L(in') directly spaced in logarithm.
Our procedure seems to be somewhat similar to the one
reported in Ref. 19, but, while this one only gives the mo-
ments of (in' & (which is not equal to ln(~& for nonsym-
metric distributions like the KWW one), ours yields (r&
directly.

9. The HN function

By using several frequency-domain spectroscopies, it
was empirically found that the following expression for
the relaxation functions. was a good fit to the data:

But the derivative of the KWW function is given by
P—1dP(t) P

dt &ww &ww

where 0 is

sin(year)0=arctan
(v/vH ) +cos(cx77)

(14)

and it diverges at t =0. Therefore, average relaxation fre-
and, consequently, the expressions for the real and imagi-
nary parts of g* are
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x'=x +(x, —x
{1+2(cur~ ) sin[a /2( 1 —a) ]+(corH )

x-=(x.-x )
[1+2(cor~) sin[sr/2(l —a)]+(corIr)

with

P=arctan
(corH ) cos[m. /2(1 —a)]

1+(car~) sin[a. /2(1 —a)]
(17)

From these expressions it can be seen that the max-
imum of the imaginary part, y", is given by the following
equation:

1/a

2(y+ 1)

Through the Cole-Cole diagram (representation of x"
versus X' —X ) the values of a and y can be deduced
from the high and low frequency behaviors of the suscep-
tibility. This is so because, as co—+ oo,

-(icos~)
Xg Zoo

=(corH ) r[cos(cry'/2) —i sin(aye/2)], (19)

tan(aye/2) = X"(cu~ oo )

x'(~ ~)—x. '

whereas, as co~O,

—1 y(i cur~—)

=1—
y( ocd) [cos(am 2/) +isin(um/2)], (21)

tan(am /2) = X"(co~0)
X, —X'(co~0) (22)

Thus, from these asymptotical behaviors of y' and y"
it can be seen that, at very high frequencies
(X' —X ) o- X"o- co r, whereas low frequencies give

(X, —X')

coax"

~ co . These behaviors are both experimen-
tally observed in real and imaginary parts of X'(co) in al-
most all materials, and it induced several authors to think
about relaxation in solids as a many-body problem.
This interpretation seems to be a realistic alternative to
the superposition of elementary Debye processes.

tt =I g(inc)d(lnr) .
Xs Xm ~ 1+~ r

(23)

The result and its fits to the HN function with two
different sets of a and y parameters are given in Fig. 2.

These fits are obtained through a multiparameter
minimization subroutine based on the downhill simplex
method. The discontinuous line fit corresponds to the
case in which all available points of the computed loss
peak have been used to perform the minimization. For
the continuous line fit, a constricted minimization has
been performed by taking just the central points. The
fact that there is no set of HN parameters that exactly
matches the computed susceptibility loss peak was to be
expected and can be understood on the grounds that HN
and KWW functions are not the exact analytical Fourier

1.2 I I I I I
)

1 I I I I
)

I I

I pemmwM~ gg1

0.8

Thus, if we enter a KWW function with a certain P pa-
rameter in the CONTIN program, we can obtain the corre-
sponding distribution, which leads to the frequency relax-
ation function. The fitting of this function to the HN ex-
pression will yield the values of the HN parameters
which correspond to the previously chosen P parameter.
Moreover, if we use the algorithm proposed in Ref. 23
with this frequency function we should recover the distri-
bution of relaxation times, and, when integrating, the ini-
tial KWW parameter.

This method is explicitly shown here for the arbitrarily
chosen P=O. 55 parameter.

First of all, a KWW function is numerically generated
and introduced in the CONTIN program to obtain the dis-
tribution of relaxation times. Both are shown in Fig. 1.
Once we have the g(in'), we can perform the following
integration to obtain the loss peak:

III. COMPUTATIONAL METHOD

A program developed by Provencher called CONTIN

(Ref. 18) was utilized to get the distribution of relaxation
times out of the KWW function by means of an inverse
Laplace Transform. Likewise, to obtain the distribution
from the HN function, an algorithm proposed by Iman-
ishi, Adachi, and Kotaka was used. Once we get this
distribution we can easily perform an integration to cal-
culate the appropriate relaxation function, either in time
or in frequency domain. Both programs can be used with
real data.

