
PHYSICAL REVIEW 8 VOLUME 44, NUMBER 14 1 OCTOBER 1991-II

Theory of the phase diagram of iron and thallium:
The Burgers and Bain deformation mechanisms revised

V. P. Dmitriev and Yu. M. Gufan
Institute ofPhysics, Rostou State Uniuersity, 344104 Rostou on Don, U.S.S.R.

P. Toledano
Laboratory ofPhase Transitions, Uniuersity ofAmiens, 80000 Amiens, France

(Received 10 October 1990)

A theoretical model is proposed for the pressure-temperature phase diagram of iron and thallium. A
unified phenomenological and atomistic description is given for the Burgers and Bain deformation mech-
anisms. The bcc-hcp and bcc-fcc transformations are associated, respectively, with six- and two-
dimensional order parameters, which are expressed as periodic functions of the atomic displacements.
The fcc-hcp transformation is interpreted as a displacive transition between two low-symmetry phases.
A thermodynamic potential describing the three preceding transformations is constructed, and the cor-
responding theoretical phase diagram, including the triple point, is worked out. It is compared to the
experimental phase diagrams of iron and thallium.

I. INTRODUCTION

In a series of recent papers, ' a theory of reconstruc-
tive transitions was developed by the authors of this
work, in which two main classes of transitions were dis-
tinguished: (1) Transitions for which the mechanism can
be formulated in terms of atomic displacements. For this
category of transitions it was shown' that the order pa-
rameter can be expressed as a transcendental function of
the average displacements which occur at the transitions.
As standard examples, the bcc-to-hcp and bcc-to-fcc
transformations were considered. (2) The martensitic
fcc-to-hcp transformation for which it was shown ' that
the two phases could be interpreted as the result of order-
ing mechanisms from a disordered latent parent structure
formed by hexagonal polytypes.

In crystals of the elements Ba, Tl, Fe, and Yb, the
three (fcc, bcc, and hcp) phases are found to coexist and
to merge at a triple point. In such a situation, it is of in-
terest to determine which of the mechanisms —displa-
cive or reordering —dominates and how they coexist in
the vicinity of the triple point. The aim of this paper is to
present a comprehensive description of the corresponding
phase diagrams and to show that the fcc and hcp phases
can actually be obtained from independent displacive
mechanisms from the common parent bcc structure,
whereas no reordering mechanism takes place in this case
at the fcc-to-hcp transformation.

The paper is organized as follows. As a preliminary
section, a unified phenomenological and atomistic
description is given (Sec. II) of the two classical mecha-
nisms, i.e., the Burgers mechanism and the Bain defor-
mation, which are currently associated with the bcc-hcp
and bcc-fcc transformations. The theoretical phase dia-
gram, which includes the three distinct phases, is then
worked out (Sec. III) and compared to the experimental
pressure-temperature phase diagrams which are available

for iron and thallium' (Sec. IV). The experimental data
concerning Ba and Yb will not be discussed because only
narrow regions of their phase diagram are known with
accuracy.

II. UNIFIED BESCRIPTION
OF THE BURGERS MECHANISM

ANB BAIN DEFORMATION

A. Burgers mechanism reformulated

The mechanism generally assumed for the bcc-to-hcp
transformation is the so-called Burgers mechanism. It
can be divided into three stages [Figs. 1(a) and 1(b)]. In
the first stage the (110) bcc planes transform into the
(001) hcp planes. Second, a homogeneous shifting of the
atoms in the (110) bcc planes leads to a virtual fcc struc-
ture. Third, the displacement of one out of two planes in
the [110]bcc direction leads to the formation of the hcp
structure. Accordingly, Burgers' mechanism involves
three different and simultaneous instabilities associated
with distinct primary (symmetry-breaking) order parame-
ters.

