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Josephson-oscillator spectrum and the reentrant phase transition in granular superconductors
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The superconductive phase transition in a granular superconductor, modeled as a Josephson-junction
array, is studied using a self-consistent mean-field theory. In the case when the Josephson oscillator was
treated as a pendulum with discrete energy levels, no reentrant behavior was found. In the opposite ex-
treme when it was treated as a quantum particle in a periodic field, having a band-energy spectrum, there
exists a reentrance from the superconductive to the normal state as the temperature is further lowered.

I. INTRODUCTION

As was shown by Rosenblatt, ' arrays of Josephson
junctions become superconducting in two stages. At the
bulk transition temperature To, the magnitude of the or-
der parameter of each grain becomes nonzero. If the en-
ergy of Josephson coupling between grains EJ is much
less than To, thermal Auctuations cause the phases y of
the order parameter on different grains to be uncorrelated
until the temperature is lowered such that the condition
Ez ~ T is fulfilled.

As Abeles has pointed out, when the charging energy
E„i.e., the electrostatic energy of an excess Cooper pair
localized on a fixed grain, is comparable to EJ, then
zero-point fluctuations of y may destruct the long-range
superconductive order even at zero temperature.

Several authors ' have theoretically investigated the
effects of charging energy on the phase ordering transi-
tion. Some of them ' '" found that this charging ener-

gy can lead to a reentrance of the normal state from the
superconductive state as the temperature is further
lowered. Several experimenters have claimed to observe
a reentrant ' or nearly reentrant' ' ' transition.

The aim of this Brief Report is to investigate how the
reentrant superconductive transition in Josephson arrays
is connected with the spectrum of the Josephson oscilla-
tor.

For the pendulum the states before and after transla-
tion are indistinguishable and its wave function %(p)
should be 2~ periodic. This leads to the discrete energy
spectrum. The states of quantum particle before and
after translation are distinguishable. The only condition
is that %(y) should be limited when y increases ad
infinitum Thi. s leads to the band-energy spectrum.

As was shown by some authors, ' when the junction
is coupled to an environment (for example by normal
shunt resistance) which permits a continuous change of
the charge on the junction the Josephson oscillator can
be treated having the band-energy spectrum.

Hamiltonian (1) may be rewritten in the form

E,(B'/Bq—'+g cosq ) . (2)

%„(y)=exp(in') „

Here E, denotes the Coulomb energy (2e) /(2C) and

g =EJ/E, .
Let us consider the case of small g. In this case the

"potential energy" g cosy may be treated as a perturba-
tion.

The nonperturbed Hamiltonian is

Ho= —E,B /By

with eigenfunctions

II. SINGLE JOSEPHSON OSCILLATOR

A Josephson junction is described by a Harniltonian,
obtained by Anderson:

H=(2e) & /(2C) —Ezcosg .

Here C is the junction capacitance; 2e is the Cooper-pair
charge; EJ is the Josephson coupling energy; n = —iB/By
is an excess Cooper-pair number operator conjugate to
the phase difference y across the junction.

As Likharev and Zorin ' pointed out, Hamiltonian 8
is similar to that of two different physical systems: a pen-
dulum (here y is an angular coordinate), and a one-
dimensional quantum particle moving along the y axis.
These two systems have different properties with respect
to translations y —+y+2~.

J exp( E„/T)(+„~cos—p~'P„)
(cosy&) = " +„f dn exp( E„/T)—(3)

From the Hellman-Feynman theorem is obtained'

(%„~cosy~%„)= —(1/E, )BE„/Bg .

Perturbation theory gives

E„=E,n —E, 2g /2 .1

1 —(2n)

From Eqs. (3)—(5) we obtain

where the characteristic number n is real.
The thermodynamical average value ( cosy ) is given

by an equation:
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(cosy) =g

+ oo 1
dn exp —E,n T—

1 —(2n)

I dn exp( E—,n /T)
(6)

Here I denotes the main value of the integral.
At low temperatures (x =E, /T »1) Eq. (6) has an

asymptotic:

(cosy) =g(1+2T/E, ) .

Equation (6} may be transformed to the form suitable for
numerical calculations (see Appendix A):

f dy exp(y/4)
0 4 y(cosy) =g (8)

exp(x /4) /&x

Josephson oscillator (2) with

E, =P(2e ) and g =zpE~ /E, . (13)

Near the phase transition point p«1 and condition
g « 1 fulfills.

For theory to be self-consistent the average value
( cosy ) obtained using the mean-field Hamiltonian
should be equal to p.

It may be shown that the next term in Eq. (7) which is
proportional to g is negative. For zero temperature it
was obtained by Ferrell and Mirhashem. ' At low tem-
peratures it has small correction, which cannot change its
sign. The same result may be simply obtained for high
temperatures using Eq. (Bl). So we will consider the
term g to be negative for all temperatures.

