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We study the quantum Heisenberg-Ising models on generalized Fibonacci lattices by the
dynamical-maps technique, in which the nearest-neighbor Ising interactions take two values that
follow successively the generalized Fibonacci sequences. The energy spectra are Cantor-like, and
the wave functions are generally critical. It is further shown that the energy spectra do not have
uniform scalings and that for some systems the wave functions are extended or localized in certain
energy regions. In addition, we also obtain the critical lines of the quasiperiodic quantum
Heisenberg-Ising models.

I. INTRODUCTION

There has been considerable interest in quasiperiodic
systems, and much effort has been devoted to the study of
quasiperiodic systems in one dimension. Particularly, a
well-investigated one-dimensional (1D) quasiperiodic sys-
tem is the Fibonacci structure, and most studies are con-
cerned with the electronic, phonon, and magnetic proper-
ties. ' For this quasiperiodic system, Kohmoto and co-
workers' developed a dynamical-maps technique, which
is successful in explaining the energy spectrum, wave
functions, and some of the scaling properties of the sys-
tem. Now this technique has been widely used to study
the physical properties of the Fibonacci quasiperiodic
systems.

Recently, generalized Fibonacci quasiperiodic systems
have received much theoretical attention. ' In their in-
vestigations of the electronic properties of the generalized
Fibonacci quasiperiodic systems, Gumbs and Ali derived
several discrete dynamical maps for some generalized Fi-
bonacci quasiperiodic systems. Motivated by their re-
sults, You and co-workers'" obtained a unified trace map
for all the generalized Fibonacci quasiperiodic systems,
which is the generalization of the well-known Kohmoto-
KadanofF-Tang (KKT) trace map. ' As Fibonacci struc-
tures, the generalized Fibonacci quasiperiodic systems
are intermediate between periodic crystals and the ran-
dom or disordered structures. However, the studies
showed that these systems exhibit richer physical proper-
ties than the Fibonacci quasiperiodic system. The under-
lying lattices of the generalized Fibonacci quasiperiodic
systems are the generalized Fibonacci lattices, which are,

in some sense, a generalization of the Fibonacci lattice.
The separation of successive lattice points of a general-
ized Fibonacci lattice takes value A or B and the se-
quence of tiles A and B is a generalized Fibonacci se-
quence that is constructed by the recursion relation
St+&= IS&"~St

& I with So= t8 I and S& =
I A ], in which

l ~1, and m and n are positive integers. From the con-
struction rule of S& it follows that the total number FI of
tiles 3 and B in SI satisfies the recursion relation
F)+]=plFI ]+nFI for l ~ 1 with FO=Fj = 1. In the lim-
it l ~~, the ratio of successive generalized Fibonacci
numbers Ft+, /Ft tends to ~(m, n)= —,'[(n +4m)' +n]
The ratio Ft+, /Ft is an optimal rational approximant to
r(m, n).

In this paper, we study the quantum Heisenberg-Ising
models on the generalized Fibonacci lattices in which the
nearest-neighbor Ising interactions follow successively
the generalized Fibonacci sequences. In Sec. II, we ex-
press the model Hamiltonian in the fermionic representa-
tion and present the dynamical maps. Section III con-
cerns the Cantor-like energy spectra that are determined
by the dynamical maps. The wave functions of the sys-
tems are studied in Sec. IV, and are divided into three
kinds, i.e., the critical, extended, and localized wave func-
tions. Section V describes the magnetic phase transition
in the quasiperiodic quantum Heisenberg-Ising model.
Finally, the results are summarized in Sec. VI.

II. THE MODEL

In this section, we focus our attention on the Hamil-
tonian of the quantum Heisenberg-Ising model and the
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dynamical maps. In Sec. IIA, following the ideas of
Leib, Schultz, and Mattis, ' we express the model Hamil-
tonian in the fermionic representation, and give the
dynamical maps in Sec. II B.

A. Model Hamiltonian

changed, a 2 -dimensional subspace for all states is then
defined as one of the three possible values 0,+1 assigned
to each of the iV M s. In this paper we consider the
ground state that is in the subspace with M; =0 for all i.

