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Perturbation approach for the Kondo Hamiltonian
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The bosonized Kondo Hamiltonian is obtained by comparing the long-time limit of the reduced grand
partition function for the impurity spin. We analyze this bosonized Kondo Hamiltonian at zero temper-
ature and derive an effective Hamiltonian describing the effective interaction between the conduction
electrons via an impurity-spin scattering. The infrared divergences encountered in the conventional per-
turbation theory are caused by this growth effective coupling at the low-energy limit. With the Bogo-
liubov transformation, we have developed a perturbation approach for this effective Hamiltonian and in-
vestigated the nontrivial ferromagnetic-antiferromagnetic crossover of the impurity spin. The critical
condition derived here is in agreement with the renormalization-group numerical result. In particular,
the ground-state wave function and its excitation spectrum of the conduction electrons are also obtained.
Moreover, this effective Hamiltonian may be mapped onto a modified quantum sine-Gordon model.
Paralleling the renormalization-group theory of the quantum sine-Gordon model, we straightforwardly
reproduce previous results and derive the higher-order terms and a new universal correction in the flow

equations.

I. INTRODUCTION

The Kondo problem is one of the prominent topics in
both many-body physics and solid-state theory. In the
past two decades, many authors attracted a great deal of
attention to solving this problem characterized by the
growth of an effective coupling at the low-energy limit. '

The principal di%culty is that the relevant low-energy
phenomena cannot be treated in the framework of the
conventional perturbation theory. This implies that the
genuine ground state of the system is radically different
from that of the conventional perturbation theory. ' The
most successful approaches for the Kondo problem are
the renormalization-group numerical analysis and the
Bethe-ansatz solution. But these two methods are not
perturbation theories and cannot tell us what the ground
state of the system is. Thus, it is necessary to know
whether further insight into the Kondo problem may be
obtained from other quantum many-body theories. It is
well known that many phenomena that are difFicult to un-
derstand in the Fermi language have simple explanations
in the Bose language. The main purpose of this paper is
to analyze the Kondo Hamiltonian in its bosonized form
and try to develop a perturbation approach for this prob-
lem. In addition, we also demonstrate the effective Ham-
iltonian describing the conduction electrons to be
mapped onto a modified quantum sine-Gordon model,
and employ the renormalization-group theory of the
quantum sine-Gordon model to investigate this effective

Hamiltonian.
This paper is organized as follows. In Sec. II, the bo-

sonized Kondo Hamiltonian is derived by comparing the
long-time limit of the reduced grand partition function
for the spin, and an effective Hamiltonian describing the
effective interaction between the conduction electrons via
an impurity spin scattering will be presented. In Sec. III,
we will propose a perturbation approach for this effective
Hamiltonian and investigate the nontrivial ferromag-
netic-antiferromagnetic crossover of the impurity spin.
In Sec. IV, we employ the renormalization-group theory
of the quantum sine-Gordon model to treat the effective
Hamiltonian of the conduction electrons. The conclusion
will be given in Sec. V.

II. DERIVATIONS
OF THE BOSONIZKD KONDO HAMILTONIAN

AND THK KFFKCTIVK HAMILTONIAN
OF THK CONDUCTION ELECTRONS

The simplest Kondo problem is concerned with a sin-
gle magnetic impurity of spin —, which interacts with a
band of conduction electrons via an exchange scattering
potential. Since the exchange interaction is assumed to
be pointlike, only s-wave scattering occurs. Expanding
the plane-wave electron states k in spherical waves
around the impurity site, we may characterize the
relevant states simply by the magnitude ~k~ of the wave
vector, which reduces the problem to an essentially one-
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H = T+JS s(0)

can be changed into the following form:

Hx =T+ Kz g (ck tck t Ck tck J)
k, k'

Jq+ g (o+Ck hack t+CJ Ck tck t), (2)

where the conduction-electron kinetic energy (T) is mea-
sured relative to the Fermi energy. The impurity spin is

dimensional problem. For the long-time and low-
temperature limits, the dominant excitations are those in
the immediate vicinity of the Fermi surface and we may
linearize the dispersion relation of the conduction elec-
trons around the Fermi energy. Thus, the usual Kondo
Hamiltonian

S and its Pauli matrix vector is o., with
o+ =(o +io )/2; whereas

s(0)= g c cr c /2
a, o

denotes the effective spin due to the conduction electrons
at the impurity site r=0. The coupling constant J~I is
positive for an antiferromagnetic coupling and negative
for a ferromagnetic coupling, and the sign of J~ is ir-
relevant.

