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The possible existence of nonconventional ground-state configurations for the Heisenberg antiferro-
magnetic model in the two-dimensional square lattice has generated great theoretical interest. Frus-
tration caused by suitable exchange competition between spins localized on lattice sites at different dis-
tances is believed to be a possible source of the spin-liquid phase, where no long-range order at zero
temperature is present. The early signal of this phase was provided by a divergent spin reduction, ob-
tained by the simple spin-wave approximation, on the phase boundary between the Néel configuration
and the helix configuration of the square frustrated Heisenberg antiferromagnet. Later the existence
of the spin-liquid phase was investigated by renormalization-group analysis. Here we provide argu-
ments that show that the spin-liquid phase, if it exists, cannot be located where the simple spin-wave
approach suggests. This is due to crucial nonlinear contributions to the magnon self-energy. We find
that the stability region of the Néel configuration is enhanced by nonlinear effects when the third-

nearest-neighbor interaction is present.

The discovery of high-T. superconductors' added new
interest to the two-dimensional (2D) Heisenberg model
because the origin of the superconductivity was related to
possible nonconventional ground-state configurations of
this model in the presence of antiferromagnetic coupling.?
The square Heisenberg antiferromagnet with nearest-
neighbor (NN) coupling® exhibits long-range order
(LRO) at zero temperature for S > %+, and well-grounded
arguments* support the existence of LRO at 7=0 even in
the extreme quantum limit S = 3. Frustration caused by
exchange-coupling competition is the well-known origin of
noncollinear configurations which are exhaustively repre-
sented by helical configurations® in the classical limit
(S— o). The study of the zero-temperature classical
phase diagram in the parameter space of 2D models with
competitive interactions up to third-nearest neighbors pro-
vided novel features as infinite degeneration lines on
which the minimum-energy configurations are infinite in-
equivalent isoenergetic helices characterized by infinite
helix wave vectors Q. Along these degeneration lines the
magnon spectrum shows soft lines.® The spin reduction
diverges in the above 2D model as well as the thermal
demagnetization does at finite temperature in the corre-
sponding 3D tetragonal models.® These results, which in-
dicate the critical dimensionality support of the LRO in-
crease of one were obtained in classical approximation for
tetragonal Heisenberg and planar models with in-plane in-
teractions up to third-nearest neighbors, the NN interac-
tion J, being ferromagnetic with a NN interplane cou-
pling J'. The interesting phenomenology called the de-
generate helix is also present if the NN in-plane intcracj

tion is antiferromagnetic.”® Moreover, the phase bound-
ary between the antiferromagnetic configuration and the
helical configurations is characterized by a divergent spin
reduction in the 2D case. This divergence was interpreted
as the signal that a new phase, called spin liquid, inter-
venes between the antiferromagnetic and the helical
phases.® We stress that such conclusions are drawn on the
basis of the simple spin-wave theory so that their reliabili-
ty has to be tested against quantum and thermal fluctua-
tions, additional perturbations, doping, and so on.

Here we show that the zero-point-motion fluctuations
cause drastic changes in the location of the spin-liquid
phase, which is currently believed to occur around the
classical helix-antiferromagnetic (H-AF) phase transi-
tion. This expectation is based on the divergence of the
spin reduction caused by a k2 behavior of the magnon
dispersion curve in the long wavelength limit, so that LRO
is believed to be destroyed even at zero temperature in a
finite stripe encompassing the H-AF line. On the contrary
we prove that this is an artifact of the linear spin-wave ap-
proximation because quantum fluctuations provide a
nonzero magnon velocity restoring LRO on the classical
H-AF line. Our calculation cannot be pushed onto van-
ishing in-plane third-nearest-neighbor interaction J3, but
for not-too-small J3 we are able to prove that the spin-
liquid phase has to be searched for well inside the region
where helix configurations are stable in classical approxi-
mation.