Introducing the raising and lowering operators a;~' and
a; for the ith pair of spins,

We consider the following quantum Heisenberg-Ising
model with only nearest-neighbor interactions:

N N —1

H = g S2;, S2;+2 g A,;S~;$2;+, .
and

a @' =N' a~N' =0i 00 10& i 10

a;40 0=0, a,.+'1 0=+0 0,

(3a)

(3b)

Here the model is composed of 22K spins arranged in a
row. The interactions are alternating Ising and isotropic
Heisenberg interactions, and the coupling k; character-
izes the relative strength of the two types of nearest-
neighbor interactions. For the two kinds of tiles A and B
in a two-tile sequence, each tile is decorated with two
spins, of which one is put at the left end of the tile, and
the other is located at the position which has a distance c
away from the left end of the tile and d; away from the
right end. For all tiles c's are assigned to be constant and
the associated couplings in the nearest-neighbor isotropic
Heisenberg interactions are then equal to one another, as
chosen here as one for simplicity. The quantity d; is as-
signed to be dz for tile A and dz for tile B and then the
coupling A, ; in the nearest-neighbor Ising interaction
takes value A, ~ or X~, associated with the two spacings
dz and dz, respectively. If the two kinds of tiles A and B
are distributed according to a generalized Fibonacci se-
quence S that is generated by the recursion relation
S&+,=ISI"~S& i j with initial conditions $~=[Bj and
S, =

I A j, then there is X-~ oo and the couplings A, ; are
also arranged successively following the generalized Fi-
bonacci sequence which is constructed by the same recur-
sion relation with only different initial conditions
So =

I A, ~ j and S, = [ A, „j.For instance, for the Fibonac-
ci sequence with ( mn) = (1,1), the couplings I A, ; j are ar-
ranged this way:

and

@'i i=1'1', (2a)

(2b)

while both the couplings in the nearest-neighbor isotropic
Heisenberg interactions and those in the nearest-neighbor
Ising interactions are arranged in the following way:

1A, g 1A,~1k, ~ 1i,g 1A,~1k,g 1A,/1A, ~ 1A, ~ 1i,g 1k~ 1k~ 1A.g
.

For the ith pair of spins, we introduce the four eigen-
functions of S2; 1.82; ..

the Hamiltonian (1) can be cast in the form'6

H= 3NI4+—g a;a;

N —1

g A, , [(a; a;+, +a; a;+I )+H.c. ] .

[a,",a ]=a;ta —a a;t=0, [a, , a ]=[a;,a~]=0,
Let

i —1

c; —=exp rig a.ta a;
j=l

and

(5b)

(6a)

c; =—a;exp
i —1—~i a ..a.
j=l

(6b)

where c; and c; are anticommuting fermionic operators:

Ic, , ctj =5;,, Ic, ,c, j =[ct, ,tj =0 .

In the fermionic representation, Eq. (4) is further written
as

N N —1

H = g c, c, ——,
' g A, ; [(c;c, +, +c, c, +, ) +H. c.],

where the quantity —3N l4 is chosen to be the zero point
of the total energy of the system.

The c-cyclic treatment' is carried out by letting'~g+ in the second summation of Eq. (8) and hav-
ing c&+ i

=—c, and c~+, ——c, (the periodic boundary con-
dition). The Hamiltonian can then be expressed, in the
quadratic form, as

II= g [c; A; c + —,'(c;8; c. +H. c.)],

The operators a; and a; partly resemble fermionic and
bosonic operators, respectively, since there are relations

Ia;, atj =a;a;+a;a;=1, a; =(a; ) =0, (5a)

and

where the first and second arrows refer to the (2i —1)th
and 2ith spins, respectively, and the first and second sub-
scripts of N' refer to the quantum numbers J; and M;, re-
spectively. Since the application of either S2 2S2. 1 or
S2;S2;+, to any of the above four states leaves M; un-

where A =(3;.) and 8 =(8, )are symmetric and an-"
tisymmetric matrices, respectively, whose nonzero ele-
ments are A;; = 1, A;;+1= —A, , /2, and A 1 N

= —
A, N /2;

B;;+1=—A,;/2 and Bl N=A, N/2.
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B. Dynamical maps

