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The transition temperature for a semi-infinite superconducting superlattice composed of alternat-
ing layers with different electron diffusion lengths is calculated in the presence of a homogeneous
magnetic field aligned parallel to the layers. The effect of the free surface on the discontinuity in
the upper critical field H,3 that is manifest in such systems, over a certain range of parameters, is
examined and the experimental implications of the results obtained are discussed.

I. INTRODUCTION eter A(x) reduces to the linearized integral equation9

In recent years there has arisen a considerable theo-
retical and experimental interest in a new class of su-
perconductivity compounds comprising superconducting
superlattices. Much of the interest has been focused
on the efFect of an externally applied magnetic field on
the superconducting transition temperature and a num-
ber of intriguing phenomena have been observed. ~ 5 Per-
haps one of the more novel efFects that can arise in such
systems as recently predicted by Takahashi and Tachiki
is the discontinuous slope in the upper critical field in
superlattices composed of alternating layers composed of
metals with difFering electron difFusion constants. The
existence of such a discontinuity has been confined ex-
perimentally in at least two systems. ~ 5

The origin for the discontinuity in the slope of the up-
per critical field lies in the efFect of the superlattice ge-
ometry on the nucleation of the superconductivity. For
suFiciently low values of B it is found that the supercon-
ductivity nucleates in a clean (N) layer. However for a
certain range of parameters the nucleation switches to a
dirty (S) layer when t, he field H exceeds a certain value
H'. It is this translation of the nucleation center that
gives rise to the discontinuity in the slope.

It is well known in type-II superconductors that the
presence of a free surface allows the superconductivity to
nucleate at a higher temperature resulting in an enhance-
ment of the upper critical field. In this paper we examine
the role of a free surface in determining the upper critical
field of a metallic superlattice. In particular we wish to
examine how the attractive character of the free surface
on the nucleation center is modified by the superlattice
geometry. The question is of some importance both in
providing a better understanding of the present experi-
mental data as well as suggesting some further work.

II. WERTHAMER —DE CENNES THEORY
OF THE PROXIMITY' EFFECT

Near the critical temperature when the phase tran-
sition to the normal state is second order, the self-
consistent equation for the superconducting order param-

A(x) = U Q(x, y)A(y) d z,

where U denotes the BCS coupling constant and the ker-
nel Q may be written in terms of the one-electron Green's
function g (x, y). Within the framework of the semi-
classical phase integral approximation we can write the
kernel Q in the form9

q( y) —e ( )'( x)I (x y) (2)

In the Werthamer —de Gennes theory the reduced kernel
is evaluated in the single mode approximation and the
linearized integral equation, Eq. (I), reduces to

permits the determination of the superconducting transi-
tion temperature for a particular geometry as a function
of the applied magnetic field H.

Within the framework of the Werthamer-de
Gennes theory of the proximity efFect the order param-
eter in a system comprising two distinct metals, which
we denote by S and N, respectively, separated by a well-
defined interface, is also governed by Eq. (3) with (~
and T, appropriately chosen. The resultant equations
together with the boundary conditions at the interface

where P, denotes the flux quantum, T, denotes
the superconducting transition temperature of the
bulk superconductor in zero magnetic field, (7 de-
notes the temperature-dependent coherence length
(= hD/2xksT), and the function y may be expressed
in terms of the digamma function @(z) as y(z) = @(&z+
i) —g(i). Equation (3). together with the boundary
conditions at the surface of the superconductori
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(W
— A) As(x)

where X = ~2(z —zo)/(II with (Ir —2vrH/rtp„ then the
Werthamer-de Gennes equations given in Eq. (3) reduce
to

dg(X) 1 ~ 1 2 1= ——g (X)+ —pX' ——A, X F S,
dX p 4 2

(9)

dg(X) ~ 1 ~ 1

dX
= —g (X)+ —X ——A, X C N, (10)

4 2

with p = Ds/Drv. The eigenvalue A is related to the
reduced transition temperature t = T/T„ through the
equation

t' hD~

(2' k~T (~~

The boundary conditions at the NS interface given by
Eq. (5) reduces to the requirement that the g be con-
tinuous across the interface while at the surface of the
superconductor g = 0. The determination of the ob-
served transition temperature is complicated by the fact
that Eqs. (9) and (10) together with the corresponding
boundary condit;ions, has many solutions yielding a set
of eigenvalues with the values in the set being depen-
dent upon the particular value of zp appearing in the
functional form of the order parameter, given by Eq. (7).
Since the observed transition temperature corresponds

(W
— A) As(x) (6)

permits the determination of the superconducting tran-
sition temperature for a composite system such as the
multilamellar systems that is the subject of this paper.