Let us consider the magnon spectrum appropriated to a
two-sublattice antiferromagnetic configuration including
the first quantum correction '°
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For the square frustrated Heisenberg antiferromagnetic (FHA) model we have
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dq=1— 7 (cosq, +cosq,) — j2(1 —cosq, cosg,) — j3[1 — ¥ (cos2q, +cos2g,)], )
sq=1+ 7 (cosqgy +cosgy) — j2(1 —cosgy cosq, ) — j3[1 — ¥ (cos2g, +cos2g,)] , @3)

where j,=J,/J\, j3=J3/J,. Equation (1) becomes

(flﬂ)]{)2=(81|5)2 dksk'f'z—ls—(skd{(‘i‘dksi) 4)
where
dy =0 —ADI1 — 5 (cosky +cosky )] — j>(1 — A4;) (1 —cosk, cosk,) — j3(1 —A3)[1 — § (cos2k, +cos2k, )], 6))
sk=0—A)[1+ 7 (cosky +cosk, )] — j2(1 — A2) (1 —cosk, cosk, ) — j3(1 — A3)[1 — + (cos2k, +cos2k,)] (6)
with
A, -%Z [1 = § (cosgyx +cosq, ) (sq/dq) /2, ™M
q
Az-—}%E(l —cosgx cosqy ) (sq/dg) 2, ®)
q
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q

In deriving Egs. (5) and (6) use has been made of the sum rule
Al_jZAz_j3A3-_IlVE(quQ)‘/2. 10)
q
We focus on the long-wavelength behavior of the magnon spectrum on the H-AF line j;=(1 —2j,)/4:

1
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We notice that the classical long-wavelength behavior is On -the contrary, for j3>0 any divergence of the spin

strongly modified as follows reduction is washed by the quantum fluctuations which
1 are currently believed to play a minor role. This expecta-
hof=8|J,|VSck, (12) tion is usually true, but it can be completely false where

pathological scenarios are suggested by the classical ap-
proximation. The inclusion of the leading quantum
c=114:—4,-2j,(4;—A4)]1"2. (13)  corrections leads to the following zero-temperature expec-

For instance, we find ¢ =0.43824, 0.43236, 0.42767, ;‘:f:[’l't‘m:‘::gﬁ §°£X§:° sublattice magnetization along the
0.426 25, 0.42601, for j,=0, 0.1, 0.2, 0.25, 0.3, respec-
tively. As anticipated, we cannot explore the vanishing j3

where

- . .. 1
limit corresponding to j,=0.5 because in that limit the (8§ =S+—;— —?]—V—Z (sh/di) 72, (14)
quantum correction diverges. For this reason we cannot 1
perform any statement about the point j,=0.5, j;=0. where

J

sq=11+01/28)(1 —ADI1+ 5 (cosg, +cosg, )] — j>[1+(1/28) (1 — 4,)1(1 — cosqy cosg, )
—j3[1+(1/28)(1 — A3)1[1 — 5 (cos2q, +cos2g,)], 15s)

di=M1+1/28)(1 —A)]I1 = 3 (cos+cosq, )] — j>[1+ (1/28) (1 — A2)1(1 —cosg, cosq, )
—j3[14+(1/28)(1 — 43)1[1 — 5 (cos2g, +cos2g,)] . (16)

Table I gives the zero-temperature sublattice magnetization for selected values of S and j, on the classical H-AF line.
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TABLE I. Sublattice magnetization at zero temperature [see

Eq. (14)] for selected values of j>=J,/J, and the spin S along

the classical H-AF transition line j;=(1 —2j,)/4.