Following the same approach of Anderson, Yuval, and
Harnann, we integrate out the electronic degrees of free-
dom and consider the resulting reduced path integral for
the imaginary-time history of the impurity spin. Then
the reduced grand-partition function for the spin in an
expansion in the number of spin flips caused by the J~
term is derived

n=0

2n

2 0 7~ Tc

d7 $
~ ~

0
exp 2(1 —

pJ~~ ) g ( —1)' ln sin
Pfi

i)j C

m(r; r&)—
PA

+—,'(J~~/2 —1/p)o, g(Ik I
lvrL )'~ (ak+a k )

k

+ gfiuf k a„a„.
k

(4)

Here ak and ak are corresponding Bose operators, and a
cutoff in energy around the Fermi energy cF cuts off the
momenta k around k, with k, =AufleF Physically, .
A/cF may be thought of as the time for an electron to
pass the local impurity spin. In fact, this correspondence

I

where ~, =A/vF is a short-time cutoff. Since the coupling
constants JI~ and J~ have dimensions of energy times
length, the relevant dimensionless coupling parameters
are pJ~~ and pJ~ with p=(2mhuf )

' as the single spin
density of states at the Fermi surface. It is most interest-
ing that this reduced grand-partition function is also ob-
tained in the study of a spin-boson problem with Ohmic
dissipation. Thus, from the point view of the statistics
thermodynamics, the Kondo Hamiltonian is exactly
equivalent to an Ohmic spin-boson Hamiltonian; the bo-
sonized Kondo Hamiltonian is given by

between the two models had been derived from the bo-
sonization procedures. ' Although their methods are cer-
tainly not rigorous, they are relatively simple and it is
easy to understand the relation between the physics of the
two models.

Let us now concentrate on the bosonized Kondo Ham-
iltonian (4). Throughout the following calculations, the
emphasis is on the properties of the conduction electrons
rather than the impurity spin itself. Suppose two con-
duction electrons, both with spin up, try to spin-flip
scatter from a spin-down impurity. The first electron can
spin-flip scatter, but the result is to leave the impurity
with spin up. The second electron cannot spin-flip
scatter because this would violate spin conservation.
Thus, the impurity forces us to treat the conduction elec-
trons as a many-electron system.

In applying the usual canonical transformation,

U, =exp o, (pJ((/2 —1) g(~IIkIL) (ak —a k)
k

to the Hamiltonian (4), we have

H =U H~U)E 1 X

=+A'uf Ik Iakak+(EF /2)(pJj )o„cosh (pJ~~ /2 —1)g (4m /Ik IL )' (ak —a k )
k k

—(E+/2)(pJ& )io sinh (pJ~~ l2 —1) g(4vrlI k IL ) (ak —a k )

where we have omitted an irrelevant constant. The transformed Hamiltonian includes two kinds of interaction terms.
The first is the diagonal interaction term containing o. , which represents the diagonal interaction between the conduc-
tion electrons and the ground state (o = —1) or the excited state (o.„=+1)of the impurity spin. The second is the
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nondiagonal interaction term containing o. , which determines the transition between the ground state and excited state
of the impurity spin. This case is analogous to that of a small-polaron problem. Thus, the nondiagnal interaction term
will be important only at finite temperature and we can neglect it at zero temperature. Then we obtain an effective
Hamiltonian for the conduction electrons:

Hz = QA'uf ~k ~akak —(EF/2)(pJ&)cosh (pJ~~/2
—1)g (4'/~k L )' (ak —a k )

k k
(7)

From the above Hamiltonian (7), we can see that there
exists an effective interaction between conduction elec-
trons via the impurity spin scattering. It is dificult to
find an exact ground state of such a model and we have to
look for approximations. To the zero of

