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Linear-to-quadratic transition in electronically stimulated sputtering of solid N2 and O~
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Electronic excitations produced by MeV protons and helium ions lead to ejection of molecules from
solid N2 and 02. The yield is shown to be determined by the near-surface excitation density, rather than
the primary ionization cross section. It is linear in the excitation density at low excitation densities and
quadratic at high excitation densities. The linear yield can be described by discrete, nonradiative
transfers of electronic energy into kinetic energy ("spikes" ) that utilize ~ 12% of the total electronic en-

ergy deposited for N& and 37% for 02. A statistical model is used to calculate the transition from low
to high excitation density due to the overlap of either Maxwellian or non-Maxwellian spikes. It is found
that the separate N2 and 0& data sets are consistent in this model, that excitations do not difFuse very far
from where they are created, that the linear-to-quadratic transition is described better by the non-
Maxwellian spikes, and that the energy derived in the linear regime is adequate to account for the non-
linear yields.

I. INTRODUCTION

Following the deposition of electronic energy in low-
temperature condensed-gas solids, energetic nonradiative
relaxation processes can lead to molecular ejection
(sputtering). ' Therefore, the analysis of sputtering data
can help determine the nonradiative pathways occurring
in these electronically insulating materials. Extracting
this information has been complicated by the faster-
than-linear character of the sputtering yields for many
condensed-gas solids. Recently, Johnson et al. , defined
three separate regimes of electronically induced sputter-
ing by fast ions. For normal incidence the yields exhibit
linear, quadratic, and cubic dependencies on the density
of excitation along the incident ion's path. Here the tran-
sition from a linear to a quadratic sputtering yield is ex-
amined based on data for solid Nz (Ref. 4) and 02 (Ref.
5).

Yields that are linear in electronic excitation density
can be expected when individual excitation events release
su%cient energy to overcome the material cohesive
forces, and they occur with sufhcient separation in space
or time so as not to contribute collectively. ' This sepa-
ration is determined by the initial distribution of excita-
tions and by those solid-state processes that disperse the
excitations and control the relaxation rates. Linear
yields have been reported for a number of low-
temperature condensed-gas solids by keV electrons and
MeV protons. Since a large fraction of the electronic
energy is deposited by fast ions as electron-hole pairs,
these linear yields have been interpreted as primarily due
to energy-transfer events, which are analogous to dissoci-
ative recombination in gas-phase reactions. That is, we
assume neighboring atoms repel each other following the
recombination of secondary electrons with localized

holes. ' " Such events are also used to describe electron-
ically stimulated desorption of adsorbed gases, ' defect
production in alkali halides, ' and the dissociation of ex-
cited clusters. '

Sputtering yields, which vary faster than linear with
the excitation density, are sensitive to the dispersal of the
deposited energy. Therefore, understanding the transi-
tion from linear to quadratic can help to quantify this
process. Such transitions have been observed in collision-
al sputtering of both metals' and condensed-gas
solids, ' ' ' ' being produced by the overlap of the ki-
netic energy spikes. ' ' In electronic sputtering this
overlap also occurs producing a quadratic regime in
which ejection depends only on the local energy density
at the surface, a sublimationlike process, and a cubic re-
gime in which it depends on the pressure gradient estab-
lished. The incident angle dependence of the yield for
low-temperature CO and 02 sputtered by MeV He+ was
shown to be well predicted by the sublimationlike pro-
cess. ' Therefore, in this paper the instantaneous sur-
face energy density is used to calculate the N2 and 02
yields.

Because the electronic-relaxation pathways can be
affected by increasing excitation density, viz. , the de-
crease in the luminescence eKciency, it is important to
establish whether the variation in the electronic sputter-
ing yield can be explained by the overlap of the individual
energy-transfer events. We first review the data sets for
the sputtering of N2 and 02 by protons and helium ions
as published elsewhere, and in Sec. III we give a formula-
tion for calculating the yield based on a distribution of
spikes. In Sec. IV, we use data in the linear regime to
determine the fraction of the electronic energy that parti-
cipates in sputtering, and then use this in Sec. V to calcu-
late the linear-to-quadratic transition. In Sec. VI we give
the standard spike calculation for comparison with the
appendix containing many of the expressions used.
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II. MEASURED YIELDS

The measured yields' ' were obtained elsewhere by
bombardment of solid N2 and Oz with MeV hydrogen
and helium ions. ' The films, grown in a UHV chamber
by condensation on a —10-K metal surface, were approx-
imately 4 X 10' molecules/cm thick. The predominant-
ly neutral relative yields, independent of thickness and
beam current, ' ' were determined using a quadrupole
mass spectrometer (QMS). To minimize the background,
the nitrogen films were grown of ' N2. Absolute sputter-
ing yields were determined for 1.5-MeV He and He+
ions on N2 and 2.0-MeV He+ on 02 using Rutherford
backscattering, and the QMS yields were normalized to
these values (Tables I and II). To measure the sensitivity
of the sputtering yield to the incident charge state (Table
I), a 20-pg/cm carbon foil covered the final aperture to
produce charge-state equilibrated helium ions. '