AVe wish to apply the above procedure to a semi-infinite
superlattice consisting of alternating layers of two super-
conducting metals. The two metals are assumed to have
a common transition temperature T, in bulk but have
different electron diffusion constants which we denote by
Ds and Drv for the dirty (S) layers and the clean (N)
layers, respectively. In particular we wish to compute the
superconducting transition temperature in the presence
of a homogeneous magnetic field H aligned parallel to
the layers.

Choosing the z axis to be normal to the NS interfaces
and the magnetic field to lie along the z direction we
choose the magnetic vector potential A(x) to be of the
form

A(x) = H(0, z, 0) .

Assuming the order parameter to be of the form

ei(2' FI/P~)zopf
&( ) =,;(2.H~~. l...f„(,)' ~ N (7)

where the parameter zo and the functions fs and frv are
yet to be determined. We define the function g as

pd~. ln fs(QX), X g S,
(8)

to the value obtained from the minimum eigenvalue, the
calculation of the upper critical field requires that, for
each value of zp we determine the minimum eigenvalue
obtained from Eqs. (9) and (10) subject to the boundary
conditions that g = 0 at the free surface and is continu-
ous at the NS interfaces. We denote by Ao the minimum
eigenvalue thus obtained. Since Ap depends on zp in a
nontrivial manner the evaluation of the observed transi-
tion temperature requires that we determine the partic-
ular value of the zp that yields the minimum value of Ap.

These we denote by z* and A', respectively. The variable
z* is generally referred to as the nucleation center for
the superconducting order parameter, while the eigen-
value A' yields the transition temperature by virtue of
Eq. (3). This self-consistent determination of the nucle-
ation center z* considera. bly complicates the calculation
of the upper critical field.

III. THE EVALUATION OF THE UPPER
CRITICAL FIELD H~g

The calculation of the superconducting transition tem-
perature as a function of the applied magnetic field sep-
arates into two distinct parts. The first part requires
the self-consistent determination of the nucleation cen-
ter z* and the corresponding eigenvalue A*. With A'

thus determined the second part involves the relatively
straightforward evaluation of the superconducting tran-
sition temperature T from Eq. (11).

In order to determine A* and z* for a given value of
applied external field H we first compute the eigenvalue
Ap numerically from Eqs. (9) and (10), together with the
corresponding boundary conditions, as a function of the
parameter zp. This yields a family of curves of Ap versus
zp, with each curve corresponding to a diA'erent value of
H. Four such families of curves are illustrated by the
surface plots given in Figs. 1(a), 1(b), 2(a), and 2(b) for
various geometries and values of p.

The surface plots shown in Figs. 1(a), 1(b), 2(a), and
2(b) share a number of qualitatively similar features. In
particular we find that for H suKciently small (i.e. , mod-
ulation length d « magnetic coherence length (H), the
detailed structure of t, he superlattice does not manifest
itself in the functional dependence of the minimum eigen-
value Ap on the parameter zp. Instead what is observed
is a smooth curve with a single minimum. The position
of the minimum z* and the corresponding eigenvalue A'

can be evaluated in the limit H ~ 0 (see the Appendix)
as

0.5091~p (1+p) &
't'

!lim z* =
h~p 2

(12)

lim A" = 0.590l~p.
h~p

This behavior is characteristic of a semi-infinite homo-
geneous superconductor, with an eAective electron diA'u-

sion constant D = i/DsDrv. The effect of the minima
in the functional dependence of Ap on zp, induced by
the presence of the free surface, is to enhance the criti-
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I"IG. 1. Plots showing the dependence of the eigenvalue
Ao on the parameter xo as a function of the applied magnetic
field for the (NSN ) geometry for (a) p = 0.1 and (b)
p = 0.05. The parameter H = H,q(0) and corresponds to
the upper critical field of a bulk sample at 0 K with D = D~.

FIG. 2. Plots showing the dependence of the eigenvalue Ao

on the parameter xo as a function of the applied magnetic field
for the (SNS ) geometry for (a) p = 0.1 and (b) p = 0.05.
The parameter H = H,2(0) and corresponds to the upper
critical field of a bulk sample at 0 K with D = D~.

cal field, giving rise to what is commonly referred to as
surface superconductivity. This rather simple behavior
disappears, however, as the applied field H is increased
and the modulated structure of the superlattice is seen
to manifest itself in the functional dependence of Ao on
zo. What we now observe is a curve with multiple min-
ima. For zo )) (0, t, he effect of the free surface on the
form of the superconducting order parameter is negligible
and we find that the minima occur in either the center of
the clean (N) layer, or with increasing magnetic field, in
the center of the dirty (S) layers, reflecting the periodic
nature of the superlattice. The fact that the nucleation
center z' switches over from the clean (N) layer to the
dirty (S) layer with an increasing magnetic field, gives
rise to a discontinuous slope in the dependence of A* on
the applied magnetic field, this may be seen in Figs. 3
and 4. This can result in a discontinuity in the slope
of the upper critical field H, 2 as shown in Fig. 4. This
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FIG. 3. Plot of the minimum eigenvalue A' as a function
of the applied magnetic field, for the superlattice and the
semi-infinite (NSN ) and (SNS ) geometries for p = 0.1.
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FIG. 4. Plot of the minimum eigenvalue A' as a func-

tion of the applied magnetic field, for the superlattice and
the semi-infinite (N SN - .) and (SN S . ) geometries for

p = 0.05.