[(pJ~~ /2 —1)(4~/lk lL )'"],

the ground state of this effective Hamiltonian is a vacuum
state, which just corresponds to that of the conventional
perturbation theory. But, we cannot make such an ex-
pansion because the quantity

[(pJii/2 1)(4~/~kIL)'"]

will increase from

frared divergences of the Kondo problem at zero temper-
ature. '

III. PERTURBATION APPROACH
FOR THE EFFECTIVE HAMII. TONIAN

GF THE CONDUCTION KI.ECTRQNS

In order to make an appropriate perturbation expan-
sion, we employ the following Bogoliubov transformation
to rescale the normal-mode coordinates and momenta of
the conduction electron' '"

U2 exp yyk(aka —k aka —k }
k

with

[(pJii /2 —1)(4~/k, L )'i ]

to infinity as k goes from k, to zero. This implies that
there still exists a strong effective interaction between the
conduction electrons at the low-energy limit even though
the coupling constant ~pJ~ is very small. Moreover, it is
this growing interaction that is responsible for the in-

bk = U2a& U2 =akcosh2yk —a k sinh2yk,

bk = U2ak U2 =akcosh2yk —a ksinh2yk,

(bk —b —k ) = U2 «k a k}—U2—

=(ak —a k)exp(2yk) .

We obtain

(9a)

(9b)

(9c)

H~'= g&uf lk
l [bkbkcosh4yk+(bkb k+bkb k)(sinh4yk)/2+(sinh2yk) ]

k

—(EF/2)(pJ~)cosh (pJ~~/2 —1) g(4'/~k ~L)' exp( —2y„)(bk b„) ' . —
k

Then we may expand the hyperbolic function with respect to

[(pJ~~ /2 —1)(4m./~k ~L )'r exp( —2yk ) ].

By normal ordering boson operators and up to

[(pJ~~ /2 —1)(4~/~k ~L )'~ exp( —2yk }],
we have

H&'= &[&uf lk lcosh4yk+(pJ~~ /2 —1)'(4~/lk IL )(8f /2)(pJJ exp( 4yk }]bkbk
k

+ g[fiuf ~k ~sinh4yk —
(pJ~~ /2 —1) (4~/~k ~L )(eF/2)(pJ~)E exp( —4yk }]

k

X(bkb k+bkb k)/2+ QAuF ~k ~sinh2yk ) —( /E2)(pJ~)K,
k

(10)

where we have omitted the interactions between different momentum modes and introduced a renormalized parameter
of the impurity spin-Aip frequency, which is defined by the following overlapping integral:

K = (vac~ U2[U, (o, = —1)][U,(o., =+1)]Univac)

=exp —
(pJ~~ /2 —1) g (2'/~k ~L )exp( —4yk )

k

(12)
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The parameters yk are chosen to diagonalize Hx in (11), and it gives

Hx = &[&Uf lk lexp(4yk )bkbk+&Uf lk l(»nh2yk )']—(sF/2)(pJ& )&, (13)

yk= —,'ln 1+4(pJ~~/2 —1) (2m/L)(E+/2)(pJ&) (14)

Thus, the ground-state wave function of the Hamiltonian (7) is a pairing quasiparticle state U2 lvac &, which will be dis-
cussed in detail at the end of this section. It should be pointed out that, if we calculate the ground-state energy of the
system

Ez= (vacl U2Hz U2lvac&

=(EF/ )(pJ~)exp[ —(p ~~/2
—1) g(2m/lk lL )exp( 4yk)—]+Auf g k sinh 2y„

k k
(15)

with

8 =
—,'(k, /2n. /L (pJii/2 —1) (pJj ) (17)

It is important that, from the self-consistent Eq. (16), the
renormalized impurity spin-fIip frequency can be calcu-
lated, and we can use it to discuss the nontrivial
ferromagnetic-antiferromagnetic crossover of the impuri-
ty spin. For instance, the magnetic impurity appears as a
finite moment as E vanishes. Finishing the integral in

and minimize it with respect to yk, we can also get the
same condition for yk as Eq. (14). This means that the
above ground state of the system makes the ground-state
energy of the system minimize automatically. It can easi-
ly be found that the

[(pJ~~ /2 —1)(4~/lk lI. )'"exp( —2y, ) ]

in condition (14) is convergent for the zero-momentum
mode, and the infrared divergences appearing in the con-
ventional perturbation theory are eliminated due to the
exponential factor. Since the higher-order terms in the
expansion of Eq. (10) is much smaller than the second-
order terms, our approach for this eftective Hamiltonian
is reliable.