The sputtering yield data (Table I) for protons and
charge-state equilibrated He+ ions are shown in Fig. 1(a)
for solid '

N2 as a function of the equilibrium electronic
stopping power, S„and as a function of the gas-phase
ionization cross section, o I, in Fig. 1(b). It is seen that
for the equilibrated helium ions there is a striking con-
sistency with the proton yields. Using the primary ion-
ization cross sections does not change this consistency.
However, in Fig. 1(b) it is seen that the He+ and equili-
brated He+ yields have diferent values at the same value
of the primary ionization cross section. This indicates
the primary ionization cross-section quantity is not

sufhcient to characterize the yield. If that is the case,
then ionizations by the secondary electrons must also

contribute to sputtering, so that some fraction of S„
which describes the total energy loss of an ion, is ap-
propriate for the ion velocities considered here. (Earlier
we showed' that at significantly /ower velocities, the scal-
ing with S, changes. )

Because sputtering is a surface phenomena, we give in
Table III calculated values of o.„which is the fraction of
S, deposited in a volume close to the surface and depends
on ion speed and volume size. These are less than unity
for incident ions because the secondary electrons are for-
ward directed. For a very fast ion a, is about 0.4,
which corresponds to only primary ionization in the near
surface volume. In Fig. 1(b) we use values of a, from
Table III to plot the Nz yield for incident protons versus
o.',S, . Although the dependence of the yield is somewhat
less steep, because of the increasing a, for slower ions, it
is roughly similar to that for S, . The size of the a, may
be reduced by excitation transport, but the difterence in
the He+ and equilibrated He+ yields indicates that such
transport does not occur over distances of the order of the
average secondary electron transport distance, —5 nm
(Ref. 28). Because the dependence of a, on ion velocity is
uncertain, we use a fixed a, for examining the linear-to-
quadratic transition, realizing its limitations.

III. GENERAL DESCRIPTION OF YIELDS

The individual electronic excitation events, produced
by an incident ion along its path through the solid, can
lead to an impulsive transfer of energy into local kinetic
energy by a variety of processes. For condensed, low-

Ion Energy (MeV/amu)

TABLE I. Sputtering yields solid for "N2 at 10 K.

S, (10 " eVcm /molecule)' oI (10 ' cm )

H+

(He+ ),q

2.5
1.5
1.0
0.8
0.5
0.36
0.32
0.26
0.20
1.0
0.75
0.67
0.50
0.375
1.0
0.75
0.67
0.50
0.375

0.5
0.7
0.9
1.1
1.6
2.1

2.4
2.65
3.4
4.1

5.3
7.0
9.8, 9.5
13.5, 14.0, 14.5'
6.8
8.4
11.5
14,17.0
22, 24.5'

5.5
7.8

10.0
12.5
16.5
20.5
22.0
24.0
28.2

42.5
50.0
55.0
63.0
78.0

0.73
1.1
1.5
1.8
2.4
3.0
3.2
3.6
4.2
2.8 (3.8)
3.4 (4.4)
3.8 (4.8)
4.3 (5.7)
5.7 (6.7)
6.0 (1.95)
7.2 (1.95)
8.0 (1.9)
9.5 (1.9)

11.4 (1.8)

Equilibrium stopping cross section in bulk N2 (Ref. 26).
Ionization cross sections from Ref. 27. For He used o.+, positive ions produced, as charge transfer contribution is small. In brack-

ets is given o. , total electron production indicating the significant He+~He+++e contribution. The difference between these is
o.». Data at energies greater than 2 MeV are extrapolations.
'Repeated absolute measurements. Rook, Johnson, and Brown (Ref. 24) obtained a yield of 17 for (0.375 MeV/amu) He+ and 9.5 for
(0.15 MeV/amu) He+.
For o.I for (He+ ),q we use proton value of o I times the square of Z, which is given in brackets.
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TABLE II. Sputtering yields for solid 02 at 10 K (Ref. 5).

H+

Ion

He+(He~+ )b

Energy (MeV/amu)

3.5
3.0
2.5
2.0
1.5
1.0
0.8
0.5
0.35
0.3
0.75
0.635
0.5
0.375
0.25

YS

0.96
1.1
1.24
1.15
1.7
2.7
4.7
4.8
5.5
7.3

27 (32)
41 (49)
60 (72)
75 (90)

140 (170)

S,
(10 " eV cm /molecule)

4.8
5.4
6.0
7.0
9.0

11.0
13.2
17.6
22.0
23.8
54.0
60.0
70.0
84.0
94.0

'Quadrupole data of Ref. 5, normalized to Rutherford backscattering spectroscopy (RBS) yield for 2.0
MeV He+, Y=60. (Note it was incorrectly stated in Ref. 5 that the yields were normalized to
Y=54+5 the RBS yield from Ref. 24. The latter yields disagree somewhat with the more recent mea-
surements of the yields in Ref. 5.)
Note that the values of S, are equilibrium stopping cross sections and apply to equilibrated He+. The

ratio of the yield of He+ to equilibrated He+ is about 1.2+0. 1 in this region. We use 1.2 for the values
in brackets which are used in Fig. 2.

temperature N2 and 02, dissociation events beneath the
surface are assumed to drive the sputtering and to occur
rapidly. Therefore, the spatial distribution of these
events determines the calculation of the average yields, Y,

Y=& ~, YI[r&, r&, . . . ] .
I

(la)

TABLE III. Fraction of electronic energy loss deposited as
excitations and ionizations in the near surface layer. Estimated
using data in Ref. 35 for protons in H20. Fractions of n S, de-
posited in 6rst 1 nm from the surface or erst 3 nm from the sur-
face.