In contrast to the preceding scheme, we propose a
transition mechanism based on a single primary order pa-
rameter, which consists in an antiparallel shifting of the
atoms lying in the (110) bcc planes along the [110] and
[110]bcc directions [Fig. 1(c)]. It induces, as a secondary
effect, a compression of the cubic unit cell along one of
the fourfold axis [001], and a simultaneous decompres-
sion along the two other ([100] and [010]), fourfold axes.
A more concrete view of the assumed mechanism at the
atomistic level is shown in Fig. 2. Each (110)bcc layer is
organized in such a manner that, in any triangle formed
by neighboring atoms, two sides are formed by atoms
which touch each other, and the third side is formed by
separated atoms [Figs. 2(a) and 2(b)]. It is on the third
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FIG. 1. Projection of the bcc and hcp unit cells on the (110)
bcc plane. Solid and open atoms are, respectively, in positions

and 0. (a) Initial bcc structure. (b) hcp structure following

Burgers mechanism: the atoms denoted 1, 2, 3 are shifted along
the same [112]~„direction. (c) hcp structure following our
mechanism: the displacements are along the [110]„„direction.
The deformation along [001]~„is induced by the shifting of the
open sublattice.

ments, ' the distance between the atomic layers parallel
to (110)&«or (001)h, remains practically unchanged
from the bcc to the hcp phase.

Let us now emphasize that the hcp phase is not a fer-
roelastic phase in the usual sense, as its space group
[D6& (P63/mme), Z =2] corresponds actually to an en

largement of the ferroelastic group Dz& (Cmcrn, Z =2)
induced by the IR v4(k9 ). The mechanism of the enlarge-
ment of the orthorhombic to a hexagonal symmetry is
represented in Figs. 3(a) and 3(b). Qne can see that, for a
general shifting of the atoms along the [110]bcc direc-
tion, the 0& symmetry is lowered to Dz&, but for the
specific shifting a&2/12, where a is the cubic lattice pa-
rameter, the symmetry increases to D6&. In projection in
the (110)bcc plane, one can verify that, after such a large

side that the atoms of the next layer are located. The dis-
placement of one layer with respect to the following one
in the [110] bcc direction (i.e., the shifting of each atom
of the upper layer towards the center of the correspond-
ing triangle, which is formed by the atoms of the lower
layer) allows the separated atoms to come in contact, and
thus to form a regular double-layered hexagonal-close-
packed structure. The reverse sliding of one close-packed
layer with respect to the next layer, at fixed interlayer dis-
tance, breaks one of each of the three pairs of atoms
touching each other, again forming a bcc lattice.

In the formalism of group theory, the primary order
parameter in our mechanism transforms as the irreduc-
ible representation (IR) denoted ~&(k9 ) in the Kovalev no-
tation, "which is a six-dimensional IR of the OJ, (Im 3m)
space group, at the N point of the bcc Brillouin zone

[k9 (p —,',0)]. The secondary order parameter (the de-

formation) has the symmetry of the two-dimensional IR
of the Oh group at the I point (k =0), which is spanned

by the two combinations of strain-tensor components

1.—(e „+e~~—2e„)
&6

and

1gz=,—(e „—e~~) .~2
In other words, the bcc-to-hcp transformation is inter-
preted as an improper ferroelastic transition. ' The im-

proper character of the spontaneous strain is attested ex-
perimentally by the fact that, in crystals of the ele-

(a)

(a)

(b)

(c)

0

0
(J

10j

8

6

T

L

r

8

,d

bcc hcp bcc hcp

FIG. 2. Atomic model illustrating the improper character of
the macroscopic deformation, induced by the atomic displace-
ments represented by arrows. (a) Projections of the bcc and hcp
structures, respectively, on the (001) bcc and (110) hcp planes.
d is the interatomic distance. (b) Projections of the bcc and hcp
structures, respectively, on the (110)bcc and (001) hcp planes.