Inserting Eq. (14) into Eq. (12), we get
—I /2

& dx—lnK=2(pJ /2 —1) I 1+ —x
0 X a

r

Eq. (16), we obtain

in[/ ~ +(/+It ) ]
1 —a

Considering the usual weak-coupling limit pJl «1, for
(pJ~~)) 0, we always have a nonzero solution of E, and
the impurity spin has been completely screened by its
conduction-electron spins and the whole system is non-
magnetic. While, for (pJ~~ ) &0, we only have a zero solu-
tion of K, which implies the impurity spin is free and the
system appears as a finite moment. Thus, our derived
condition for the nontrivial ferromagnetic-
antiferromagnetic crossover impurity spin is (pJ~~), =0,
in agreement with the renormalization-group numerical
analysis.

In order to give further investigations, it is crucially
important to discuss the ground-state properties of the
effective Hamiltonian (7). First, its ground-state wave
function is

IG &
=+exp[yk(aka —k aka —k )] lvac & .

k

Employing the following useful identity:

(20)

where we have defined another dimensionless coupling
coeScient; that is,

—&a=(pJ /2 —1) .

exp[yk(aka —k aka —k)]=exp[(tanhyk)aka k]exp[[in(coshyk)](1+akak+a ka k)] Xexp[ —(tanhyk)aka k],

(21)

we then obtain

IG &
=Q(coshyk )exp[(tanhyk )aka k ] lvac & . (22)

k

This shows that the ground state of the conduction elec-
trons in the Kondo problem is a pairing quasiparticle
state, which is analogous to the BCS superconducting
state. To our knowledge, it is the first time such a new
ground state was found. According to Eq. (14), we can

see that this ground state will return to that of the con-
ventional perturbation theory when the renormalized im-
purity spin-Rip factor K approaches zero. It is also
proved that the Kondo problem with antiferromagnetic
coupling cannot be treated in the framework of the con-
ventional perturbation theory because the ground state of
the system is radically dift'erent from that of the conven-
tional perturbation theory. When the conduction elec-
trons are in the above pairing state, (22), the ground-state
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energy of the system is

Es = —(s~ l2)(pJi )K

+( e~ /2)( k, L /2~)[(1+IC /B )'~ —1]

(24)

There exists a gap when the momentum approaches zero,
and it will disappear as the vanishing of the renormalized
factor K, which is also related to the fact that the pairing
quasipartical state returns to the ground state of the con-
ventional perturbation theory. This excitation spectrum
of the conduction electrons is similar to that of the BCS
superconducting case.

IV. THE EFFECTIVE HAMILTGNIAN
FOR CONDUCTION ELECTRONS

AS A QUANTUM SINE-GORDON MODEL

The physics behind the effective Hamiltonian (7) ap-
peared to be transparent if we introduced the following
boson-field operators:

II(x)= g( ~
k

~
/2L )' [akexp(ikx )+akexp( ikx )], —

k

(25)

@(x)=i g(2 k ~L )
' [akexp(ikx )

—akexp( ikx )], —
k

(26)

which obey the canonica1 commutation relation

[N(x), II(x')]=i6(x —x') .

Thus, the effective Hamiltonian (7) becomes

H' = J dx [[II +(V@) ]/2 —(E /2)(pJ )5(x)

Xcos[(8~)' (1—PJ((/2)@]] .

(27)

(28)

This is a modified quantum sine-Gordon model in one
spatial dimension. ' ' Therefore, the effective Hamil-
tonian describing the effective interaction between the
conduction electrons may be exactly mapped onto a more
fundamental quantum model.