E/M (MeV/amu)

3.0
2.0
1.5
1.0
0.75
0.50
0.25

a, (1 nm)

0.43+0.05
0.43
0.43
0.45
0.50
0.58
0.68

a, (3 nm)

0.55+0.05
0.55
0.57
0.60
0.65
0.73
0.85

Here YI is the yield for a distribution of events located at
r, , r2, . . . labeled I, produced by a single incident ion and
wI is the weight factor for this distribution. For a fast
ion, which does not slow down significantly over the re-
gion of interest, the events are distributed randomly in
depth and radially from the track. The spatial distribu-
tion of interest is that occurring at the time of repulsive
decay, ' which can difFer from the initial distribution due
to excitation diffusion, enhancing trapping, and decay at
the surface. Ignoring this and the small radial distribu-

tion, the Poission probabilities can describe wI, so that
Eq. (1) becomes

Y= f dz~ f dz2 f dz3 . P, (z&)Pz(z2) . Yl[z&, z2, . . . ] .

(lb)

Here P, (z,. )dz; is the probability that the ith event occurs
between depth z; and z;+dz;, where

P;(z, )=exp[ —(z, —z, , )IA,, ]IX, ,

for z,. ~z, , and P;(z;)=0, z; (z; &, with z&=0, and A,, is
the mean spacing between events. For perpendicular in-
cidence Y~ in Eqs. (la) or (lb) can be written quite gen-
erally as

Y, =fd'pf dt C(I;p, r),
where N is the time-dependent Aux of neutrals leaving a
region of the surface labeled by the radial distance about
the particle track, p. These forms will be used to calcu-
late the yield as a function of the mean spacing between
events, A, Limiting cases are considered first.

In the limit that k, is very small, the YI are all roughly
the same, therefore, Eqs. (la) and (lb) become well ap-
proximated by

Y= fd'p f dr f e(X, :p, r) = Y, , (3)

so that yield depends directly on the average spacing of
events giving the cylindrical spike yield, Y, . This yield is
quadratic in A,, (see the Appendix) if @ depends on p
and t only through the value of the surface energy densi-
ty, an assumption found for these solids to give the
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10,0—

(a)

De S, (10 eVcm )

10 100

correct dependence of the yield on incident angle at small
(If 4& depends on p and t via the net volume force,

a different dependence is observed as discussed else-
where. )

At "low" excitation densities the events are widely
spaced in depth and/or time producing sputtering in-
dependently so that YI=XY(z,. ), where Y(z;) is the yield
from an individual event at depth z;. Using this, Eq. (lb)
reduces to a single integral,

O

O
E

1.0—

Y=Idz g (z' '/A, ', )exp( —z/A, , ) Y(z)
i=1

=A,, ' f Y(z)dz .

This gives a yield linear in A, , which can be written

Y= Yt —= (bz/A, , ),

(4a)

(4b)

0. 1
10

S, (10 eVcm )

100

where bz is the weighted sputter depth as in Eq. (3a) of
Ref. 1. Here we are interested in the transition from this
linear yield to the cylindrical, quadratic yield of Eq. (3) as
A,, decreases. First, we note from Eq. (4a) that the linear
yield, Y&, already includes contributions to sputtering
from other than the excitation closest to the surface. The
contribution to Y due to the first excitation alone can be
written as

Y, = J dz, P, (z, )Y(z, )=bz/(A, ,+As),

He+

where we assumed, for convenience, Y(z)= Yoe
where Y0 is the yield in the surface monolayer and As is a
mean depth from which the deposited energy contributes
to sputter ejection (i.e., b,z= Yob,s). Equation (5) is seen
to be linear only for A., )&As. In the following we first es-
timate the energy of the individual events in the linear re-
gime using Eq. (4b) and then use Eqs. (la) or (lb) to de-
scribe the transition in the yield as k, decreases.

