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Discrete lattice efFects and the phason gap of incommensurate systems
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The effect of thermal fluctuations and discreteness of the crystal lattice on the pinning of the modula-
tion wave and the phason gap of structurally incommensurate systems is examined. Very close to the
paraelectric-to-incommensurate transition temperature T&, the phason gap is vanishingly small, but at
slightly lower temperatures it takes on a nonzero value. Near the 1ower incommensurate-to-
commensurate transition temperature T&, where floating effects are negligible, the pinning may lead to a
"devil's staircase"-like temperature dependence of the phason gap.

I. INTRODUCTION

A basic conclusion of the continuum-model theory for
incommensurate (I) systems is the existence of a gapless
(6+=0) phase excitation spectrum, ' i.e., a frictionless
sliding of the modulation wave, representing the Gold-
stone mode which recovers the broken translational sym-
metry.

Detailed experimental investigations made by us and
other groups do not seem to confirm the above results
even in the case of nominally pure crystals. In all incom-
mensurate systems studied until now, a phason gap al-
ways exists. This seems to be due to two reasons: (i) In
all nominally pure crystals, a small number of impurities
always exist, which "pin" the modulation wave. This
impurity-induced pinning destroys long-range order and,
after a certain impurity concentration, "melts" the in-
commensurate lattice. (ii) Even in the absence of im-
purities, the modulation wave is pinned due to the
discreteness of the crystal lattice at temperatures lower
than a locking temperature TL, where TL (TI. ' In the
temperature region between TI and TI, the solitons are
very thick and overlap strongly, resulting in a zero-
pinning energy. The "frictionless sliding" to "locking"
transition at TL is equivalent to the appearance of a
finite-pinning potential barrier which prohibits the free
sliding of the modulation wave. The existence of the pin-
ning barrier makes the soliton configuration defective in
the sense that the solitons may lock at random positions.
This indicates the possible existence of rnetastable soliton
configurations.

Recent experimental and theoretical work has
shown " that, close to the critical temperature TI, pin-
ning effects are reduced due to thermal Auctuations.
What really happens is the creation of regions where the
modulation wave is Aoating, trapped among an effective
number of impurities, thus causing a time-averaged de-

crease of the phason gap. Indeed, Kaziba and Fayet re-
ported EPR measurements in RbzZnC14. .Mn +, indicat-
ing a sharp decrease of A„very close to TI.'

In this work, we examine the case of a one-dimensional
discrete incommensurately modulated pure system, cal-
culate the phason gap 6, and the inhuence of thermal
fluctuations. The reason is twofold: (i) Although the
predominant contribution to 6„in real systems is caused
by impurities, the threshold for activating Aoating effects
should be determined by discrete lattice eFects. (ii) The
strength of the discrete lattice pinning is ~ exp( —a~/ao),
where His the soliton width, and ao is the lattice con-
stant. ' This relation indicates that lattice pinning may
dominate in the narrow multisoliton limit (MSL) temper-
ature region where the thermally excited motions are
smaller due to lower temperatures.

II. DISCRETE HAMILTONIAN AND THE PHASGN GAP

A. Hamiltonian

Following the formalism of Bruce and Cowley', we
consider a quasi-1D model where the displacement field
depends only on the z spatial coordinate u(z). We assume
the following: (i) The low-temperature commensurate
phase locks at a wave vector v&/p, where r, is a
reciprocal-lattice vector and p is an integer. (ii) The in-
commensurate soft-mode vector qs is close to v, /p. In
this case, the Harniltonian contains a kinetic-energy term,
two- and four-phonon anharmonic terms, and a p-phonon
Umklapp term

(lb)

(lc)
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&=f f f f u (qqqq)
X Q(qi )Q(q2)Q(q, )Q(q~)

Xb(q, +q2+q3+q4),

& =f f u (q, . . . q )Q(q). . Q(q )

The ground states of the lattice are the solutions of the
equations 8&/Bp; =0 which minimize the above Hamil-
tonian, '

(ld) 0;+i 0;—=0; 4;—i+-up» n(p4;)

(standard map) . (6)

Xb(q, +. q ) .

The following notation is used:

f = g (a/2')"f. d"q 0(lq qual (A
q

(le)

co (q)=c(T T~)+—lq —

qual

(2)

The 6 functions express wave-vector conservation modu-
lo a reciprocal-lattice vector ~

b(qi+qz+ )=$ (2') 5 (q, +qz+ . +r) .