FIG. 3. Average shifting of the atoms from the bcc to the
hcp structure. The displacements are symbolized by arrows.
Solid and open circles represent atoms located in two adjacent
layers. (a) The small cube (thick lines) is the bcc unit cell. The
large cube is an extended unit cell obtained when all the
branches of k9 are active. (b) Projection on the (110)bcc plane.
The shifting from the bcc (large circles) to the hcp structure
(small circles) is a&2/12. The open and solid stars correspond
to virtual positions at which the symmetry would increase re-
spectively to Oz and D6h. (c) Projection on the (110)bcc plane.
After the shifting, the angle between the diagonals becomes 60 .
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FIG. 6. Periodic character of the bcc-fcc Bain deformation of
the iron unit cell, viewed by our considering the angle between
the diagonals in the (110)cubic plane.

angle p up to p =109 28' brings about the crystal again to
the bcc (Ot, ) symmetry, but with a different orientation
with respect to the initial bcc structure. Besides, for the
values /=60' and 120', one obtains a hexagonal lattice,
which prefigures the hcp phase (Fig. 6). The dependence
of the order-parameter modulus in function of the angle
can be written here:

sin 6P ———cos(6 arccos —') (4)

0'„

g" 4f
4h
37

118 (P(r~d)
6

The variation of the function g(P) is shown in Fig. 7(a).
One can notice that, in contrast to Eqs. (2) and (3), the
variation law represented by Eq. (4) does not hold for any
value of P, as P represents an absolute measure of the an-

gle between the diagonals and is thus restricted by the
following constraints: (1) The argument of q(P) should
be limited as it expresses the macroscopic deformation of
a crystal. (2) After reaching the value /=90', a close-
packed fcc structure is formed and a further deformation
of the unit cell along the [100]&„~~[110]t„directions is

impossible, at least if one assumes a hard-sphere model;
as in the preceding directions, close-packed chains of
atoms are formed with atoms in contact with each other.

In order to remove the preceding restrictions, one

should express the order parameter as a function of the
average displacements of the atoms. This brings us to an-
alyze the atomistic mechanism which underlies the Bain
deformation, inspiring ourselves from the shearing defor-
mation model currently proposed for the bcc-to-fcc trans-
formation. ' According to this model, the structural sta-
bility of the bcc structure is lowered with respect to an
homogeneous shear strain of the (011) planes in the [011]
directions, which gives rise to a fcc structure. An experi-
mental support to this interpretation is the decrease of
the shear modulus C&&-C&2 observed in a number of bcc
metals when approaching the fcc phase. In reference to
Figs. 5(a) and 5(b), we can propose the following path
which materializes the preceding macroscopic mecha-
nism at the atomistic level: (1) the layer containing the
atoms labeled 7—12 is shifted by a&2/6 in the [011]bcc
direction, the atom in 0 position reaching the center of a
triangle formed by the atoms denoted 8, 9, and 11; (2) the
next layer, formed by atoms 1 —6 will be subsequently
shifted by a V'2/3 (this will place each atom initially in 0
position, at the center of the corresponding triangles of
the following layer); (3) at last, a shifting of the third lay-
er by a&2/2 will force the atoms located in this layer to
occupy equivalent positions, i.e., the corner atoms (0,0)
will lie on a straight line passing by the centers of the tri-
angles 8, 9, 11, and 2, 4, 5 and orthogonal to the three
successive layers. Hence, the layers containing the atoms
labeled 0 in Figs. 5(a) and 5(b) will be equivalent crystal-
lographically, i.e., the resulting structure will consist of a
three-layered close-packed structure (a fcc structure)
since the shears will have eliminated the repulsive effect
of one layer with respect to the neighboring ones.

Let us stress that the hereabove mechanism proposed
for the Bain deformation is closely analogous to the
Burgers mechanism, as both mechanisms preserve the in-
terlayer distance and thus the repulsive effect of one layer
with respect to the others. The essential difference is
that, in the bcc-to-hcp transformation, two successive
layers are assumed to shift in opposite directions, i.e., the
displacements are associated with a soft mode at the sur-
face of the bcc Brillouin zone, whereas for the bcc-to-fcc
transformation, two successive layers are sheared in the
same direction, and thus correspond to a zone-center soft
mode.

In agreement with the atomistic mechanism introduced
for the Bain deformation, one can rewrite the dependence
of the order parameter g as a function of the displace-
ments g along the [011]direction as

lip
f, o rI = riosin(3n. g/a &2) . (5)

og
h

O5
h

Equation (5) is represented in Fig. 7(b). The function (5)
is, in contrast to the definition given by Eq. (4), now valid
for infinite displacements, at least when taking into ac-
count the cyclic conditions related to the periodic charac-
ter of the lattice.