O

O
E

IV. LINEAR YIELDS

For sputtering due to individual events, molecular dy-
namics calculations for amorphous condensed-gas
solids ' " indicate that a collision cascade expression can
be used to describe the dependence of the yield on
the average energy per event, AE. That is, the sputter
depth in Eq. (4b) simplifies to'

bz =(c/n crd )(bE —U)/U, (6)

0.1
0, 1 1.0 10.0

a, (10 cm )

FIG. 1. (a) Measured yields of N2 molecules removed per ion
incident for H+ and (He+),q vs equilibrium stopping cross sec-
tion. Yield data are plotted using o,,S, for protons for 1 nm
volume in Table III using appropriate velocity. (b) Measured
yields of N2 vs primary ionization cross section, o.r, Ref. 27
(viz. , Table I), for H+, He+, and (He+ ),q.

where crd is the efFective interaction (diffusion) cross sec-
tion and c is a proportionality constant (see the Appen-
dix). U and n are the material cohesive energy and
molecular number density (Table IV). Based on the
molecular dynamics calculations, c/n o d =0.141 (see the
Appendix) with 1=n ' (roughly a layer thickness). Us-
ing a, and writing (dE/dx), as n S„the mean spacing
between excitations in the near surface layers is obtained:
A,, '=a, n S, /W„where 8' is the average electronic
energy deposited per excitation leading to an average en-
ergy releases b,E. Using Eqs. (4b) and (6) the yield can
also be written' "
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TABLE IV. Molecular properties.

Molecule

02

n (10 molecule/cm')

2.2

2.4

I (nm)

0.36

0.35

I (ev)

15.6

12.2

U {eV)

0.075

0.095

W' (ev)

36.2 (He+i
37.0 {H+)
32.5

I'(=ca, (f,S, )/crd U,
where f, =hE/W, and bE ))U. Such a form, also ob-
tainable by dimensional arguments, resembles the col-
lision cascade expression, ' with (f,S, ) replacing the
elastic nuclear stopping cross section. The yields for
high-energy protons are consistent with (o.,f, ) =0.05 for
Nz and (a,f, ) =(0.16) for Oz. Extracting f, or a, sepa-
rately requires additional assumptions.

Assuming a, =0.43 (see Table III) for the proton data
in Table I implies a yield for 2-keV electrons on N2

[a, = 1.2 (Ref. 9)] of about 0.8 molecules/electron, some-
what smaller than the measured yield of Ellegard and co-
workers, ' of 1.2. If the distances for excitation trans-
port are large, the a, 's for electrons and protons would
be closer in value, increasing the discrepancy. This com-
parison reinforces the conclusion that diffusive transport
distances in electronic sputtering of Nz and Oz are small-
er than the secondary electron transport distances.
Therefore, using an a, ~ 0.43 for the proton data,

f, 50. 12 for N2 and f, ~0.37 for Oz. To estimate hE
from f„since W, in the solid is likely to be less than the
gas phase W value for ionization ' (Table IV), then hE
is less than or equal to 4.4 eV and 12 eV for Nz and 02,
respectively, consistent with other estimates. ' Because
it is unlikely for outer shell processes that 12 eV would be
deposited in a single decay, a sequence of nonradiative re-
laxation processes spaced closely in time may be in-
volved 24'~5

The above implies that sputtering in the linear regime
is due to either the first event [A,, ))b.s in Eq. (5)] or con-
tributions also come from second, third, etc. , events,
which are displaced radially or in time, a consideration in
elastic nuclear sputtering also. Using As =3l ' in Eq.
(5), even for a 1-MeV proton, for which A., =IOl, with

e, =0.5 and 8' =37 eV for N2, it is seen that Y, is about
70% of the calculated F. This indicates that "second"
excitations contribute to the "linear" yield at this k, .
Below, we consider the distribution of events more care-
fully.

V. NQNI. INEAR YIEI,DS

The transition in the yield from linear to quadratic
with increasing (dE/dx), can arise from overlapping
events ("spikes") fueled by the b,E" determined above.
Here we test this concept using Eq. (la) assuming the
same energy per event for all A,, with the statistically dis-
tributed spikes contributing cooperatively by increasing
the transient surface kinetic energy density above that
produced by an individual spike. As the density of events
along the track of a single incident ion A,, increases, the

spikes merge, eventually producing a uniformly energized
cylindrical region, Eq. (3).

In order to calculate Y't for use in Eq. (la) two different
expressions for the dependence of the "Aux" of escaping
molecules, [N in Eq. (2)], are used. One expression is
based on a local equilibrium (Maxwellian) energy distri-
bution for each spike and the other assumes equilibration
does not occur during sputtering, with each molecule
having the local average energy, a 6-function distribution
(see the Appendix). For the kinetic-energy transport in
the material a constant diffusivity is assumed so that the
total kinetic-energy density distribution for a group of
spikes along an ion track can be obtained by addi-
tion. For a diffusivity that is not constant (see the
Appendix), the evolution of the energy must be obtained
by solving the diffusion equation for each particular spa-
tial distribution of spikes. Typically the diffusivity de-
pends only weakly on the local energy density. For
constant difFusivity the local average energy per molecule
for a single spike is