Proceeding in exactly the same way as in Ref. 14, we
get, after projecting out the noninteresting terms in real
space,

(3a)

where

f lj(z)l'dz (3b)

luol L 1 dp(z)f — —50 + u (1—cosp P(z ) )dz,I 02dz
(3c)

luol and P are the amplitude and the phase of the incom-
mensurately nuclear displacement

u=luo cos[p(z)],

lu, l
~(T, T)~, —

(4a)

(4b)

where A is some small cutoff and (2m/a) is the volume
of the Brillouin zone. In case of a 1D system, the star of
the soft mode has only a double wave vector +qz and the
soft-mode dispersion is given by the following form:

In Fig. 1 we see numerically calculated ground-state
configurations. The ground states were found by a simul-
taneous slow variation of 50 and the initial phases Po and

P, at constant u values, choosing the configuration with
minimum energy as the ground-state configuration. Pre-
vious calculations with the same method, by keeping both
u and 50 constant, ' do not seem to apply in the case of
structurally incomm. ensurate systems due to the fact that,
in a real system, the wave-vector misfit 50 is temperature
dependent.

Stable ground-state trajectories could be produced only
close to TI for small-v values. By getting lower into the
incommensurate phase —by increased U values —the
trajectories were highly unstable, showing an extreme
sensitivity to the initial conditions. Small initial numeri-
cal errors increase exponentially and the method proves
to be ineScient in calculating ground state
configurations.

The mean wave number qz of the calculated trajec-
tories, which, in the case of a discrete lattice treatment,
corresponds to the winding number p =(P~ —Po)/X, in-
creases by decreasing temperature in contrast to Ref. 7.
This is in partial agreement with experimental results in
1D modu1ated systems. In the case of K2znC14 and
Rb2ZnC14 (Ref. 16), where qs ~ c'(1—50), 50 remains ini-
tially almost constant, but on approaching T& goes fast
to zero, 50—+0 as T~Tz. However, neutron-scattering
experiments in deuterated TMATC —Zn', as well as
more recent experiments in RbzZnC1~ (Ref. 18) show a
nonmonotonous variation of 50 by decreasing tempera-
ture.

In Fig. 1 we observe that, very close to TI, the phase
consists of thick overlapping solitons and the displace-
ment of the modulation wave can be described by a
plane-wave modulation (PWM). ' As we get lower into
the incommensurate phase, things are changing dramati-
cally and the ground-state configurations are now de-
scribed by a multisoliton lattice, e.g. , walls of rapid phase

50 defines the position of the soft-mode minimum at
qs ~&~p+5o and

3.500, 00
0

0
u= —(luoli' u ) . (4c)

In our case, we assume that ~& and 50 both lie on the z
axis. This model predicts, in case of a system without im-
purities, the existence of a gapless phason mode. '

Things are totally different if we consider a discrete lat-
tice model. The continuous Hamiltonian of relation (3a)
now becomes

2.000--

0 500
0 100 200

+u(1 —cospP; ) .
FICi. 1. Ground-state trajectories for p=6 and di6'erent v

values: (a) v =0.0002, (b) v =0.0008, (c) v =0.003.
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change, that separate almost commensurate regions. By
further decreasing the temperature, more and more, nar-
rower solitons are created. This result was also
confirmed by experimental work. ' We therefore con-
clude that the ground-state configurations can be satisfac-
torily described by well-separated solitons of thickness W
and intersoliton distance J' almost in the whole incom-
mensurate phase. The phase P varies almost linearly with
the distance only very close to T~ in the PWM limit.

thus described by the relation
' 1/2

1
5$ =

l exp[i(6„%, cot )],

6 =(0,0,0,k), A; =(0,0, 0,f, ) .

The dispersion relation of the phason branch is a solution
of the equation

8. Phason gap

The basic characteristic of an incommensurate system
is that the modulating wave vector is irrationally related
to the underlying lattice. In the case of a 1D system
modulated in the z direction, this means that
qs/c'Wm /n: The reciprocal lattice can be described by
vectors of the form

4

m;q; =m, a*+mob*+m3c*+m4qs,

1 ik(f,. —f )

which, with the help of Eqs. (3c) and (5), becomes

co~=2(1 —coskg) pv 9' . —

Here,
N

V= lim —g cospP;,

(12)

(13a)

(13b)

m, is an integer .