III. THEORETICAL PHASE DIAGRAM

FICx. 7. Periodic dependence of the order parameter for the
bcc-fcc transformation following (a) Eq. (4) and (b) Eq. (5).

Let us now deal with the thermodynamic description
of the Burgers mechanism and Bain deformation. We
will first work out the diagram associated with each one
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of these two transformations, then the situation in which
the two mechanisms are coupled, i.e., where the three
phases have regions of coexistence, will be considered.

According to Sec. II, the order parameter (g; ) associat-
ed with the bcc-to-hcp transition transforms as the six-
dimensional IR r4(k9) of the Oi, space group. Using the
results of Ref. 12, one has the corresponding order-
parameter expansion:

where

6

Ji=X 0,'

g2g2+ g2g2+ g2g2

J3= & 0,'NJ
—J2

and

J4 0i 020344+ 01020506+03040506

Expansion (6) has been restricted to the sixth degree,
which is the lowest degree required by the first-order
character of the bcc-to-hcp transition. The equilibrium
condition realized for the stabilization of the phase of or-
thorhombic symmetry D zz is'

Following the denomination used in Ref. 1, the hcp
structure is a non-Landau phase, i.e., a phase which is
stabilized only because a periodic nonlinear dependence
of the order parameter as a function of the displacements
is taken into account. The order parameter has a con-
stant value below the transition, as it corresponds to
specific fixed displacements. This is in contrast with the
Landau phase of symmetry D2h, which has a standard
temperature- dependent variation below the transition.

The phase diagram associated with the potential F, (g)
is represented in Fig. 8(a) in the plane of the phenomeno-
logical coeflicients (a i, a2). One can see that the bcc and
hcp phases are separated by a line of first-order transi-
tions which is bounded by two limits of stability lines in
which the two phases coexist. The orthorhombic phase is
separated from the hcp phase by a line of second-order
transitions and can be reached from the bcc phase either
across a second-order transition line (a i =0) or through a
line of first-order transitions (ON). Point 0 is a tricritical
point. In order to have a line of first-order transitions be-
tween the hcp and Dzh phases, F, (g) should be expanded
up to the eighth degree. Figure 8(a) illustrates a general
property of phase diagrams containing Landau and non-
Landau phases, that has been established in Ref. 2, name-
ly, that the boundary of non-Landau phases are hyper-
planes in the n-dimensional space of the phenomenologi-

„a (arb.uni&s)

g, =/%0, f2=, . =$6=0 . (7)
9

The introduction of (7) in (6) yields the e+ectiue thermo-
dynamic potential for the bcc-to-hcp transition:

(8) D4

I

o a (arb.unirs)2
17
2h

where g is given by Eq. (3). The equation of state ob-
tained by a minimization of F] with respect to the dis-
placements g is

BF,
=g(a, +a2( +a3P) =0 . (9)

It leads to the three possible stable states which have
been visualized in Fig. 4(b), namely: (1) Two differently
oriented domains of the bcc phases for /=0. The two
domains correspond to the respective sets of displace-
ments along [110]: /=0, a 3&2/3, 2a v'2/3, . . . , and
g'=a&2/6, 5a&2/6, 9a+2/6, . . . , and can be deduced
one from another by a rotation of 90 around [110].
(2) Two analogous domains of the hcp structure
for Bg/Bj =0, i.e., for g'= a &2/12, Sa v'2/12,
9a&2/12, . . . , or g=3a&2/12, 7a&2/12, . . . . (3) two
domains of orthorhombic symmetry D z& for

L

17 /05 x p4h
h

/
/

O5
b2

a+ (a 2
—4a, a3 )

2 1/2

2Q3

corresponding to general displacements along [110].

FIG. 8. Phase diagrams obtained by minimization of the
thermodynamic potential (8) for the (a) bcc-hcp transformation
and of potential (10) for the (b) bcc-fcc transformation. Solid,
dashed, and dash-dotted lines are, respectively, first-order,
second-order transition lines, and limit of stability lines.
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cal coefticients, i.e., a straight line in the present case
with n =2, and that the hyperplanes are tangent to the
boundary of stability of the Landau phases (here at point
R).