exp[ —r; /A(t) ]
E(r;, t)=

where b.(t)=[4~(t +to)]' is the radial size of a spike,
which increases with time (see the Appendix), ~ is the
"thermal" diffusivity, and to gives an initial width. As-
suming that the nonradiative, electronic relaxation times
are fast compared to the kinetic-energy transport times
(-10 ' —10 " s), all the events in Eq. (la) have the
same start time, t =0. Now the Yt[r&, r2, . . . ] are calcu-
lated from Eq. (2) using a particular surface ejection func-
tion with spikes located at r„r2, . . . as in Eq. (A7). These
spikes are randomly distributed in depth, with a mean
spacing of A,„and radially within a cylinder r. To calcu-
late an average yield we set wt in Eq. (la) equal to one for
each distribution chosen using a Monte Carlo selection of
depths. %'hen r =0, events in a line, then we compare to
calculations using Eq. (lb). A suKcient depth is used in
each calculation so the yield is independent of sample
size. The Yl are calculated using the total-energy density
at the surface ' for a number of spatial distributions
corresponding to the same A,, and are then averaged to
obtain Y. A., and 60 are the input parameters for each set
of calculations, where 60 is an intrinsic spike radius from
Eq. (8) [i.e., b,o

——bE/(n Um )]. We used the upper
limits, AE =4.4 eV for N2 and AE = 12 eV for Q2 giving
Do=2. 1l and 2.9l, respectively, of the order of As used
earlier.

The ratios of the calculated average yield to the linear
yield Y&, Y/Y& versus 60/A, „were found to depend only
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very weakly on the bE chosen (i.e., b, o) over a reasonable
range of hE, reducing the importance of determining AE
accurately when considering the transition from linear-
to-quadratic yields. Plotting this ratio also eliminates
consideration of the efficiency of ejection in the calcula-
tion and the importance of the normalization of the data
sets. Therefore, it is seen in Fig. 2 that the data sets for
Nz and Oz plotted as Y/YI versus b,o/A, , are remarkably
consistent with each other, allowing for the larger scatter
in the Oz data. This indicates that ho/A, , is a useful pa-
rameter in the transition region, where we used a, =0.65,
a value intermediate to those in Table III. Varying o.,
would stretch the curve in Fig. 2.

The curve drawn through the data in Fig. 2 is com-
pared to the calculated ratios in Fig. 3 labeled by
(6(0),r ) for a set of spikes with a chosen initial (t =0) ra-
dius 6(0) and distributed uniformly in a radius r about an
ion track. Calculations are shown for an escape Aux
based on Maxwellian [Fig. 3(a)], representing a broad dis-
tribution, and a 5 function [Fig. 3(b)], representing a nar-
row distribution. A transition in the yield from linear in

to quadratic in A, , as the density of statistically dis-
tributed spikes increases, occurs for all of the curves
presented if the calculations are extended sufficiently to
large and small ho/A, It is seen that for the range of
ho/A, , relevant to the data, the addition of statistically
distributed spikes can represent the trend observed for
certain values of b,(0) and r.

The values of the ratios in Fig. 3 show that the energy
available based on the linear yields is adequate for
describing the magnitude of the yields in the quadratic
regime for a number of the values of b, (0) and r. That is,
no new relaxation pathways appear to be needed. How-
ever, the behavior in the transition region is very sensi-
tive to b.(0) and r. Because we divide by the linear yields,
increasing the initial spike radius, b, (0), steepens the tran-
sition for a fixed r. That is, the importance of overlap is
larger for spikes with the same AE but having a larger in-
itial radius. On the other hand, increasing r for a given

10
26,0)

(h, 0, 3h, 0)

0)

0.1 10

A,, and 6(0) extends the linear regime by reducing the
overlap. (Giving spikes difFerent start times would
change Y/Yl similarly. )

Because of the scatter in the data and the possible
effect of a„we do not attempt to obtain a precise fit to
the data by adjusting A(0) and r. However, for the range
of parameters used it is seen that calculations reasonably
representative of the data can be obtained in both cases
but with different values for the two parameters:
Maxwellian, b.(0)=b,o and r =36,o, 5 function,
b(0)=95,o/16, and r =ho. The larger values for the
Maxwellian distribution are due to the high-energy tail.
That is, the Maxwellian distribution is based on local
thermodynamic equilibrium; therefore, molecules can
have an energy much greater than AE, albeit with low
probability. Since the energy is dispersed by the same
collision processes that produce local thermal equilibri-
um, spikes having a small radius do not equilibrate in the
early stages when sputtering occurs.

(b)
(sa, /~s, w, )—

10
~ O~ (10K}

~ N2 (10K)

~O

P
P

.a'I
i'e

~ .0 ~

~ o ~ .o-- ~
~ -Q -~ -Q- Z Q 0

0.1

I I I I

1

1
10

0.1 10

FIG. 2. Data from Tables I and II plotted vs Ap/k, : for N2,
Ap 2. 11 and for 02, b p =2.9l, where Ap is the intrinsic spike
width: a, =0.65 is used to calculate A,, ' =a, l(dE/dx, )/8'.