3

J2 S=3 S=1 =3 S=2
0 0.260 0.649 1.074 1.516
0.1 0.255 0.639 1.059 1.498
0.2 0.253 0.630 1.045 1.479
0.25 0.254 0.626 1.038 1.470
0.3 0.256 0.624 1.033 1.462

We conclude that previous evaluations concerning the
location of the spin-liquid phase are unreliable at least for
j3=0.1. It is clear that the linear spin-wave theory is un-
reliable where crucial nonlinear (quantum) effects bring
dramatic corrections to the spin-wave energy. Our result
is in contrast not only with the simple spin-wave argu-
ment,® but even with the renormalization-group analysis '
recently performed for the square FHA model. Indeed, as
one can see in Fig. 2 of Ref. 11 the spin-liquid phase re-
gion is qualitatively the same as that obtained by linear
spin-wave approach,® except that it is sensibly increased
inside the classical Néel region. We think that this is a
spurious result which comes from the structure of the
effective action assumed in Eq. (3.10) of Ref. 11. We no-
tice that the spatial part of that action vanishes on the
classical H-AF phase boundary, so that higher-order con-
tributions are crucial in order to treat conveniently the vi-
cinity of the H-AF line. This is analogous to the simple
spin-wave approach that neglects nonlinear quantum con-
tributions which enter dramatic corrections to the spin-
wave velocity where the linear contributions vanish. In
conclusion, we do not exclude that the spin-liquid phase
exists, but we believe that its existence region has to be
searched for inside the region where the helix
configuration is found in classical approximation, at least
for not-too-small j; coupling. On the other hand, we
stress that a first-order H-AF phase transition could
prevent the onset of the spin-liquid phase. Notice that
this possible scenario, which has not been investigated for
the square FHA model, has been found in the same model
with a ferromagnetic NN coupling.'>'? Just close to the
triple point where ferromagnetic, antiferromagnetic, and
helical phases coexist, the F-H phase transition has been
proven to be changed from continuous to first order owing
to long-wavelength quantum fluctuations. Anyway, we es-
timate the possible location of the AF spin-liquid phase
boundary for the FHA model, assuming that this model
does not undergo a first-order phase transition. This as-
sumption seems reliable because our calculation involves
finite values of the third-nearest-neighbor coupling j;
where the influence of the quantum fluctuations is expect-
ed to be less dramatic as one moves away from the
Jj2=0.5, j3=0 triple point. In Fig. 1 we show for selected
values of S the line in the parameter space where the ex-
change competition cancels the quantum contribution to
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FIG. 1. AF, H,, H; indicate the classical existence regions of
the Néel and two helix phases. Equations of AF-H and H,-H;
transition lines are j3=(1—2j,)/4 and j,=2j3, respectively.
Solid and dashed lines are the AF spin-liquid transition lines and
the locus where the AF magnon velocity vanishes, respectively.
The labels refer to S =5, 1, 3, 2, respectively. For $ =% and 2
solid and dashed curves are not distinguishable. The dotted line
is the AF spin-liquid transition line obtained by the simple spin-
wave approximation for S =% .

the magnon velocity given by Eq. (5), so leading to a soft
behavior of the long-wavelength magnon dispersion curve
that causes a catastrophic spin reduction. In Fig. 1 the
line where the spin-liquid phase onsets is shown. As one
can see, this line occurs before the line where the spin-
wave velocity vanishes is reached. From this point of view
the behavior is similar to the one suggested by the simple
spin-wave approach, but a striking difference appears be-
cause nonlinear quantum contributions push such a line
inside the region of existence of the helix phase obtained
in classical approximation (S— o) in contrast with pre-
vious results™!'! that provide the existence of the spin-
liquid phase inside the AF classical region.

Note added. We have recently received a copy of un-
published work by Chubukov ' concerning the same prob-
lem we have studied in our paper. The emphasis of the
work of Chubukov is devoted to the vanishing J3 region
where a first-order transition between the Néel and the
columnar phases is announced. Our approach is valid for
finite J3 and we cannot achieve the J3=0 limit. Even if
our results agree qualitatively with the Chubukov expec-
tations for finite J3, it is not clear to us at this time how
the author obtains Eq. (4') characterizing the instability
point of the Néel spin wave. Indeed, our controlled ap-
proach provides divergent results for J,=J,/2, J3=0.
Notice that this drawback can be healed only by some ad
hoc heuristic ansatz. We think that the neighborhood of
such a point deserves further theoretical effort.
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