FIG. 5. Upper critical field curves for the superlattice and
the semi-infinite (NSN ) and (SNS ) geometries for p =
O. l.

is the basis for the novel crossover behavior predicted
by Takahashi and Tachiki7 and subsequently confirmed
experimentally. 4

More interestingly, and indeed the substance of this
paper is the modification of the functional dependence of
the eigenvalue A, on the parameter z, due to the pres-
ence of the free surface in this particular regime (i.e. ,

modulation length d - magnetic coherence length gH)
and the corresponding values of z' and A' obtained. In
particular we find, not surprisingly, that in the case of the
semi-infinite geometry we must distinguish between the
case in which the first layer is clean (NSN ) shown in
Fig. 1 and that in which the first layer is dirty (SNS )
shown in Fig. 2. In the case of the former (NSN )
the two sets of results (p = 0.05, p = 0.1) show some
interesting differences. For the case p = 0.]. we find that
as the functional form for Ao begins to develop multiple
minima, with increasing H, then the nucleation center
z* is located initially in the first N layer but then shifts
to the first S layer with increasing magnetic field. This
shift in the nucleation center gives rise to the discontinu-
ity in slope of the curve of A' with magnetic field H jHp,
shown in Fig. 3 for the NS'N . geometry. The resultant
critical field curve is shown in Fig. 5 and is seen to cor-
respond closely to the upper critical field curve obtained
for the equivalent infinite superlattice also shown in Fig.
5. Note that for both the superlattice and the NSN .
geometry that for this particular value of p the applied
field H at which the discontinuity of the eigenvalue A'

appears in less than the zero temperature upper criti-
cal field. Consequently the discontinuous behavior of the
eigenvalue A' does not manifest itself in the temperature
dependence of the upper critical field in either the su-
perlattice or NSN . geometries. The results obtained
in the NS'N geometry for the case p = 0.05 show a
somewhat difFerent behavior. In this instance we find as
before that as the functional dependence of Ao begins to
develop multiple minimum with increasing magnetic field
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FIG. 6. Upper critical field curves for the superlattice and
the semi-infinite (NSN ) and (SNS ~ ) geometries for p =
0.05.

the nucleation center is located in the first N layer. As
the magnetic field H is increased further the nucleation
center then shifts to a clean N layer in the center of the
sample, thus we observe a crossover from nucleation at
the surface to nucleation in the bulk of the sample. This
gives rise to the very shallow discontinuity in the slope of
the curve A' versus H shown in Fig. 4. As the magnetic
field is increased further the nucleation center shifts again
to the first S layer, giving rise to a second discontinuity
in the slope of the curve A' versus H. The resultant crit-
ical field curve is presented in Fig. 6 and shows the effect
of the shifts in the nucleation center. For the particular
parameters considered here the first shift in the nucle-
ation center at the crossover from surface nucleation to
nucleation in bulk has very little quantitative effect on
the calculated upper critical field curve and hence would
be very difFicult to detect experimentally from measure-
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ments of the upper critical field. However it may be that,
for a different choice of parameters, the effect is more dis-
tinct.

The close correspondence between the upper critical
field curve obtained for the NSN . geometry and the
equivalent infinite superlattice, exhibited by the curves
shown in Figs. 5 and 6, is of some importance since it is
the NSN geometry that has been examined experi-
ment, ally and our results support the reasonable assertion
that for such geometries the upper critical fields H, 2 and
H 3 will differ but little,

In the case of the (SNS .) in Fig. 2 geometry we
find that, as the functional dependence of Ao begins to
develop multiple minima with increasing magnetic field
H, the nucleation center z* occurs in the first N layer
for both p = 0.1 and p = 0.05. As the applied magnetic
H field is increased the nucleation center shifts from the
first N layer to the first S layer. However due to the at-
tractive character of the free surface the shift in the nu-
cleation center occurs at a much lower value of H than
in either the NSN geometry or the infinite super-
lattice geometry. The resultant critical field curves, for
the case p = 0.05, are shown in Fig. 6 and show that
t, he discontinuity in the upper critical field curve occurs
at a much lower value than in the corresponding NSN
geometry and the infinite superlattice geometry. The re-
sultant critical field for the case p = 0.1 is shown in Fig.
5. The presence of the free surface is seen to give rise
to a discontinuity in the slope of the upper critical field
that does not manifest itself in either the corresponding
NSN . geomet, ry or the infinite superlattice geometry.
Thus we see from t, he results presented in Figs. 5 and 6,
the crossover effect predicted by Takahashi and Tachiki
is considerably enhanced by the presence of the free sur-
face in the case of the (SÃS . ) geometry. Equivalently
we can regard this as the enhancement of H, 3 by the
superlat tice geometry.