FIG. 3. (a) Solid lines: calculated yield Y, from the sum of
spikes randomly distributed in z for initial widths and radia1 ex-
tent [6(0),r] as labeled. Each is divided by the linear yield YI
obtained in the limit A,,—+ ~. Yields are calculated for Maxwel-
lian spikes. Dashed curve: data from Fig. 2. (b) Solid curves:
calculated yields divided by linear yield, as in (a), for 5-function
spikes distributed in z with initial spike widths and radial extent
[6(0),r ] indicated. Dashed curve: data from Fig. 2.
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Although both sets of calculations roughly exhibit the
overall trend seen in the data„adjusting 5(0) and r for
the Maxwellian spikes does not give a fit to the data
which is nearly as good as the fit obtained for the 5-
function distribution in Fig. 3(b) for b,(0)=(9b,o/16) and
F Ao. That is, the sharp bend seen in the data going
from linear in A., ' to quadratic in A,, ', can be reasonably
obtained using the 6-function spikes, since the efFect of
overlap is much less important at the larger A,, for given
values of b, (0) and r. The size of the radial distribution
giving a good fit for this case (r =ho=2. 11 for Nz) is
about one third that for the Maxwellian and is consistent
with both small distances for excitation transport and
with the persistence of linearity, discussed earlier.

VI. CYLINDRICAL SPIKE

10

2

(b)

I ~ I ~ I ~ l X

10

To compare to the above we also consider the frequent-
ly employed, ad hoc, calculation in which the spikes are
assumed to evolve individually to give the linear yield, F&,
ignoring any overlap due to the statistical distribution of
spikes. The overlap of the residual energy is then con-
sidered by assuming it is distributed uniformly in z form-
ing an energized cylindrical region with some selected in-
itial width. The total yield is taken to be the sum of FI
[Eq. (4b)] and Y, [Eq.(3)]. The cylindrical spike yield in
Eq. (3), when @ only depends on the local energy density,
can be written' ' ' ' ' [e.g., Eq. (A8)]

2

Y, =C a,f l
dE
dx

L e

U g(x) . (9)

Here x is a ratio of the cohesive energy density to the ini-
tial energy density in the cylinder

x =(n U)/(bE/2vrk, ,po) =n. '
(2A,,po/50),

where po is the initial cylindrical mean width. As x —+0,
g —+1, so the yield is quadratic in X, at small po or small
A,, [Eq. (A10)]. (Johnson evaluates C for a line of spikes
truncated at the surface; analytic expressions are given in
the Appendix. )

Brown et ah. used po=k, , +b, where b is the Bohr
adiabatic radius for the incident ion (for the He ion
speeds, b is about 0.5l). The yield ratio for this choice of
po and for p0=0 are given in Fig. 4(a) for both Maxwelli-
an and 5-function distributions in the standard model
given in the Appendix [Eq. (A9)]. The N2 data, which
have less scatter, are used for comparison since the mea-
sured N2 and Oz yields are not as consistent with each
other when displayed as in Fig. 4(a) as they were when
the parametrization in Fig. 2 was used. The calculated
yields for these po are seen not to represent the data.
Better agreement is obtained by choosing an average po,
independent of A,„as in Fig. 4(b). For the Maxwellian
distribution the value of p0=4. 1I gives a reasonable fit.
This is larger than the intrinsic spike radius b,o (-2. ll),
the Bohr adiabatic radius, and the spike spacings in the
transition region (-31). For the yields calculated with
the 5-function distribution, po= 1.6l, about a third of that
for the Maxwellian distribution. In both cases po is some
average of 6(0) and r of the previous calculation.

Yi

FIG. 4. F/ Fl with F= Fl + Yc where Fi ~s t e linear y
and Y, is the cylindrical spike yield of Eq. (9). Solid lines are
the Maxwellian model, and dashed lines are the 5-function mod-
el (see the Appendix). Data shown for N2 (x). (a) Calculated
yields for zero width and darker lines for po=(A, , +b ). (b) Cal-
culated yields for fixed po (4. 1l =260, Maxwellian; 1.6l =3ho/4,
5 function).

VII. SUMMARY

In this paper we first examined the measured yields for
electronic sputtering of N2 and O2 and then calculated
the transition in the yield from being linear in A,, to be-
ing quadratic in k, . This was done using a statistical
distribution of spikes in which each spike is initiated by a
repulsive decay event. The driving energy of each spike
was assumed to be the same in the linear and quadratic
regimes, so that the efFect of the overlap of the spikes
with decreasing average separation is a more complete
use of the released kinetic energy.

The laboratory data indicate that excitation transport
is small and that primary ionization alone cannot explain
the yields, so that excitations produced by the secondary
electrons also contribute to sputtering. The linear regime
can be described by minicascades using 512% for N2
and 5 37%%uo for Q2 of the total electronic energy deposited
in the surface region, corresponding to net average ener-
gy depositions DE~4.4 eV and ~12 eV, respectively.
The excitation transport (aFecting a, ) and the W value in
the solid are the most uncertain parameters for determin-
ing these energies. Both efFects tend to lower the value of
AE. The upper limits are somewhat larger than AE given
by Brown and co-workers' and Ellegard and co-
workers; ' the earher values of Rook, Johnson, and
Brown are comparable if a, =1. The AE for N2 is
roughly consistent with the ejected particle energies mea-
sured by Pedrys et al. , suggested to involve an average
of a number of processes of difFerent energies.