Eigenvalues of the Hamiltonian (9) are determined by
the equations

or

1/A, 21
—A/A, s

A/A, s (1(,II
—A )/A, ~

( A +B)iti=A1ti,

( A —B)1JI=AQ,

which yield

(10a)

(10b) as the. coupling A, takes value A. ~ or A,z. The wave func-
tion for the arbitrary (N, + 1)th pair of spins is given by

A1t; =0; ~;0;+1

A4' = —~ —14 —1+0;

(1 la)

( 1 1b) where

Ns)
+ (15)

where g=($, $2 . gN)'and Ill=($, $2 PN)'.
From Eqs. (lla) and (lib) we obtain the transfer-

matrix equation

N;~, =M(i)N, , (12)

which is

I /A, ;
—A/A, ;

A/X; (1,; —A )/A, ;
(13)

where the wave function 4&; is a column vector (P, , g, )'
and the transfer matrix is a 2 X 2 unimodular matrix

M ' =M(N, )M(N, —1) . M(2)M(1)(N, )
(16)

(17)

is successive multiplications of the transfer matrices.
If IA, ;] is a generalized Fibonacci sequence, IM(i)] are

also arranged like the generalized Fibonacci sequence. It
~FI) .

can be shown that the transfer matrix M&
——M, in

which F& is a generalized Fibonacci number, obeys the re-
cursion relation

M(A)=
I /k~ —A/A, „
A/1(, ~ (A,„—A )/A, „ (14a)

with initial conditions M o=M(B) and M 1=M( A).
From theory of matrices the Xth power of a 2X2 uni-

modular matrix M
&

is given by'

where

I+N —1(XI ) +N —2(XI )

CI &N —1(XI )

bl VlN, (xi )

dl +N —1(xi ) +N —2(xl )
(18)

CI
xl =—= —,TrM I

=
—,(121 +dl ) (19)

in which Tr denotes the trace of a matrix, and 8'(xI ) is the Nth Chebyshev polynomial of the second kind:

sin[(N + 1)cos '(xl )]
Vl(xi ) =

sin [cos '(xi ) ]

which satisfies the recursion relation

(20)

+N(XI ) XI+N —1 Xl ) +N —2(XI )

From Eq. (17) one has

(M '
) =M" M

(21)

(22)

Using relation (18) and taking the trace of Eqs. (17) and (22), respectively, we obtain the trace map for the generalized
Fibonacci lattices, '

xi+, = 'll„,(xI )Vl . ,(xl, ) 2xlxi
2(xl, ) Vl„2(xI 1) Vl„2(xI )+n. 1(xi 1) e„ 1(xi 1)

' e„ 1(xl) I -1

'M, (xi 2)
x) ~+e„—,(xi

—2(XI —2) + —2(XI )+ —2(XI —1)+Vl„,(xi, ) Vl„,(xi )6',(xi, )
(23)

with the following initial conditions:
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xo= —,'(A,~+ I/A, ~
—A /A, ~),

x, =
—,'(A, ~+1/A, „—A /A. „), (24a)

x~ =e„](x,)e ](xo)[2x]xo—
—,'(A, „/Ay+A~/A ~ )]

,(x, )Q z(xo)x, —Vl„z(x, )'M, (xo)xo

+'ll„2(x, )Vl ~(xo) . (24b)

Since M& is a real 2 X2 unimodular matrix, i.e.,
detM I

= 1, in which det denotes the determinant of a ma-
trix, it can be specified only by three real numbers. Thus
the matrix map (17) can be considered to be a 6D discrete
dynamical system. The trace map (23) is obtained by in-
troducing the trace of M I, which is a reduced 3D dynam-
ical system and can be regarded as the projection of the
full 6D dynamical map (17) onto a 3D orbit. The energy
spectrum of the quantum Heisenberg-Ising model on a
generalized Fibonacci lattice is determined by the behav-
ior of the trace map (23). Merely by studying it, one can
obtain the energy spectrum of the quasiperiodic quantum
Heisenberg-Ising model. Once the energy spectrum is
determined, one can then obtain the wave function for a
given energy lying in the spectrum by successive multipli-
cations of the transfer matrices.