The bcc-to-fcc transition is associated with the two-
component order parameter given by Eq. (1). From the
corresponding IR at the center of the bcc Brillouin zone,
one can construct the following order-parameter expan-
sion:

I ~

1

hcp

b) b2 b3
F2(q)=F20+ g + g + -g4, (12)

where the dependence of g as a function of the displace-
ments g is given by Eq. (5). The equation of state is

8'g
rI(b, +b~g+b3T)~) =0,

which again provides three possible stable states: (1) the
bcc phase for g =0, with two differently oriented domains
associated with the respective displacements
(/=0, 2a&2/3, . . . ) and (/=a&2/4, a&2, . . . ); (2) the
fcc "non-Landau" phase for Bg/Bg=O with two domains
turned one with respect to the other by 90' around the
cubic axis [110] and corresponding, respectively, to the
shifts (a& 2/6, Sav'2/6, . . . ) and (a+2/2, 7a+2/6); and
(3) the tetragonal phase of symmetry D4t for

b2+(b2 4b—,b3)'—

which takes place for a general (nonspecific) displace-
ment.

The phase diagram corresponding to the potential
F2(g) is given in Fig. 8(b). One can verify that the two
differently oriented fcc domains are separated from the
parent bcc phase by straight lines of first-order transi-
tions (XM and N'M'), which are tangent at
(b, =0, b2=0) to the second-order transition line which
limits the bcc and tetragonal phases. These latter phases
can be reached from the fcc phase across a line of
second-order transition.

In order to investigate the region at which the three
(bcc, hcp, and fcc) phases merge, one should use the ther-
modynamic potential:

F(g, rl) =F,(g)+I', (r))++3(g, rj), (14)

where F3(g, g) is the coupling free energy between the
order-parameters g and g. Following a standard pro-

e
2( 91& 92) F20+ ( /1+ 92)++(91 9192)2

~2 22+ (rj, +g )+
2

which contains a cubic invariant. The equilibrium condi-
tion realized in the tetragonal phase of symmetry D4& is'

q, =g&0, q2=0,
so that the effective thermodynamic potential associated
with the bcc-fcc transition takes the simplified form

FIG. 9. Phase diagram associated with the potential (14) in
the region of the triple point. Solid and dash-dotted lines are
first-order transition and limit of stability lines.

cedure, ' the lowest-degree coupling terms are found to
be

g(a, +a2$ +a, P+25qg+yg ) =0,2 a

1

(b, g+b2q +b3rl +g' +ygg ) =0 .97)'

2

(16)

(17)

Restricting the discussion of Eqs. (16) and (17) to the
region in which the three phases are close to the triple
point, one obtains the phase diagram of Fig. 9. A more
striking feature of this diagram, which contains the two
non-Landau hcp and fcc phases, is that all the transitions
and limits of the stability lines are straight lines. Thus,
the equations corresponding to the lines of first-order
transitions are a, +az+a3 =0 (bcc-hcp), b, +bz+ b3 =0
(bcc-fcc), and a, +a2+a3=b, +b2+b3&0 (fcc-hcp).
The preceding lines intersect at the triple point T,
whose coordinates are in the (a &, b &

) plane:
(
—a2 —a3, —b2 b3). The equ—ations corresponding to

the limit of stability lines are a& = —y —5 (for the bcc
into the hcp phase), b, = —(3bz+b3) (for the fcc into the
bcc phase), b, = —y (for the bcc into the fcc phase) and
a, = —(2az+a3) (for the hcp into the bcc phase).