claims made in the literature regarding the interpreta-
tion of the experiment data. More interestingly perhaps
we find in the case of the (SNS .) geometry, in which
the initial layer is a dirty (S) layer the upper critical
field deviates significantly from the value measured in the
case of the infinite superconductor and hence H,3 Q H
Moreover the crossover effect predicted by Takahashi and
Tachiki is significantly enhanced and occurs at a much
higher temperature and is manifest for a much wider
range of parameters. This suggests t;hat some further
experimental work comparing the (NS¹ .) geometry
and the (SNS . ) may provide valuable tests of existing
theoretical models.
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AP PEND IX A

We wish to show how Eqs. (9) and (10) may be solved,
subject to the appropriate boundary conditions, in the
limit H ~ 0 and the minimum eigenvalue A' obtained.

In the limit H ~ 0 the magnetic coherence length
(H goes to infinity hence the reduced thickness of the
layers (6 = d/(H), with d being the physical thickness of
a layer N or S, becomes vanishingly small. In this limit
Eqs. (9) and (10) are well approximated by the linearized
difference equat lolls

g(z;) = g(z;+i) —6[-'z;+, —-'A —g (z,+i)j, z C N,

(Al)

IV. CONCLUSIONS

We have examined the effect of a free boundary on
the upper critical field of a superconducting superlattice
consisting of alternating layers with different electron dif-
fusion coefFicients. For the range of parameters studied
we find that in the (NSN ) geometry, in which the
initial layer is a clean (N) layer, the upper critical field
is very close to the value obtained in the case of the infi-
nite superlattice and hence H, 2 H,3. In particular the
temperature at which the discontinuity in the slope in
the upper critical field occurs is relatively insensitive to
the presence of the free surface. This is consistent with

(A2)

To solve these linearized equations in the limit 6 ~ 0
we apply the coarse-graining procedure developed in the
analysis of self-similar multilamellar lattice structures.
The technique considers the superlattice as an alternat-
ing sequence of S (SNS) and N (NSN) trilayers. Using
the continuity of the logarithmic derivative g at the in-
terface between the layers, together with difference equa-
tions, Eqs. (Al) and (A2), it is possible to obtain a set
of rescaled equations for the superlattice composed of al-
ternating trilayers, namely,

(A3)

(A4)

with
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1
n(1) = —(2p+ 1),

3 (A5)

&(1) = 3(2+ p)
1

Repeating the procedure m times yields the equations1, 1 n(m)
g(z~) =g(z~) —D(m) -&(m)zA —-& —— g'(za) l, z & &,4 2 p

(A6)

1 P(m)g(zl. ) = g(z~) —D(m) n(m)—z11 ——A — g2(zR) ~, z g S,4 2 p ) '

with

(A7)

D(m) = 3D(m - 1),

1
n(m) = —[2cr(m —1) + P(m —1)],3 (A8)

1
P(m) = —[2P(m —1) + n(m —1)].3

The above equations may be solved and the explicit form for D(m), n(m), and P(m) obtained. We find that
lim [n(m) —P(m)] = 0 so that the above difference equations reduce to a single diR'erence equation

g(2:I, ) = a(za) —D(m) —vzR ——A ——g (Ta)), T c N or 8,
1 2 1 7 2

4 2 p

where p is defined as

lim n(m) = lim P(m) = 2(l + p).fA~ OO 'Al ~OO
(A10)

we can rescale Eq. (All) as

"g~(za) 1 2 1= —ga(») + 4zr —~&~.
+R

(A13)

dg(z) y , 1 , 1= ——g (z)+ —yz ——A.
dz p 4 2

(A 1 1)

Provided D(m) is suHiciently small we can approxi-
mate the above difI'erence equation by the diAerential
equation

Applying Eq. (A13) to a superlattice geometry yields the
result, of A~ = 1 and thus A = ~p. For the semi-infinite
superlattice (NSN ) or (SNS . ) with the b.oundary
condition at free surface g~(0) = 0, the eigenvalue can
be readily calculated to give

By defining

~1/2
gii(z) =

( g(z),
p

1/2
XR:

/
Z) (A12)

zR = /0. 59010,
~

~

AR ——0.590 10,

and hence

0.5091~p (1+p)z = ~~ h~0

while

A = 0.590 10', h ~ 0.

(A14)

(A15)

(A16)
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