We regard these vectors as projections of vectors of a lat-
tice in a 4D space with basis

and g is the superlattice constant in the "phase" direc-
tion. The phason gap b is defined by the lowest excita-
tion frequency co& (k =0):

y,. =(q, ,0) (i =1,2, 3),

+4= (qs

6 = —pU9. (14)

u= ~uo~ cos[(~&/p)n„+P(n„. )]b, (10)

where P(z ) describes a soliton lattice with
P(z+L/p)=P(z)+2~/p and L/p=W+l. The 4D
primitive basis of the position space is now equal to
(1,0,0,0), (0, 1,0,0), (0,0, 1,—1/p —1/L), (0,0,0, 1).

The phase mode is connected with the translations in
the "phase" direction and the corresponding group repre-
sentations. The phase fluctuation at the ith lattice site is

where q~ is a base vector in a direction perpendicular to
the 3D position space. The translational in variance,
which is lost in three-dimensional space, is recovered in
a four-dimensional superspace reciprocal to the one
generated by y; with primitive basis (1,0,0,0), (0, 1,0,0),
(0,0, 1,—q~), (0,0,0,1).

If we take the polarization of the modulation along the
b axis, the positions of the atoms in the incommensurate
phase are described by

r, =n;+ ~uo~ cos(quan„)b .

Acting on (g) with the translations of the above superlat-
tice, we obtain a translationally invariant set of points in
the four-dimensional space,

%(r;,f, ) = [n;+ ~uo~ c s(own„2+ref; )b,f; ]

It is clear that "f"corresponds to the phase of the modu-
lation wave and the positions of the ions in the real crys-
tal are obtained from an intersection of the superspace
with f=0.

In case of a soliton lattice, ' the modulation function is
equal to

III. FLQATING EFFECTS AND THE PHASQN GAP

A. Floating e6'ects {T & T& )

As we see from Fig. 1, thick solitons seem to exist only
very close to TJ. In this temperature region, the phase
varies, as already mentioned above, linearly with the dis-
tance (P, =qz.n„), so that V is taken to be 7—=0, result-
ing in a vanishing small phason gap 6 -=0. However, a
little further into the incommensurate phase, the solitons
seem to be well separated. This indicates that the "fric-
tionless sliding" to "locking" transition temperature TL
must lie close to T~. Taking into consideration that the
phase P; between two well-separated solitons remains al-
most constant and equal to P, = (2n /p )m (m = 1,2, 3, . .. ),
we find that, to a good approximation,

We conclude that, very close to T~ and for tempera-
tures r& TL, 5 =0 and the phase P of the modulation
wave slides freely. For T & TL, there is an energy cost to
translate the phase P of the modulation wave by 5P
(5P H [ —m/p, m/p ]). This energy cost is equal to

1he= —
~uo~ v g [ cosp(P, +5/) —cospP, ] . (16)

l

We can prove that

lim —g sinpP;=0 .
x X

By transforming Eq. (6) to



7286 G. PAPAVASSILIOU et al.

ytv+i 4—'x=yi y—o+Up y sinp4,

and taking into consideration that

help of relations (19)—(21), we get

cospP, (t)= cospP, o Q Jo[pgo„d]
k

(22)

0N 41 . 4'N —1 40
lim —= lim =p,

N X N

we get

Using the equipartition theorem for the contribution of
the kth mode

g t't;/2=k~T/2,

4N —1 40 . 1—lim = lim —g sinpg, . =0,
N~ oo N,

where it is known that the winding number p is always
finite for every ground-state configuration.

As a result of the above treatment, Eq. (16) can be
transformed into

b, e = uol U P(cosp 5$ —1) .

The potential barrier which prohibits the free sliding of
the modulation wave is thus equal to

and relation (20), we get

If we assume small phase fluctuations P««1,
N~cospP;(t)=[1 —0 ] ~cospP;o

= exp( —X&A ) cospP;o

and

V( t ) = exp( —X&0 )7 .

(23)

(24a)

(24b)

However, close to TL, where the intersoliton distance is
very small and the solitons are still "thick, " the pinning
energy is, according to relations (15) and (18), small
enough to be overcome by thermal fluctuations. This re-
sults in a time-averaged decrease of the phason gap.