IV. DISCUSSION AND CONCLUSION

The pressure-temperature phase diagram of iron is
schematized in Fig. 10(a). At atmospheric pressure, iron
crystallizes from the melt into the bcc structure (5-Fe)
and at lower temperature transforms into the austenite
fcc phase (y-Fe) and again into a bcc structure (a-Fe).
With increasing pressure, a triple point is found at
I', =97 kbar and T, =450'C, at which the y and o, phases
merge with the hcp E phase. The diagram of Fig. 10(a) il-
lustrates the following features of our model

(1) The 5 and a bcc phases can be interpreted as the

I'3(P n)=5n0'+
2 nV

Denoting g, and $2 the independent displacements associ-
ated, respectively, with the bcc-hcp and bcc-fcc transfor-
mations, minimization of F(g, g) with respect to g, and

g2 yields the equations of state
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two differently oriented structures predicted from the
periodic dependence of the order parameter, as represent-
ed in Fig. 6. No available data allows one to compare the
different orientations assumed in our model for the 6 and
a structures. A diffraction spectrum of the two phases
should provide such a verification since cycling across the
transition should progressively lead to a replacement of
twofold positions (e.g. , in the cubic direction [110])by a
fourfold diffraction pattern.

(2) The virtual pseudohexagonal tetragonal phases,
denoted E' and c,

" in Fig. 6 (i.e., a tetragonal lattice with
60 angles between the diagonals), prefigure the formation
of the hcp c phase, as the D4& symmetry of the c.

' and c"
phases was shown in Sec. II to transform into D6& for
specific displacements.

(3) The metastable regions of the bcc phase into the fcc
and hcp phases, shown in Fig. 9, have been verified by
Ponyatovskij' who observed an overcooling of the bcc

FIG. 10. (a) Schematic representation of the phase diagram
of iron from Ref. 9. The P phase has a bcc structure and differs
from the o. structure only by its magnetic ordering. (b) superpo-
sition of the experimental points, given by Jajaraman et ah.

(Ref. 10) for the phase diagram of thallium and of the best fit de-

duced from the theoretical diagram of Fig. 9, after a linear tran-

formation of the (al b&) plane into the pressure-temperature

plane.

phase into fcc and hcp iron.
(4) The lines separating the phases in Fig. 10(a) are

drawn from an insufhcient number of experimental
points in order to illustrate conclusively our theoretical
prediction that they should be straight lines. In contrast,
the phase diagram of thallium, measured by Jajaraman
et al. ' in the vicinity of the triple point, clearly confirms
this property. In Fig. 10(b) the experimental points given
by these authors are superposed to be theoretical curves
calculated for the transition and limit of stability lines. A
linear transformation of the (a i, b, ) plane into the
pressure-temperature plane has been performed for com-
parison with experiment. One can verify in Fig. 10(b)
that a very good fit is obtained between the theoretical
lines and the experimental points.

In conclusion, let us stress that, in the framework of
the model presented in this paper, the fcc-to-hcp trans-
formation is interpreted as a displacive transition be-
tween two low-symmetry phases which are both derived
from a common parent bcc structure. This interpretation
is at variance with the one recently proposed by us for
the fcc-hcp transformation in Co and He. The experi-
mental data available for crystals of the elements ' actu-
ally reveals that two classes of fcc-hcp transitions should
be distinguished.

(1) A first class pertains to the fcc-hcp transition in
He, He, Co, Pb, La, Ce, Pr, Nd, Sm, and Am. Here,

only one of the two phases (fcc or hcp) is adjacent to the
bcc phase (at least when this latter phase is found in the
phase diagram). In this case, as shown in Ref. 3, one can
interpret the fcc-hcp transformation by a reordering
mechanism, the parent phase being formed by an hexago-
nal disordered polytype structure, as it is observed, for
example, in cobalt. '

(2) A second class contains the elements, namely Fe,
Tl, Ba, and Yb for which the two fcc and hcp phases have
a region of coexistence with the bcc phage. For this case,
which has been discussed in the present paper, two in-
dependent displacive mechanisms from the bcc structure
provide a coherent interpretation of the entire phase dia-
gram.

Although the distinction between the two preceding
classes of fcc-hcp transformations may appear as arbi-
trary, one must keep in mind that, when dealing with
strongly first-order transformations, one cannot discrim-
inate a displacive or reordering mechanism at or below
the transition, since, in both cases, a jump of the atoms
takes place discontinuously from one equilibrium posi-
tion to the other. In contrast, one can distinguish which
of the two mechanisms is involved by considering the
dynamical effects observed above the transition, i.e., in
the parent phase.
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