In describing the linear-to-quadratic transition in elec-
tronic sputtering, processes that depend on the excitation
density could, in principle, be important, as suggested for
CO, such as the cooling of secondary electrons, ' radia-
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APPENDIX

Calculatioa of hz

A number of related expressions for b,z are in the
literature. ' " ' For collision cascade sputtering, by
a point source

Az =5(3/2~ )(bE/U)/(n ad ), (A 1)

tive losses, and new nonradiative pathways. Also, lower
energy events, ignored in the linear regime e.g. , vibration-
al excitation, could, in principle, participate in the
sputtering. However, the agreement with the data for the
calculations performed here, in which such changes were
ignored, indicate that over the (dF. /dx), range covered
additional energy sources are not needed in the quadratic
regime. The local energy density at the surface was used
to calculate the yield employing a surface flux determined
by either a Maxwellian or a "5-function" distribution of
energies in the "minispike" associated with each excita-
tion. For comparison, the ad hoc model of adding a
linear yield to a "cylindrical spike" yield was also calcu-
lated using these two energy distributions. The use of the
5-function distribution in the statistical calculation gave
the best agreement with the two data sets. The steepness
of the linear-to-quadratic transitions observed in the elec-
tronic sputtering yield for Nz and 02 requires that the
events be radially distributed about the incident ion path.
Larger radial distributions are required for the broad
than for the narrow spikes due to the unrealistic, high-
energy tails in the energy distribution of the former, as
reflected in the expression for surface flux N. The mean
radial distribution ( —1.2l for the 5-function spikes) is
also consistent with very little excitation transport prior
to nonradiative relaxation, unlike what was found for
solid Ar (Ref. 6).

The calculations described here show that a model
based on randomly distributed spikes that produce sub-
limation can be used to describe the linear-to-quadratic
transitions in the electronic sputtering yield for N2 and
Oz. Earlier it was shown analytically that the depen-
dence of yield in the quadratic regime on angle of in-
cidence could be described by a sum of such spikes. It
is also seen here that the measured sputtering yields can
be used to place constraints on the conversion of the elec-
tronic energy deposited into kinetic energy, the extent of
excitation transport, and the description of the energy
distribution at the surface.

and Brown' used 6=1 for the minicascades associated
with repulsive relaxation. For condensed gases the
species leaving is, predominantly, whole molecules, there-
fore in Ref. 1 the molecular number density was used for
n in Eq. (Al) with o dan and 5=1, so that
(c/n o.d)=0. 15l in Eq. (6), 1 =n

Reference 1 used the earlier Sigmund ' value of o.
d for

atomic rare-gas solids, whereas molecular dynamic simu-
lations for low-energy cascades in Ar gave Eq. (Al)
with o.d=n, consistent with recent estimates. As
atoms were only ejected from the surface layer, Eq. (Al)
can be written in terms of the size of the monolayer, I,
and an ejection probability, giving

bz =P, l, P, =c'(bE —U)/U, (A2)

Spike models

Spike models begin by solving of the diffusion equation

BE
at (A3)

where we write E as the average kinetic energy of the
molecules at a point in a material of constant density.
This is often described as a temperature implying ther-
modynamic equilibrium. In other papers we have con-
sidered the quantity n E instead. ' ' ' To obtain the
sputter flux, N, one needs to make an assumption about
the energy spectra. An Arrhenius activation barrier as-
sociated with a Maxwell-Boltzmann kinetic energy distri-
bution is used, as is a 5-function energy distribution, in
which each atom has the average local energy, E. If the
flux at the surface only depends on the radial position p,
and time, t, via the value of E at the surface, ' ' the
yield for a spherical spike at depth z is calculated as

Y(z)= f d p f dt N(E, (r, t)), (A4a)

where r =p +z and E, is the average energy from Eq.
(A3) evaluated at the surface. For the cylindrical spike in
Eq. (3),

~ith od n —- ~, c' is equivalent to c in Eq. (6). &n the
simulations for Ar (Ref. 33), c'=0. 15; for Nz (Garrison,
private communication) c'=0. 1; and for an amorphous
02 sample, c'=0. 13. In the text we use c'=0. 14.
Schou co-workers, "used Eq. (Al) to describe diatomic
molecular ejection by considering atomic ejection. "
Therefore, they use —,

' of Eq. (Al) for the molecular yield
(as two atoms need to be ejected per molecule) and as-
sumed 5= —,

' with o.
d equal to Sigmund's old atomic

value. The product Un in Eq. (Al) is the same for the
molecular values and atomic values, so (c/n o d ) =0. 141
for N2, giving fortuitous agreement in the overall quanti-
ty although the cross sections and 5 are different.

when AE ))U. The factor 5 accounts for a depletion in
the effect of the cascade due to the presence of the sur-
face, n is the number density, and o d is the transport
(diffusion) cross section for the material. Sigmund ' uses
6= —,

' and o.d-—3.6 A for monatomic metals. Johnson

Y, =f d p f dt 4(E, (p, t)) .