are thus given in the limit I~ oo.
As typical examples, we present in Figs. 1(a)—1(d) the

band structures of the quantum Heisenberg-Ising models
on periodic lattices of periods F&=mFI 2+nF&, for
I ~2 with Iio=F& =1, in which (m, n) =(1,1), (1,2), (2, 1),
and (3,1), respectively. The two types of couplings are
chosen to be Kz =1 and Kz =2. One sees that each ener-

gy spectrum consists of FI bands and FI —1 gaps at the
Ith iteration. As I gets large, more gaps appear. In the
limit I~~, it can be concluded that the gaps are densely
populated in the energy spectra of the quasiperiodic
quantum Heisenberg-Ising models. Another feature is
that the energy spectra is self-similar. The self-
similarities and the dense distributions of gaps imply that
the energy spectra of the quantum Heisenberg-Ising mod-
els on the generalized Fibonacci lattices are Cantor-like.
In addition, it can also be seen that the energy spectra do
not have uniform scalings. In Figs. 1(a) and l(b), there
are large bands and small gaps at low values of A, while
for high values of A the bands are very narrow. At high

III. CANTOR-LIKE ENERGY SPECTRA

The quantum Heisenberg-Ising model on a generalized
Fibonacci lattice can be approximated by the
Heisenberg-Ising models on a sequence of periodic lat-
tices with progressively larger unit cells of size FI defined
by the optimal rational approximants to r(m, n. ) Accord. -

ing to Bloch theorem, one has

iKF(
+F +& (25)

where K is the wave vector and FI the size of the unit cell
of a periodic lattice. From Eq. (15) one also has

m)) m)2

(c)

+F +1 M 1+1
1 m2& m22

(26)

Thus it follows from Eqs. (25) and (26) that

det

iKFI
m11 e

mp(

m)2
-KF,

m22 e
(27)

which yields

cos( KFI ) =—'( m» +m 22 ) =xi . (28)

From Eq. (28) we then obtain the following conditions for
bands and gaps, respectively, in the energy spectrum:

lxl I
» . (3O)

Since the quantum Heisenberg-Ising models on the gen-
eralized Fibonacci lattices are obtained by the limit ofl~ ao, the energy spectra of these quasiperiodic models

FIG. 1. Band structures of the quantum Heisenberg-Ising
models on periodic lattices of periods F&=mFI, +nFI, for
l ~2 with FO=F, =1. (a) m =1, n =1, l =2, 3, 4, 5, and 6; (b)
m =1, n =2, l =2, 3, and 4; (c) m =2, n = 1, l =2, 3, 4, and 5;
(d) m =3, n =1, l =2, 3, and 4. The two kinds of couplings are
chosen to be A, &

= 1 and A,z =2. The band structures for larger l
can be similarly obtained and the energy spectra of the quasi-
periodic quantum Heisenberg-Ising models are given in the lim-

it l —+ao. Note that the coupling parameter A, has the same
units as the energy A.
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iterations of I, it is found in our numerical calculations
that the gaps tend to vanish when A goes to the bottom
edges A;„of the energy spectra. This indicates that the
wave functions tend to be extended in the region
A=A;„. As to Fig. 1(d) there are large bands and small

gaps in the central part of the spectrum, and it is also
found that as l gets large, the gaps tend to vanish in this
region.

IV. CRITICAL, EXTENDED,
AND LOCALIZED WAVE FUNCTIONS

For a given energy lying in the energy spectrum of the
quantum Heisenberg-Ising model on a generalized Fi-
bonacci lattice, one can numerically obtain the wave
function from Eqs. (15) and (16), namely, by successive
multiplications of the transfer matrices. Figures 2—5 are
the numerically calculated wave functions of four systems
composed of 1597, 1393, 1365, and 1159 pairs of spins,
respectively. The two kinds of couplings are chosen to be
A, g = 1 and Ag =2.

Figure 2 is the wave functions of the system with
(m, n)=(1, 1), which are numerically calculated at
A=0. 274 855 4 and 1.556739, respectively. The first en-
ergy is very close to the bottom edge A;„of the energy
spectrum and the corresponding wave function is extend-
ed. The wave function calculated at A= l.556 739 is crit-
ical, i.e., self-similar and neither extended nor localized in

{»)

( t~l g &L~ ~, loll l LLillnl lt )~(I li i]g~ ~J1&~g[J

FIG. 3. Wave functions of the system with (m, n) =(1,2). (a)
Extended state, A=0. 205424; (b) critical state, A=1.627 864.
The system consists of 1393 pairs of spins and the two kinds of
couplings are chosen to be A, & =1 and A, & =2.