The behavior of the quantum sine-Gordon model is
well known: a phase transition exists since the coupling
constant is close to a critical value (here the PJ(( ap-
proaches zero), and the renormalization-group theory has
been successfully applied to it. ' Since this theory is
based on the analysis of the divergent behaviors of the
vertex functions (which are confined to the point x =0),

(23)

From the ground-state energy, the conduction electrons
of this system will change from the pairing bound state to
the free state when the coupling parameter (PJ(() or the
renormalized factor K is close to zero. This just corre-
sponds to the above nontrivial ferromagnetic-antiferro-
magnetic crossover of the impurity spin. In addition, we
also obtain the excitation spectrum of the conduction
electrons

the 6 function in the interaction term of Eq. (27) does not
cause any di%culty in our calculations if we parallel this
approach to analyze the nontrivial ferromagnetic-
antiferromagnetic crossover of the impurity spin in the
Kondo problem. First, we introduce an infrared cutoff
factor (m) in order to circumvent the infrared diver-
gences in the conduction-electron overlapping integral on
the renormalized impurity spin-Aip frequency E. In fact,
we only consider the dependence of the high-energy
cutoff cz and use it to set the scale of energies in the
problem. Second, we perform a double-power-series ex-
pansion in the bare spin-Ilip frequency (PJ~)/2 and the
dimensionless coupling constant (PJ(() because spontane-
ous symmetry breaking occurs, leading to a localized re-
gime signaled by a vanishing of IC at (pJ(()—0, as sF~ ao.
Such an expansion sufBces to remove all divergences or-
der by order. Third, by computations of the vertex func-
tions up to the third order (pJi ), the renormalization-
group How equations can be obtained

Z( 1 ) (pJL)(pJ)()+a(pJl)

Z( J ) =2(pJi) +b(PJi) (PJ)()~
II

(30)

V. CONCLUSION

Based on the analysis of the bosonized Kondo Hamil-
tonian at zero temperature, an effective Hamiltonian de-
scribes the effective interaction between the conduction
electrons via an impurity spin scattering. We find that
the infrared divergences encountered in the conventional

with 2a +b a universal number, where the detail calcula-
tions may be referred to the paper of Amit, Goldschmidt,
and Grinstein. ' The first terms on the right-hand side of
Eqs. (29) and (30) correspond to those derived by the pre-
vious poorman scaling formalism, which is in agreement
with that of the Bethe-ansatz solution. The second terms
on the right-hand side of Eqs. (29) and (30) are the next-
to-leading-order corrections which would be dificult to
obtain in the previous scaling scheme. These new terms
do not change qualitatively in the Aow equations. It is
important that the combination of the coefficients of the
higher-order terms introduces a new univeral quantity,
which gives a universal correction to the vanishing of the
renormalized impurity spin-Aip frequency on the critical
line as the scale of the energy is varied. More work is re-
quired to elucidate this result.

%'e have to point out here that the above
renormalization-group approach did not directly consid-
er, but circumvented the infrared divergences encoun-
tered in the quantum sine-Gordon model. The infrared
cutoff factor introduced actually breaks the symmetry of
the model Hamiltonian. As we have seen above, it is
these infrared divergences that contribute to the great
changes of the renormalized impurity spin-Aip factor K
when the dimensionless coupling constant p J~~ ap-
proaches zero. For this reason, we develop the above
perturbation treatment of this effective Hamiltonian
without the infrared cutoff factor. It can also provide
other properties of the Kondo problem.
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perturbation theory are caused by this growing effective
coupling at the low-energy limit. With the Bogoliubov
transformation, we have developed a new perturbation
approach for the Kondo problem and investigated the
nontrivial ferromagnetic-antiferromagnetic crossover of
the impurity spin. The critical condition obtained here is
in agreement with the renormalization-group numerical
analysis. In particular, the ground-state wave function of
the conduction electrons is found to be a pairing quasi-
particle state, which is analogous to the BCS supercon-
ducting state. Its excitation spectrum will open a gap
near the zero-momentum mode. In addition, the effective
Hamiltonian for the conduction electrons may also be

mapped onto a modified quantum sine-Gordon model.
Paralleling the renormalization-group theory of the sine-
Gordon equation, we straightforwardly reproduce previ-
ous results, and derive the higher-order terms and a
universal correction in the Aow equations.
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