PHYSICAL REVIEW B

VOLUME 44, NUMBER 13

1 OCTOBER 1991-1

Two-dimensional-lattice spin models with long-range antiferromagnetic interactions

S. Romano*
A. Volta.Department of Physics, University of Pavia, via A. Bassi 6, I-27100 Pavia, Italy
(Received 26 December 1990; revised manuscript received 2 April 1991)

We consider a classical system, consisting of m-component unit vectors (m =2,3), associated with a
two-dimensional lattice {u; |k €Z*} and interacting via translationally and rotationally invariant antifer-
romagnetic pair potentials of the long-range form W= W =¢|x;— x| Pu Uy, p >2, where ¢ is a posi-
tive quantity, setting energy and temperature scales (i.e., T*=kz T /¢), and x, are the coordinates of the
lattice sites. A spin-wave approach predicts orientational disorder (in the thermodynamic limit) at all
finite temperatures and for all p > 2; this agrees with available rigorous results for p > 4, whereas no such
theorems are known in the literature when 2 <p <4. We also report here Monte Carlo simulation re-
sults for the model defined by m =2, p =3; calculations were carried out between T*=0.1 and T*=1,
and sample-size effects were investigated at the lowest temperature examined. Energy and specific-heat
results showed a rather smooth behavior, and no sample-size effect; on the other hand, we found a
significant amount of finite-size order, and its pronounced decrease with increasing sample size. In the
absence of more stringent rigorous results, we conjecture that the present potential models are disor-

dered at all finite temperatures, for all p > 2.

INTRODUCTION

Over the past 20 years, the study of spin systems asso-
ciated with a low-dimensional lattice and interacting via
long-range potentials has attracted a significant amount
of theoretical work, and the present paper continues
along this line, using numerical simulation and spin-wave
arguments in the absence of more stringent rigorous re-
sults.

We consider a classical system, consisting of m-
component unit vectors (classical spins) associated with a
d-dimensional lattice {u,|k €Z?} and interacting via a
translationally and rotationally invariant, i.e., O(m)-
invariant, pair potential of the general form

W=W;=¥(ruu , r=r;=x;—x,, r=[r|, (1)

where x; are the coordinates of the lattice sites.

We restrict our discussion to d=1,2 and to m=2,3
(plane rotators and classical Heisenberg model), so that
the orientation of the spins in an arbitrary laboratory
frame can be defined by the usual polar angles {¢@;}
(m =2) or {3;,3} (m =3); in the following, let A denote
VA

In the thermodynamic limit, no orientationally ordered
phase can survive at finite temperature if the function ¥
has a finite range.! However, it has been pointed out?
that the vanishing of order in the thermodynamic limit
need not exclude its existence for a finite, but macroscopi-
cally large, sample: for example, Imry has studied an
Ising-Kac ferromagnetic model in one dimension,?> whose
spontaneous magnetization vanishes in the thermo-
dynamic limit as 1/In¥, where N is the number of parti-
cles in the system. Spontaneous (or “residual”) ordering
of a finite sample is also found in simulations, at
sufficiently low temperature, even with nearest-neighbor
potential models (see, e.g., the careful study in Ref. 3).

On the other hand, it is also well known that a

4

sufficiently long-ranged (LR) potential can produce a true
ordering transition, taking place at some low but finite
temperature.! To be more specific, we shall consider the
inverse-power models

Wy =cer Pu;-uy, c==%1, p>d . (2)

Here € is a positive quantity setting energy and tempera-
ture scales (i.e., T*=kpT /e, U*=(W ) /N¢), ¢ defines
the ferromagnetic (FM) or antiferromagnetic (AF) char-
acter of the interaction, and the restriction p >d avoids
configurations with an infinite energy per particle; their
behavior has been extensively investigated, especially in
the FM case. It has been proved that the system disor-
ders at all finite temperature when p = 2d, irrespective of
the sign of ¢, and that the ferromagnetic model possesses
an ordering transition at finite temperature, provided that
d <p <2d.*° For d =2 and p >2d, available theoretical
results entail that the FM planar-rotator models (m =2)
possess a transition to a low-temperature phase with
infinite susceptibility (see, e.g., Refs. 10—12). This is also
likely to happen when d =1, p =2.® The FM models
have also been investigated by other techniques, includ-
ing spherical model,'*~' renormalization group,'”'® and
simulation.!®~?!