FIG. 2. Wave functions of the system with (m, n) =(1,1). (a)
Extended state, A=0.2748554; (b) critical state, A=1.556739.
The system consists of 1597 pairs of spins and the two kinds of
couplings are chosen to be A, &

= 1 and k& =2.

a standard fashion. The wave functions of the system
with (m, n) =(1,2) are shown in Fig. 3, which are numeri-
cally calculated at A=0. 205424 and 1.627864, respec-
tively. Similar to those in Fig. 2, the wave function is ex-
tended at the first energy that is also very close to the
bottom edge A;„of the energy spectrum, while that at
the second energy is critical. The wave functions of the
system with (m, n)=(2, 1) presented in Fig. 4 are calcu-
lated at A=1. 140203 and 2.021 545 172, which are criti-
cal and localized, respectively. Figure 5 is the wave func-
tions of the system with (m, n) = (3, 1) that are calculated
at the energies A=0.91116, 1.7, and 0.906637669, re-
spectively. The wave functions at A=0.91116 and 1.7
are critical and extended, respectively, while that at
A=0.906637 669 has three main peaks, of which each is
localized as that shown in Fig. 4(b).

From the above numerical calculations, one sees that
the wave functions shown in Figs. 2(a) and 3(a) are ex-
tended at the energies very close to the bottom edges of
the energy spectra. We have also calculated the wave
functions at other energies that are in the regions with
A —A;„and found that the wave functions tend to be ex-
tended. The corresponding energy of the extended wave
function shown in Fig. 5(b) is located in the middle part
of the spectrum [see Fig. 1(d)]. In our calculations, we
have also found that the wave functions are extended or
tend to be extended at many energies in this central re-
gion. These conclusions agree with the speculations
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given by

( A, +B, )i)LO=O,

( A, —B, )etio=0,

(31a)

(31b)

where 3, and B, are the matrices 3 and B calculated at
the critical value iL,, of the coupling. From Eqs. (11a) and
(1 lb) it follows that

IL, / I l&Lii& ~ ~~ i. I il ILL LIII4LiiiLLiLII III ILII Lt LILl, ill i, . ~ LL&J&liilI, L II

x.mes

L 0 i ~i, c'4 i+I

4, i ~i —1, c Po, i —1 0~ / 1~2~ . ~ Fi

(32a)

(32b)

&& 4JII
w all ~g ~ ll kk» il. 44

, [4)„ , a I, IIII(IL,LI, IILI Ii

FIG. 4. Wave functions of the system with (m, n)=(2, 1).
(a) Critical state, A = 1.140 203; (b) localized state,
A=2. 021545172. The system consists of 1365 pairs of spins
and the two kinds of couplings are chosen to be A. & =1 and

2e

based upon the characteristics of the energy spectra. The
localized wave functions are found only in some extreme-
ly narrow regions for the systems with (m, n) =(2, 1) and
(3,1). As to the critical wave functions, they are found in
many regions. This implies that the criticality is still the
main feature of the wave functions of the quantum
Heisenberg-Ising models on the generalized Fibonacci
lattices.

V. PHASE TRANSITION
IN THE HEISENBERG-ISING MODEL

(c)

Similar to the periodic quantum Ising model, it is
found ' ' that the quasiperiodic quantum Ising model
exhibits a magnetic phase transition driven by the zero
mode of the Hamiltonian at a critical value of the cou-
pling. Analogously, the quantum Heisenberg-Ising mod-
el on a generalized Fibonacci lattice may also undergo a
phase transition for a critical value of the coupling, as
what occurs in the periodic quantum Heisenberg-Ising
model. ' In the following, we denote the two types of
couplings k„and kz, for convenience, as A, and rk, re-
spectively, and denote the critical value of the coupling as

As in the quasiperiodic quantum Ising model, the
quantum-mechanical phase transition exhibited in the
quasiperiodic quantum Heisenberg-Ising model should be
driven by the zero mode of the Hamiltonian (9), which is

FIG. 5. Wave functions of the system with (m, n) = (3, 1). (a)
Critical state, A=0. 911 16; (b) extended state, A= 1.7; (c) local-
ized state, A=0.906637669. The system consists of 1159 pairs
of spins and the two kinds of couplings are chosen to be A, & =1
and kg =2.
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The solutions to these equations are

1

4'o, , =do, F, Q ~;,, (33a)

0.5

0.4

j—1

4o,, =So, i Q ~;„ (33b) 0.3

where A,;, is either A,, or rA, , depending on the position i
in the quasiperiodic sequence.