The surface flux for the Maxwellian model is

@=@oy~exp( —y ')

(A4b)

(A5a)
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n U

[1—(U/E, )] for E, & U, (A5b)

with y =kT, /U, EakT, and 0& is determined by the va-

por pressure, the mass of the molecule, M, and the heat
capacity. For sublimation the exponent p from the vapor
pressure relation varies slowly with the temperature.
Here we use the p= —1/2 (Ref. 39), but the results
shown are relatively insensitive to this power when taking
the ratios of yields. We also use E=C„kT with the di-
mensionless heat capacity, C„equal to —, (i.e., no equili-
bration with vibration and rotation). For the 5-function
distribution,

In these equations @0comes from Eq. (A5a) and C, is di-
mensionless. Also note that (b.o/1, , ) is proportional to
f, (dE/dx), . The results in Eqs. (A8a) and (ASb) are
linear and quadratic, respectively, in k, . The linear re-
gion, however, shows a somewhat faster scaling with hE
than found in the simulations. ' Therefore, we display
the ratio of I'to I'i versus b,o/A, „which is only weakly
dependent on the choice of b.E and a, /C„.

For the "standard" model in Sec. VI the "heated" re-
gion behaves like a high-temperature gas, 39 45 46

Ic —E Ko (i.e., v not constant) and the cylinder is
infinite giving

Xexp[ r, /b, (t) )l—b, (t) (A6)

with b, =4N;(t +to) and r, =[(p—p, ) +z,. ]. Here p, and
z, give the locations of the spike, b, (0)=(4xto)'i is the
initial radius, and a, is a parameter that depends on the
ability of the surface to rellect energy (a, =1 for no
reflection and a, =2 for perfect reflection ). The param-
eter 60 [b,o=b.E/(n Uvr )] used below is that spike
radius for which E=U at r; =0. For a distribution of
spikes [viz. , Eq. (la)] the yield is calculated

Yt[r„rz, . . . ]=f d pf

dt's

QE, (r;, t) . (A7)

This results in the following limiting forms for the aver-
age yield, which we used to test our calculations. Assum-
ing the track of events is perpendicular to the surface and
(b,o/A, , )~0 (i.e., large spacing),

5/3
@40 a,

Y—+ Yi=
12~ C,

I ( —', —p)l (-,' )(-')' '(b, o/A, , )

( Maxwellian ),
1/2

3&nm 77 U
6 a, (b,o/1, , ) (5 function) .182' 5M

with U=(2E/M' ), assuming an isotropic velocity dis-
tribution and escape limited by planar binding. (Spheri-
cal binding may be more appropriate, ' but this does not
affect the yield ratio. ) These 4& are used in the statistical
calculation as described in Eqs. (1) and (2) with
E, =g, E, (r; ) (Refs. 3 and 22).

For ~ constant in Eq. (A3), this gives the spike in Eq.
(8), normalized to bE (=f n E(r, t)d r),

E,(r;, t)=a, (bE/m n )

[e/b, (t) ][1—p /36(t) ], p&(3)' 2b, (t)
E(p, t)= '

0, p & (3)'i b(t),

with e=bE/~ N, with N=I (4)&3/I'(9/2). (Note in
Ref. 40, p. 188, I ( —,

' —5) should read I ( —,
' —5 '

),
' = —3 here. ) For this case b (t )= [14zo(t + to )e' i /3] i . . The general form for the cylin-

drical spike yield [viz. , Eqs. (3) and (A4b)], like that in
Eq. (9), results in

2
dEI'=c(o /U ) g(x),
dx (AS)

I'=$1'I g(x) . (A9)

Here Yl is the linear yield [YI=(c/n od U)(dE/dx), tt].
For the Maxwellian C =0.02 in Eq. (9), 13= 1, and for the
5-function distribution C =0.008, @=0.4 if o d =l . The
width functions are

based on 4&0=n Ul(2vrMU)'i with p =
—,
' in Eq. (A5a),

E=—,
' kT and ~=av /no. . For the fastest power-law in-

teraction the appropriate transport cross section is such
that o =crd, and a =0.6. Here g(x) depends on the ini-
tial width po [i.e., x =2vrk, ,pole i bo]. Equation (A8)
can be written in terms of the square of linear yield
of Eq. (7), using (dE /dx), tt= ct,f, (dE /dx ), and
(c /n o d ) =0.15I; then the quadratic yield is proportion-
al to the square of the linear yield,

(ASa)

For p; « bo (i.e., spikes in a line) and (b.o/A, , )~ oo (i.e.,
close spacing, a cylindrical spike), using Refs. 5 and 22

2m. N0
I (2 —p)(a, bo/C, A,, ) (Maxwellian),

32KY~.
~ nm 2U

(a, b,o/k, ) (5 function) .
480sc

(ASb)

1 x' f "d—t e '/t f dt e 't, —
X 0

( Maxwellian )

1 —9x +x [8—61n(x)], 0&x & 1

(5 function)

(A 10)

For the Maxwellian g (x) is evaluated in Refs. 39 and 46
[in Ref. 45, p. 242, g (x) (there 1 —g) is printed incorrect-
ly).
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