0.6

0.4

0.2

log (reduced time)

FIG. 1. Cxenerated Kohlrausch-Williams-Watts function,
P(t), of P=O. S5 and its associated distribution of relaxation
times g(log&ow) obtained by ILT.
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FIG. 2. Computed loss peak from g(log]0~) and Eq. (24) and
its At with two sets of HN parameters: The solid line is for
+=0.818,y =0.561, and the dotted one for a=0.875, y =0.568.

transforms of one another. Although the standard devia-
tion is less for the second set of parameters (those which
match better the low and high frequency regions), we
should choose the criterion of selecting the 6rst set as the
one which corresponds to the P value of 0.55. This is so
because it is this set which best describes the central part
of the peak. The reason to do this is based on the fact

that, in real experimental measurements, the most reli-
able region is precisely the zone around the peak, for the
tails can be distorted by other nearby processes. Besides,
also experimental devices might not have a wide enough
available frequency range to reach the base line.

So far we have suggested how to obtain the u and y pa-
rameters for a HN function starting from a chosen P
value for the KWW function. Now, if we want to
proceed in the opposite way, namely, from the HN pa-
rameters to the KWW parameter, we take the Adachi
and Kotaka algorithm. This algorithm is based upon
an iterative calculation, which consists in modifying the
distribution of relaxation times by adding to it an amount
proportional to the difference between the original sus-
ceptibility loss peak, and the calculated loss peak from
the distribution of relaxation times corresponding to the
prior iteration. This diIII'erence is evaluated at each point,
which means that to correct the g (inr ) in r we need to es-
timate the difference in to = 1/r.

If we want to test the consistency of this theory we
should apply it to the previously shown loss peak and get
back to a P value of 0.55. Thus, we have taken the sus-
ceptibility loss peak calculated from the output distribu-
tion and we have operated on it with the Adachi and Ko-
taka algorithm to see whether we recover the original dis-
tribution of relaxation times. The result is shown in Fig.
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FICx. 3. (a) Comparison between the original g(log]o~) and
the one obtained from y"(cu) by the algorithm of Ref. 18. (b)
Computed time relaxation function with the g(log&07") obtained
from y"(co) and its At to the Williams-Watts function
(P=0.551,r = r~~1.009).

FIG. 4. (a) Comparison between the original g{log&o~) and
the one obtained from the At of g"(co) to a Havriliak-Negami
function. (b) Computed time relaxation function with the
g(log&0~) obtained from the HN At of y"(cu) and its At to the
Williams-Watts function (P=O. 54, r= r~~).
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3(a), where the open symbols correspond to the CONTIN

distribution and the solid symbols are those obtained
from the Adachi-Kotaka algorithm. As we can see, the
agreement is excellent. Now we can perform the follow-
ing integration to obtain the time-domain relaxation
function:

P(t)= J exp( —t/r)L(inc)d Inc . (24)

By fitting the so obtained P(t) to the KWW expression,
we get the result shown in Fig. 3(b) which shows that the
original values for P and r are recovered. To be more ac-
curate, we should recall that the HN expression did not
exactly match the loss peak obtained from the CONTIN

distribution, so we should generate the loss peak of a HN
expression corresponding to the previously obtained best
fit values and then introduce it in the Adachi-Kotaka al-
gorithm. In Figs. 4(a) and 4(b) we show these results,
where the open symbols denote, as before, the CONTIN
distribution and the solid ones are those obtained from
the HN loss peak with the chosen values. It should be
noted here that the existing analytical expressions for the
distributions of the KWW and the HN functions are
markedly difFerent (the HN analytical distribution shows
a sharp cutofF in the long times side, while the KWW one
is close to the CONTIN distribution), whereas the ones
shown here are similar. This fact supports our decision
of rejecting these analytical expressions.