From the periodic boundary condition No ~+,=+0,
we obtain

0.2

i

—1/(1+o i )
(34)

0.1

—
~ r~

—
/m( m+) (35)

This is the critical line for the quantum Heisenberg-Ising
model on a generalized Fibonacci lattice. Although the
quantum Heisenberg-Ising model is di6'erent from the
quantum Ising model, their critical lines are the same for
the generalized Fibonacci lattices (see Refs. 13 and 15).
Figure 6 presents the plots of the bottom edges A;„of
the energy spectra of the systems with (m, n)=(1, 1),
(1,2), (2, 1), and (3,1). The pairs of spins are chosen to be
1597, 1393, 1365, and 1159, corresponding to l =16, 9,
11, and 9, respectively. At the critical values of the cou-
plings given by Eq. (34), in which r =2, the bottom edges
of the energy spectra fall down to A;„=0. This result
matches the speculation that the magnetic phase transi-
tion is driven by the zero mode of the Hamiltonian (9) at
a critical value A,, of the coupling.

VI. SUMMARY

The quantum Heisenberg-Ising models on the general-
ized Fibonacci lattices are studied by the dynamical-maps
technique, in which the nearest-neighbor Ising interac-
tions take two values that follow successively the general-
ized Fibonacci sequences. The energy spectra of the
quasiperio die quantum Heisenberg-Ising models are
Cantor-like, i.e., they are self-similar and exhibit dense
distributions of gaps, In addition, the energy spectra do
not have uniform scalings. For some systems, there are

where o i(m, n, ) =F&"/FI in which FI" and FI are, respec-
tively, the total numbers of tiles A and 8 in the lth gen-
eration SI of a generalized Fibonacci sequence. From the
construction rule of the generalized Fibonacci sequences

S&+,= ISI"~SI,} with So= IB } and S, = I 3 }, one

can find that FI and F& obey the same recursion rela-

tion as F& but with diff'erent initial conditions:

FI+ I =mFI t + nFI" with Fo =0 and Ft"=1, and

FI+ &

=mF&, we then obtain that cr(m, n )

=limi „cr&(m, n)=r(m, n)/m. As l~oo, Eq. (34) be-

comes

0
0.5 0.6 0.7 0.8 0.9 1.0

FIG. 6. Bottom edges A;„of the energy spectra of the sys-
tems with (m, n) =(1,1), (1,2), (2,1), and (3,1), which are
represented by solid, dashed, dot-dashed, and dotted lines, re-
spectively. The pairs of spins are 1597, 1393, 1365, and 1159.
The two kinds of couplings A, ~ and k& are denoted by A, and rA. ,
in which r is chosen to be r =2. At the critical values A,, of the
couplings, the bottom edges fall down to A;„=0.

some energy regions in which the bands are larger with
vanishing gaps, yielding the spectra therein to be almost
continuous.

The main feature of the wave functions is the criticali-
ty, since the critical wave functions, which are self-
similar and neither extended nor localized, are found in
many regions of the energy spectra. In the above-
mentioned energy regions in which the spectra are almost
continuous, it is found that the wave functions are ex-
tended or tend to be extended. For some systems, loca1-
ized wave functions are also found. However, the corre-
sponding energy regions are extremely narrow.

The quantum Heisenberg-Ising model on a generalized
Fibonacci lattice undergoes a magnetic phase transition
driven by the zero mode of the Hamiltonian at the criti-
cal value of the coupling. The critical lines are obtained
for all generalized Fibonacci lattices, and it is numerical-
ly shown that the bottom edges of the energy spectra
really fall down to zero at the critical values of the cou-
pling s.
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