In contrast to their FM counterparts, long-range AF
models defined by d <p <2d have been studied far less
extensively, and no such theorems entailing existence (or
absence) of an ordering transition at finite temperature
are known in the literature. However, some clues are
available; for example, the infinite-range (mean-field)
model defined by p =0 in Eq. (2) [i.e., by ¥(r) being a
positive constant in Eq. (1)], is known to produce
ground-state frustration and disorder at all finite tempera-
tures.?? In our previous paper,?® we presented simulation
results and spin-wave arguments for d =1, suggesting
orientational disorder (in the thermodynamical limit) at
all finite temperatures, and for all p > 1. In the following
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paragraph, we present a spin-wave argument for d =2,
which gives a similar result. We also study a model of
this kind by computer simulation; this, in turn, requires a
complete definition of the interaction potential. Monte
Carlo calculations are thus reported here for d =2,
m =2, ¢ =+1, p =3 (the midpoint of the interesting in-
terval).

SPIN-WAVE THEORY

We first consider the quantities

§=S,(q)= 3’ h Pexp(ih-q)= 3' h "Pcos(h-q), (3)
hEA heA

where the prime excludes the null vector; series of this
kind have been studied by various authors, and can be
evaluated by techniques based on the J-function transfor-
mation and generalizing the Ewald method.?*~?° The
general result can be cast in terms of incomplete ¥ func-
tions;*® when q is the null vector, or the vector R with
components (7, 7), the expression factorizes into a prod-
uct of one-dimensional series.3%31-33

Here, we then apply spin-wave theory as developed in
Ziman’s book,** explicitly allowing for long-range in-
teractions, and specialize the formulas to an inverse-
power law; this treatment correctly predicts orientational
disorder at all finite temperatures when p >4, thus the
discussion can be restricted to the range 2 <p <4.

In the FM case, the dispersion relation is **

opm(q)*G(q)= 3" h"?[1—cos(h-q)] . (4)
hEA

After applying the named treatment?*-?° and simplifying
the notation, the following limiting form is obtained as q
tends to zero:

G(q)=gy(p)g®? 2. (5
The quantity
Iey=231/G(q)~ [dq/G(q) (6)
BZ

converges for 2 <p <4, and diverges for p >4, thus sug-
gesting the existence of an ordering transition at finite
temperature,® in agreement with known rigorous re-
sults;"*> the sum in Eq. (6) ranges over the first Brillouin
zone (BZ). In the AF case, the dispersion law is3

war(q)=[4(q?—B(q)], 7

A(q)=3'h P{—o(h)+L[1+a(h)]cos(h-q)} , (8)
heA

B(q)=1 3’ h™?[1—o(h)]cos(h-q) , (9)
heA

where o(h)=exp(ih-R). After carrying out the ap-
propriate substitutions?*~2° and simplifying the notation,
we obtain, to lowest order as q tends to zero,

A(qQ)=D (p)+a,(p)g? *+a,(p)g?,
B(q)=D(p)+a,(p)g? 2—a,(p)g? .
Now the quantity

(10)
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I,p=3 4(q)/[ 4%(q)—B*q)]
BZ
~ [dq A(@)/[47(q)—B*q)] (11)

diverges for all p >2, and this predicts orientational dis-
order at all finite temperatures.>*

COMPUTATIONAL ASPECTS AND RESULTS

Calculations were carried out using periodic boundary
conditions and the Ewald-Kornfeld algorithm for lattice
summations, as outlined in Tosi’s review paper;> they
were started from the ground-state configuration at the
lowest temperature, and performed in order of increasing
temperature. Both equilibrium and production runs took
6250 cycles (where one cycle corresponds to N attempted
moves), and subaverages for evaluating statistical errors
were calculated over macrosteps consisting of 250 cycles.
Several sample sizes (N =L?2, L =20, 30, 40, 50, 60, 70,
and 80) were examined at the lowest temperature investi-
gated, T*=0.1; calculations were also carried out over a
wide temperature range, from 7*=0.1 to 1, mostly using
one sample size, L =50. Calculated quantities include
potential energy, configurational specific heat (both as a
fluctuation quantity and by least-squares fit and numeri-
cal differentiation of the potential energy), magnetic mo-
ments, and nematic second-rank ordering tensor with as-
sociated order parameter,“'39 which monitor orienta-
tional order independently of sublattice magnetization.
The correlation function was also calculated at a few tem-
peratures by analyzing one configuration every second
cycle. Magnetic moment, staggered magnetic moment,
and their mean-square values are defined by

