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Vortex-glass transition in three dimensions
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We investigate the possibility of a vortex-glass transition in a disordered type-II superconductor in a
magnetic field in three dimensions by numerical studies of a simplified model. Monte Carlo simula-
tions at finite temperature and domain-wall renormalization-group calculations at T=O indicate that
d=3 is just above the lower critical dimension dI, though the possibility that dr =3 cannot be definitely
ruled out. A comparison is made with XY and Ising spin glasses. The (eifective) correlation-length
exponent v and dynamical exponent z are in fairly good agreement with experiment.

Since fluctuation eff'ects play a much inore important
role in high-temperature superconductors than in conven-
tional superconducting materials, there has been a great
deal of effort' to understand the behavior of type-II super-
conductors in a magnetic field, including the effects of dis-
order, when one goes beyond the mean-field picture of
BCS or Ginzburg-Landau theories. One intriguing aspect
which has emerged is the possibility of a vortex-glass
phase in which the off-diagonal long-range order of the
pair condensate has a phase which is random in space but
frozen in time, much like the order parameter in a spin
glass. This can arise because the Abrikosov flux lattice,
which forms in pure samples, is destroyed by disorder in
less than four dimensions beyond a certain length scale,
id;, . Disorder also destroys orientational order in the flux
lattice if one neglects orientational couplings between it
and the crystal lattice. The phase of the condensate does
not then form a regular periodic pattern on scales larger
than /d;„but, according to the vortex-glass hypothesis, the
system undergoes a transition into a spin-glass-like state
in which the phase is frozen in time. At the transition, the
vortex-glass correlation length g diverges. A number of
experiments have found evidence for such a transition in
the I-V characteristics of Y-B-Cu-0 samples. Only if
there is a vortex-glass phase does the resistance really van-
ish for H) H, , Otherwise, the resistance is, in princi-
ple, finite because clusters of vortices on scale g can move
by thermal activation over barriers, a process known as
"flux creep. " These eff'ects are observable in high-T,
compounds, since they have much larger fluctuations than
conventional materials. The purpose of this paper is to in-
vestigate whether a vortex-glass phase occurs at finite
temperature in a disordered type-II superconductor in a
field greater than H, , by numerical studies of a simplified
model system.

The model that we study, known as the "gauge glass, "

has the following Hamiltonian:

The phase p; is defined on each site of a regular lattice,
which we take here to be simple cubic with N=L sites
and periodic boundary conditions. The sum is over all
nearest-neighbor pairs on the lattice. The effects of the
magnetic field and disorder are represented by quenched
vector potentials A;~ which we take to be independent ran-
dom variables with a uniform distribution between 0 and
2tr. This model seems to be the simplest model with the
correct ingredients of randomness, frustration, and order
parameter symmetry. It does, however, ignore screening,
and therefore corresponds to an extreme type-II limit in
which tr=X/( ~, where )i, is the penetration length.
Since x»1 in the high-T, superconductors, this limit is
not unreasonable. It is unclear, however, how much in-
clusion of screening via a fluctuating gauge field would
modify the behavior of Eq. (I).

If the A;i are restricted to the values 0 and tr, the model
becomes the XY spin glass, for which the lower critical di-
mension is believed ' to be 4. However, earlier work ' "
has shown that the gauge glass is in a different universali-
ty class from the XV spin glass, presumably because it
does not have the "reflection" symmetry, p;

—
p; +i

It is useful ' to look at the following dimensionless ratio
of moments of the probability distribution for q, the gauge
glass order parameter:

(2)
&&I I') j.',

This has the property in the thermodynamic limit that it
goes to zero above T, and tends to unity in the ordered
phase. We define the thermal average over a single sam-
ple by &

. )T and the configurational average over sam-
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ples by [ 1,, Because it is dimensionless, g has the
simple finite-size scaling form, '

g(L, T) = g[L "(T T,—)],
where T, is the transition temperature and v the correla-
tion length exponent. This shows that curves of g against
T for different sizes should intersect at T, and splay out
again at lower temperatures. Huse and Seung'' report
data for g for diAerent sizes which come together at a
finite temperature, T=0.6, but then do not splay out
again at lower temperatures. This is very similar to the
results for the three-dimensional (3D) Ising spin glass, '

and, by itself, does not indicate clearly whether an ordered
phase exists.