Figure 4(b), which shows that the time-domain relaxa-
tion function calculated from a HN simulation can be
fitted (for these parameters and this interval) with a
KWW function, can be understood as a test of the relia-
bility of the method, and allows us to state that both, a
KWW function with a P value of 0.55 and a HN function
with a =0.82, y =0.56, describe the same relaxation
functions in time and frequency.

Table I lists the results obtained from following the

above described procedure for diFerent P values. These
results have been plotted in Fig. 5(a).

The fact that a KWW function can be 6tted with a HN
expression does not mean that the inverse is always true.
For the values that appear in Table I, the equivalence can
be stated, as we proved for a=0.818, y=0. 561, but it
will not be the case, in general, for arbitrary o., y. This
can be understood from the fact that the HN function
can be considered as a more versatile function than the
KWW one, in the sense that it has one more parameter.
However, a possible relationship among a, y, and P is
hinted by the results on Table I. This originates from the
fact that ay =P, as can be seen in Fig. 5(b). This condi-
tion is already suggested from results on Refs. 11 and 12.
Actually, the following analytical relations can be derived
from the data shown in Table I:

=2.6(1—P) exp( —3P) (25)

i.6

c 1.2
C4)0
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for the characteristical times and

~~ —pl. 23

for the shape parameters, and allow a direct way of trans-
formation from the HN parameters into the KWW ones.

TABLE I. Values of the HN parameters corresponding to
the fitting of the frequency-domain response function deduced
for the stretched exponential with the chosen P parameters.

&H «ww

0
0 0.2 0.4 0.6 0.8

0.2

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

0.2190
0.3115
0.3944
0.5164
0.5442
0.6741
0.7175
0.7976
0.8091
0.8180
0.8801
0.9334
0.9406
0.9554
0.9699
0.9870
0.9832
0.9930

0.3182
0.3705
0.3968
0.3706
0.4667
0.4074
0.4487
0.4439
0.5105
0.5610
0.5981
0.6193
0.6954
0.7420
0.7780
0.8417
0.8688
0.9314

310.46
32.456
14.863
10.000
5.0119
5.3827
3.9446
3.6224
2.9174
2.3659
2.0137
1.9364
1.6711
1.5668
1.5031
1.4421
1.1858
1.0666

0.6

0.4

0.2

0.2 0.4 0.6

FICx. 5. (a) Values of the HN 6tting parameters as functions
of the corresponding P values. The solid line is from Eq. (25).
The dotted ones are guides for the eye. (b) Plot of the product
ay as a function of the corresponding P values. The solid line
stands for Eq. (26).
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IV. TEST WITH REAL DATA

The reliability of the method was tested with real
dielectric measurements performed around the a relaxa-
tion of poly(hydroxy ether of bisphenol-A ) (PH). For
this purpose, two spectroscopic techniques were used:
one acting in time domain, namely, the transient currents
method, ' and the other in frequency domain, the
dielectric relaxation spectroscopy (DRS).

The glass transition temperature of the PH used, as
measured by Differential Scanning Calorimetry and de-
rived from the infiection point of the scan corresponding
at 10'/min heating rate, was 370 K.

For the transient current method, a constant dc volt-
age of 400 V was applied during an hour to a parallel-
plate capacitor 1 mm thick and 25 mm in diameter.
When the field was removed, the isothermal depolariza-
tion current was measured as a function of time with a
Keithley 642 electrometer. This procedure was used at
the temperatures of 371 and 373 K. This was so because
it is in this temperature range that the equilibrium polar-
ization was attained, allowing an available time range of
the depolarization current to be measured with our ex-
perimental setup.