M,=(1/N)F), M,=(1/NXVF-F),
M;=(1/NXF'), M,=(1/NXVF F),
where

N N
F=3 uw, F Y o(x )y, (13)
k=1 k=1

(12)

and o(x; )=exp(iR-x;).
We also define M as the component of M; with the
larger magnitude (see Table I); both M; and M, were

TABLE 1. Simulation results obtained at T*=0.1 and with
different sample sizes N=L2 The results for potential energy
and configurational specific heat are U*= —1.2720+0.000 04,
Cy/kp=0.51£0.02, independent of sample size to within the
statistical errors; M5 denotes the component of M; with the
larger magnitude.

L M, M P,
20 0.944 0.805 0.788
30 0.932 0.925 0.751
40 0.929 0.830 0.743
50 0.919 0.908 0.712
60 0.906 0.895 0.654
70 0.900 0.796 0.662
80 0.880 0.712 0.596
(+0.004) (40.008) (40.006)
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FIG. 1. Results for the relative potential energy; the relative
statistical error is not greater than 0.4%.
found to be essentially zero, as they should. The second-

rank nematic ordering tensor is defined by

Qv =2Cu,u,)—5,,, (14)
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FIG. 2. Results for the configurational specific heat. (a) Cir-
cles: fluctuation quantities, with error bars. (b) Squares: results
obtained by a least-squares fit and numerical differentiation of
the potential energy.
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and the corresponding order parameter P, is defined via
its positive eigenvalue; a detailed discussion of the com-
putational aspects can be found in Refs. 36—39.

The temperature dependences of potential energy (Fig.
1) and configurational specific heat (Fig. 2) showed a
smooth behavior, with a maximum of the specific heat
about T*=0.55; as an additional check, we repeated
simulations at 7*=0.5, 0.55, and 0.6, using both L =40
60, and found results, independent of the sample size to
within the associated statistical errors. This behavior
shows no hint of a transition. At T*=0.1, results for po-
tential energy and specific heat were found to be indepen-
dent of the sample size, to within the associated statistical
errors (see Table I); on the other hand, the ordering quan-
tities kept decreasing with increasing sample size. Re-
sults for M, were fitted using the functional form

M,=A+pL"", (15)

and the three parameters were determined by means of
the general nonlinear least-squares program MINUIT from
the CERN library. Including all sample sizes, we found a
variance of 0.00032 and the values A=0.013%0.004,
7=0.045+0.002; on the other hand, restriction to L =40
gave a variance of 0.000079 and the value
A=0.0091£0.004, 7=0.073£0.005. The parameter p was
found to be of the order of 1. Such numbers suggest M,
to be actually zero in the thermodynamic limit. Finite-
size order kept decreasing with increasing temperature
(results are not shown here); for L =50, it disappears at
T*2>0.7, as is also shown by the correlation function.
The correlation function is given by

G(r)=(u;-u; ) as function of r=|[x;—x,|, (16)

and for convenience of drawing we define the more
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FIG. 3. Results for the staggered correlation function E () at
the temperatures T*=0.5 (circles); T*=0.75 (squares); T*=1
(triangles); the correlation functions are defined in the text.
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smoothly varying quantity (staggered correlation func-
tion)

E(r=o(x;)o(x;){u;u, ) =(—1)"G(r) . (17)

The functions E (r) obtained at three different tempera-
tures are plotted in Fig. 3. At the lowest temperature in-
vestigated, E (r) kept slowly decreasing with distance, but
still showing a significant amount of finite-range order:
we found E (r)=0.2 at r =20.

On the basis of the present results, and in the absence
of more stringent rigorous ones, we conjecture that the
examined potential models produce orientational disor-
der at all finite temperatures in the thermodynamic limit.
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