8. Floating effects (T & TI )

'4k( 2 2

32
((+'& =—')

k
dk

min

4 (t ) =4 o+ X Pa(n t ) .
k

P& are the phase Iluctuations with wave vector k,

P&(n;, t ) =Poz sin(cu„j, t+aI, )4(k n; ),
where

8(k n, ) = sin(k, n;) sin(k n; ) sin(k, n„),

(19)

(20)

P, o is the static part of the phase of the modulation wave
and ak is an initial phase.

Assuming a random distribution of the initial phases
aI, (random-phase approximation), it is possible to substi-
tute the time average by an average over o.k,

In the case where the thermal energy is larger than EI„
the phase is sliding inside the crystal so that the normally
frozen modulation wave travels "freely. " After rejecting
at the crystal edges, standing waves are created. '

The phase P, of the modulation wave at the ith lattice
site is now time dependent and equal to

According to experimental results, ' the wave vector q&
and, consequently, the 7 term vary slowly with tempera-
ture except very close to Tc. Taking this into considera-
tion and relations (4b), (14), and (24b), the phason gap
can be expressed as (Fig. 2)

b, = T —Tl@ p U yexp[ —C/(T —T)2~], (25)

35.00

where, in the neighborhood of TL, we make the following
approximation:

0, T &T
const(TL —T), T( TL

'

J ( )daz.

ipse, .(t) —
ipse, . ( t )

Since cposP, (t)=( e ' +e ' )/2, we calculate the

average of e
' ~ "" over o,'k. This is easily proven to be

equal to

0.00
1 6.6 8.3

W W W 'W W W W 1F

0.0

(21)

where Jo is, the zeroth-order Bessel function. With the

FIG. 2. The phason gap A~ as a function of temperature
close to the "pinning" transition temperature T& where
g~=(TI)~ ~ p g y and C] = TI
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The predictions of the above theoretical model seem to
agree qualitatively with NMR and NQR experimental re-
sults on spin-lattice (T&) and spin-spin (T2) relaxation
time measurements ' very close to TI, where a sharp
decrease of both ( T, ) and ( T2 ) and hence b, is observed.
However, in the high- as well as in the intermediate-
temperature range below TI and above Tc, the phason
gap seems to be dominated by impurities and lattice de-
fects rather than by discrete lattice effects. Only close to
T& where, according to experimental results, the mul-
tisoliton lattice appears and a sharp increase of (T, ),
( Tz ), and b,~ is observed, .

' discrete lattice pinning
effects should dominate.

1.03

U

0.90--
8-

0.76
1.000 0.975 0.950

C. Multisoliton limit

According to relations (13) and (14), the phason gap 6+
is, close to T&, equal to

FIG. 3. The phason gap h~ as a function of temperature
close to the incommensurate-to-commensurate transition tem-
perature T, .

(26)

l ~ —loin(1 —T, /T) .

With the help of relations (15) and (27), 5 is equal to

(27)

1+
lo ln(1 —T, /T)

(28)

The predicted temperature dependence of the phason gap
in the multisoliton limit is seen in Fig. 3.

IV. CONCLUSIONS

The temperature dependence of the phason gap due to
discrete lattice pinning in the presence of thermal Auctua-
tions, as shown in Figs. 2 and 3, represents the main re-
sult of this study. The predicted rapid increase of 6
close to the incommensurate-to-commensurate transition
at T& has been experimentally observed. ' In the
intermediate- and high-temperature range, discrete lattice

where 6, is the phason gap at Tc. As we approach Tc
from above, the intersoliton distance l increases with de-
creasing temperature in the sense that solitons start to
convert into domain walls of the low-temperature com-
mensurate phase. The intersoliton distance is then given
by relation'

pinning seems to be masked by impurity pinning. It
might be interesting to see if discrete lattice pinning will
become dominant in very pure crystals.

We also want to note that, in systems where the wave
vector of the modulation wave exhibits a stepwise change
as a function of temperature, 6 should also change in
exactly the same way. In the case where solitons are nar-
row and far away from each other, each of them tends to
be centered at a particular point of the unit cell. The
variation of temperature wi11 then induce a whole series
of first-order phase transitions characterized by neighbor-
ing q values and the density of these phase transitions
will increase as the commensurate phase is approached.
Moreover, Aubry pointed out that the variation of I as a
function of temperature constitutes, for temperature
T) TI, an incomplete devil's staircase and for T & Tl a
complete devil's staircase. In this case 6 should also
constitute, in the multisoliton limit, a complete devil s
staircase. Recent experiments indicate that this might
indeed be the case.
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