The dielectric measurements in the frequency domain

5 I I I I
I

1 I I I
I

I $ I I

I
I I I I

I
I I I I

I
I I I I

I
13

: (a)
30

25

covered the range from the audio-frequency up to the
radio-frequency region. The measurement system uses a
lock-in amplifier ECx8cG PAR 5208 with an internal os-
cillator, allowing a frequency range between 10 Hz and
100 kHz to be covered. The stray capacitance of the cell
was reduced to 10 ' F. The sample was held between
two condenser aluminum plates that were kept at a fixed
distance. The capacitance of the sample cell was of the
order of 10 " F. A standard 10 pF air capacitor was
used as reference in order to minimize errors in dielectric
loss measurements, so the experimental limit for the loss
factor value was about 10 . The measurements were
performed doing frequency scans at isothermal condi-
tions at temperatures between 380 and 400 K. Then, the
real and imaginary parts of the dielectric susceptibility
(y*=y' iy"—) were obtained as a function of frequency
and temperature. In order to extend the frequency range
available to higher frequencies, a HP 4342A Q-meter (22
kHz —70 MHz) was used. In this case the measurements
were performed at constant frequencies, and the loss fac-
tor was measured as a function of the temperature, this
being the rate of the temperature scans 0.2 K/min.

Figure 6(a) shows the fit of the depolarization transient
currents obtained at T=371 and 373 K with Eq. (8). As
can be seen, the dynamics of the o'. relaxation of PH ex-
perimentally observed in the time domain is described
very well by the KWW law.

Figure 6(b) shows the isothermal dielectric loss curves
and their fit with the HN expression. The agreement be-
tween the experimental data and the fitting curves [Eq.
(16)] is also very good. By means of the relationships be-
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FICz. 6. (a) Fitting of the depolarized current to Eq. (7) at
T=371 K (P=0.391, logIor=3. 84), and T=373 K
(P=0.395, logIor=2. 28). (b) Isothermal loss peak curves and
their fits to the HN expression at T= 385 ( 0 ), 387 (~), 389
(E ), 391 (A ), 393 (Q), 397 (f), and 399 K ( ~ ).

FIG. 7. (a) Comparison between the P values measured (solid
points) from time-domain response and those obtained follow-
ing the method presented in this work from frequency-domain
response (open symbols). (b) Fitting of the ~~~ from transient
current measurements (solid points) in the Vogel-Fulcher law
taken from frequency dielectric measurements.
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1 ii, 749 K
(27)

tween the HN and the KWW parameters obtained above
[Eqs. (26) and (27)], we have calculated both the rww and

P parameter corresponding to the dynamics of the a re-
laxation, as observed in the frequency domain at each
measured temperature. The results for the KWW param-
eters have been plotted versus temperature in Fig. 7.

Figure 7(a) shows that the P values obtained from both
frequency and. time domains are not dependent on tem-
perature for this polymer. Moreover„ the fact that this
parameter is noi dependent on the experimental domain
used is an additional proof of the reliability of the method
proposed in this work. However, as Fig. 7(b) shows, the
values of thc chaI actcI istical rclaxatlon time 7 ~w arc
very dependent on temperature as it is commonly found
for the o. relaxation of amorphous polymers like PH. In
order to obtain the law describing such temperature
dependence, we have fitted the behavior of the tempera-
ture corresponding to the maxima of loss peaks obtained
by means of temperature scans at a fixed frequency in the
range 10—10 Hz. Then the reciprocal of the frequency at
the maximum loss has been fitted by means of a Vogel-
Fulcher (VF) law

The solid line in Fig. 7(b) displays the VF curve corre-
sponding to Eq. (28) shifted in the time scale to match the
~ww values deduced from the frequency-domain measure-
ments. As it is clearly shown, the extrapolation of the be-
havior obtained in frequency domain fits perfectly to the
one obtained in time domain, which proves again the reli-
ability of the method here proposed.

V. CONCLUSIQNS

The equivalence between the KWW and the HN func-
tions has been studied here by using an alternative
method to the analytical Fourier transformation. The va-
lidity of the relationships derived above has been proven
to work for the o. relaxation of PH. We expect this valid-
ity to hold for any system whose behavior is describable
by either the KWW or HN relaxation functions.
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