Now, for the Ising spin glass, it was also possible to per™
form domain-wall renormalization-group studies at T
=0, ' in which the difference between the ground states
with, say, periodic and antiperiodic boundary conditions is
calculated for a large number of samples. This quantity
fluctuates between samples, with a distribution whose
mean is zero for a spin glass and a width, measured, e.g. ,
by the expectation value of the absolute value, which
varies with the size of the system as

1,65—

FIG. 1. A double logarithmic plot of the domain-wall energy
hE, defined by AE =[~E~,—E„.~,~l„„where E~„ is the total
ground-state energy with periodic boundary conditions and E„.~,
is the energy with antiperiodic boundary conditions, at T =0 for
different sizes. The number of samples used varied between
15000 for L=2 and 1900 for L=5. The error bar represents
one standard deviation. The slope of the data is the exponent 0
characterizing the low-temperature phase. Apart from the point
for L =2, which lies a little low, the energy is roughly indepen-
dent of size, 0=0, i.e., the system is at, or close to, its lower
critical dimension.

h.E—L (4)

If 0 is positive then one argues that there is an order phase
and a finite-temperature transition, while a negative value
of 0 indicates a transition only at T=O. The marginal
case, 8=0, corresponds to the system being at its lower
critical dimension. For the 3D Ising spin glass, 0=0.20, '

indicating an ordered state.
It is possible that hE turns out to be a more sensitive

test of ordering than g for the 3D Ising spin glass because
the former diverges with L in the low-temperature phase
while the latter is bounded by unity. Hence the data for g
has only a restricted range in which it can splay out below
T„so, if 0 is fairly small, corrections to finite-size scaling
may make the data for g look marginal, i.e., independent
of size, for the range of sizes that can be studied.

The purpose of this paper is, therefore, as follows: (i) to
compute AE for the 3D gauge glass, and (ii) to perform
finite-temperature Monte Carlo simulations in which
some new quantities are calculated which have the desired
properties that they are (a) independent of size at T, and
(b) diverge with L at lower temperatures.

We begin with our results for h,E, shown in Fig. 1.
Apart from the point for L =2, which is a bit low, as was
also found' for the analogous calculations in d=2, the
results are independent of size, within the error bars. This
indicates that 0=0 and hence that the lower critical di-
mension is at or close to 3. At least for these sizes, the 3D
gauge glass seems to be much more marginal than the Is-
ing spin glass, for which 0=0.20. ' Our results disagree
with those of Cieplak, Banavar, and Khurana'5 who find
0=0.3, though very recently Gingras' finds results quite
similar to those in Fig. 1.

We now proceed to the Monte Carlo simulations. At
finite temperature, the domain-wall energy hE is replaced
by the free energy h,F, which is expected' to vary as L
every~here in the low-temperature phase and to be in-
dependent of L at T,. Now h,F should scale in the same

way if we apply a twist through an arbitrary angle 8 as it
does for the case of 6 =rr considered so far. It is therefore
useful to calculate derivatives of the free energy with
respect to 6, so, for single sample, we define a current I
and a stiA'ness Yby

I= =—+&sink;) r,F 1

86 L
(5)

'dF I IY—= = +&cosh;)7. ——+[&sink; sink~)r
t)6 L

—&sink; & r &sink~ & r l

where 4; =P; —P;+ —A;;+„, F is the total free energy,
and i +x refers to the nearest-neighbor site in the x direc-
tion from i Note that . both I and Yare gauge invariant so
they are still useful even if one includes fluctuating gauge
fields. By constrast, it is dificult to give a sensible gauge
invariant definition of the order parameter q.

Below T„ the free energy varies with twist angle on a
scale L so one might expect that Y would also vary in this
way. Ho~ever, for a large finite system we expect instead
that the value of Y is, with high probability, due simply to
spin waves, which gives a positive contribution scaling as
L . In addition, as the twist angle is changed, the sys-
tem will suddenly jump from one local minima to another
by moving vortices, at which point the slope changes
abruptly, so there is a small probability that the curvature
is large and negative. Hence, we expect' that, in the
thermodynamic limit, essentially all the weight will be in
the peak at positive Y. Since Y is L" times the
superfluid density p„which, in turn, is related to the con-
ductivity cr through o p, /ir0, this i—mplies that the dc
conductivity is infinite, as mentioned above. Nonetheless,
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FIG. 2. A histogram of the estimates for the thermal expec-
tation value of the stiffness, Y, defined in Eq. (6), for the