So it is clear the p will be nonzero if
At high temperatures (x « 1) the asymptotic of (8) is

( cosy ) =gx /2 . r}(cosy)/Bg &E, /(zEq) . (14)

(cosy) =Ez/(2T) . (9)

The last equation may be obtained in a more simple way
using classical statistics (see Appendix B).

The inverse inductance of the Josephson junction is
given by equation:

Remember that g=E&/E, and x=E, /T. So the last
equation takes the form

At low temperatures (T «E, ) using Eqs. (7) and (14)
we obtain that long-range order exists (pAO) if

zEq/E, & 1 2T/E, —. (15)

At high temperatures (T»E, ) we easily obtain from
Eqs. (9) and (14} that long-range superconductive order
exists if

L ' = (2e /fi) E~ ( cosy ), (10)

as Mirhashem and Ferrell have shown. So using Eqs.
(7) and (9) we see that temperature dependence of inverse
inductance is nonmonotonous (in the case g « 1).

III. JOSEPHSON ARRAYS

The generalization of Hamiltonian (1) for Josephson
arrays, obtained by Efetov, is

8= g Pk(2e) &; &a —g Ekcos(y; yk ) . —
ik ik

Here matrix elements P;k are the Coulomb interactions
and E,k are the Josephson energies between the i and k
grains; ltl, = iB/Byj, i—s the excess Cooper-pair number
operator, conjugate to the phase yk of the k grain.

The mean-field Hamiltonian in Hartree approximation
should be obtained by replacing all operators, except two
conjugate operators corresponding to chosen grain, by
their average values:

zEJ/E, & 2T/E, . (16)

1.0-

T
Ec

05-

The results for intermediate temperatures calculated
numerically using Eqs. (8) and (14) are plotted in Fig. 1.

The occurrence of superconductivity goes together
with occurrence of nonzero inverse inductance which is
proportional to p .

8' f =P(2e) 8' zpEJcosy—. (12)

Here z is the lattice coordination number; P =P;; is the
diagonal element of the potential matrix; p is the average
around array value of cosy,' the average values of & is
zero because of electroneutrality of a sample, and this is
why the mean-field Hamiltonian depends on diagonal ele-
ments of potential matrix only.

The Hamiltonian (12) is similar to that of an isolated

0.0
O,S

1

'l.0 20 ZEy

E,

FICi. 1. The phase diagram of a granular superconductor,
calculated using Eqs. (8) and (14). In the area marked X, the
mean value p= (cosy) =0. In area S, @&0and the long-range
superconductive order exists.
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IV. DISCUSSION APPENDIX A

If we will treat a Josephson oscillator as having
discrete spectrum then integrals over n in Eq. (6) should
be changed to sums over integer numbers:

exp( E—,n IT) 1

1 —(2n)
(cosy') =g

exp( E, /—n IT)
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all terms except the one corresponding to n =0 (lowest
energy level) are negative. So (cosy) decreases when
temperature increases, and no reentrant behavior will
occur.

On the other hand, Efetov, Fazekas, and Fishman
and Stroud" obtained reentrant transition using a
discrete spectrum. They used mean-field approximation
only for the Josephson part of Hamiltonian (11) while
they treated the charging term exactly. The reentrance
in these treatments is connected with thermal excitations
screening the Coulomb interactions and reducing the
Coulomb energy. But in the most recent papers ' some
of these authors reported that if both parts of the Hamil-
tonian are treated on equal footing, reentrance disap-
pears.

Simanek, ' who predicted the reentrant transition,
used 4m-periodic eigenfunctions in his calculations. His
results can be rederived using perturbation theory with
degeneracy. So it is not necessary to use a continuous
spectrum to find this effect, but 2~ periodicity should be
violated.

Phase diagrams presented in Refs. 3, 5 —7, and 11 are
different from that obtained by me. The phase curve be-
tween the superconductive and normal state obtained in
those references is perpendicular to abscissa (zE~/E, in
Fig. 1), while that obtained by me has a finite slope given
by Eq. (15).

Taking in attention condition I(0)=0, we obtain

I(x)=exp( —x/4) f dy exp(y/4) —,'&m/y

APPENDIX B

In the case T ))E„yand n are classical variables and
the mean value (cosy) may be calculated via classical
statistics:

(cosy) =

+ oo 27T —1f dn f d yexp (E,n EJcosy cosp—
00 0 T

f dn f dyexp ——(E,n —EJcosy)

f 27T 1
d y exp —Ezcosy cosy

0

27T 1
d cp exp —EJcosy

0 T '
(B1)

In the case Ez ((T we easily obtain Eq. (9).

To calculate the integral

+ co 1I(x)=I dn exp( x—n )
1 —(2n)

we rewrite 1/[1 —(2n) ] as 1+(2n) /[1 —(2n ] and
rewrite I (x) as a sum of two integrals:

I (x)= f dn exp( —xn )

+ QO 4n+I dn exp( —xn )
1 —(2n)

the first integral is equal to &m/x and the second is
equal to 4r)I(x)/—Bx. So we have a linear differential
equation:

4aI(x)/ax+I(x) =V~/x .
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