different samples (1200 altogether) for T =0.4, L =8. This data
is actually a convolution of the true distribution of the stiffness

among samples with a "smearing function" due to the imperfect
averaging of each sample by the Monte Carlo simulation. No-

tice that the distribution is not symmetric but has a peak at posi-

tive stiffness and a tail down to large negative values (which en-

sures that the mean is zero).
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the tail for negative Y ensures that [Y],, „=0, which fol-
lows because [F(e)]„.„ is independent of 6, since different
choices for e correspond to different realizations of the
2;~ with the same probability. It is also likely that the
stiAness is self-averaging, i.e., the peak at positive Y be-

comes infinitely narrow in the thermodynamic limit. We
find that the distribution of values of Y among different
samples is indeed very asymmetric, as expected from this
discussion; see Fig. 2. The distribution of I must, howev-
er, be symmetric. It is possible that, like the rms stiff'ness,
the rms current, t5I =[I ],, ', , also diverges with an ex-
ponent larger than 8, although this is not necessary and it
is perhaps more natural to assume that it is equal to 0.
However, the precise value of the exponent is not critical
for our analysis because it cannot be less than 8, so AI
must diverge in the ordered phase. The finite-size scaling
form for AI is expected to be the same as for g, given in

Eq. (3).
Tests to ensure equilibration were carried out as de-

scribed elsewhere. ' Our results for AI are presented in
Fig. 3. The data come together at T=0.50, slightly lower
than the corresponding temperature for g. " At lower
temperatures most of the results are size independent but
at the lowest temperature, T =0.4, the data for the largest
size, L=8, exceeds that for the smallest sizes by three
standard deviations. This indicates that there is an or-
dered phase and that 0 is slightly positive. Although we
found no sign of a similar upturn in the calculations of hE
shown in Fig. 1, the sizes there were smaller and it is pos-
sible that the somewhat larger sizes used in the Monte
Carlo simulations are necessary to see ordering.

Collapsing the data for d,I onto a scaling plot (see Fig.
4), we find T, =0.45+'0.05, v=1.3 ~0.4. It is gratifying
that this value of v is in reasonably good agreement with
experimental estimates, ' though we should caution that
the effects of systematic errors (due to corrections to finite
size scaling) have not been incorporated in the estimate of
the error bar and that both the experimental and theoreti-
cal values may be only effective exponents, valid in a re-
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FlG. 3. The rms current, AI=[12]„'t2, determined by Monte
Carlo simulations for different sizes and temperatures. The
curves for different sizes are expected to come together at T,
and, if there is order in the low-temperature state, to splay out
again at lower temperatures. The data does indeed become in-

dependent of size for T=0.50. At lower temperatures, most of
the data is independent of size, but for T =0.4 the data for L =8
is significantly greater than that of the lower sizes. More pre-
cisely, the values for T=0.4 are 0.980+'0.024 (L =8, 1200
samples), 0.925 ~0.017 (L =6, 2000 samples), 0.898+ 0.015
(L =4, 2000 samples), 0.908 ~ 0.020 (L =3, 2000 samples). In

general, the data for L =8 used 1000 samples and that for small-
er sizes used 2000 or more samples. The error bars are obtained
from the variance of the estimates from different samples and
represent one standard deviation.
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FIG. 4. The same data as in Fig. 3 but in a finite-size scaling
plot similar to that for g in Eq. (3), with T, =0.45 and v=1.2.
The inset shows a scaling plot of data for g at T =T, =0.45, dur-

ing the approach to equilibrium in which to sweeps are used for
equilibration followed by 2to sweeps for averaging. One expects
(Ref. 20) g =g(to/L=), where z is the dynamical exponent, and
here we took z =4.8.
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stricted range of temperature and size, since it is unclear
if the asymptotic critical region has been reached. We
have also estimated the dynamical exponent z by deter-
mining the time to reach equilibrium at T=T„which
varies with system size as L'. Our Monte Carlo dynam-
ics neglects coupling of the order parameter to charge
Auctuations, which is probably correct here since long-
range forces make the relevant propagating mode plas-
monlike and gapped, ' even though charge is conserved.
An appropriate scaling plot is sho~n in the inset to Fig. 4
with z=4.8. We estitnate z=4.7+ 0.7, again in good
agreement with experiment. '

To conclude, our results indicate that the gauge glass in

3D is just above its lower critical dimension, though it is

also possible that the lower critical dimension is precisely
3.
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