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The coupled set of evolution equations of the individual resistively shunted junctions in an array
is written in a form that directly reveals the existence of a single-junction solution (SJS) for specific
values of the external magnetic field. We formulate a condition that determines these field strengths
in terms of the corresponding ground-state configurations. By studying the linearized evolution
equations, around this coherent-phase solution, we show that the array is phase locked to the external
source when the SJS is stable. Only in this case does it have relevance in practice. Our analysis
clearly indicates that there are only regular Shapiro steps in the regions of stability, and in between
these regions our simulations confirm the absence of fractional steps, reported earlier. Furthermore,
simulations, also in fields with no SJS, demonstrate a degree of insensitivity to the field strength,

which is only partly understood.

I. INTRODUCTION

Recent experiments! in arrays of tunnel junctions
driven by a radio frequency (rf) source

Iext(t) = Idc + Iac Sin(27r1/0t),

(1.1)

have revealed steps in the time-averaged voltage, < V >,
across the array as a function of I4.. The arrays consist of
a rectangular lattice with superconducting islands, each
of which is linked to its nearest neighbors by Josephson
junctions, and the rf current is applied in the [01] direc-
tion. On a Shapiro step the value of < V >, calculated
per junction in the current direction, can be written as
(n/q)hvo/(2€), for integers n and ¢q. The steps clearly
reflect the occurrence of collective phase locking of the
Junctions in the array to the external source. Particu-
larly striking is the appearance of steps in the Iy.-< V >
characteristic at integer values of ¢ > 1. These measure-
ments were explained using the intuitive picture of rigid
vortex lattice motion.!:2

In the arrays the magnetic field is usually measured as
the flux f piercing a unit cell of the array in units of the
elementary flux quantum ¢¢ = he/(2¢). It is easy to see
that the behavior of an array is periodic in f with period
1, and is invariant under f — —f, so that one only needs
to consider the interval 0 < f < % When a magnetic
field is applied, automatically, each unit cell contains a
vortex charge equal to f. The interaction between vor-
tices is logarithmic at large intervortex distances. A con-
sequence of the long range of the interaction is that the
system will try to make the total vortex charge in the ar-
ray equal to zero. To this end vortices with a charge —1
are induced in a fraction f of the cells, and these vortices
are mobile. When an external current is applied, such a
vortex experiences a Lorentz-like force, perpendicular to
the current.3

For specific values of f, the density of mobile vortices
are such that they can form a lattice which is commensu-
rate with the underlying physical lattice. Phase locking
at values of < V > with ¢ > 1 occurs when such a vor-
tex lattice moves rigidly over a number of unit cells of
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the physical lattice. This picture is in agreement with
observations®? in dynamic simulations.

In single junctions the regular steps, occurring at ¢ =
1, are characterized by a trajectory in phase space which
is periodic in time with the period 79 = 1/vg. Here, the
g > 1 steps can only® occur for underdamped junctions
(for a review see, e.g., Refs. 6 and 7). These steps are
then referred to as subharmonics and the trajectory in
phase space does not have the 7y periodicity. In this
sense the ¢ > 1 steps in the single junctions are fun-
damentally different from the ¢ = 1 steps in a single
junction and also from the ¢ > 1 steps in the arrays.
The existence of anomalous steps in a simulation of ar-
rays was reported at f = %.2 Enabled by a very effective
method,® we have extensively simulated arrays with re-
alistic (free) boundaries, and established absence of such
steps in these systems.

The physical consequences of the aforementioned
commensurability are manifest in various quantities,
like, e.g., the array’s magnetoresistance®™ 1% and criti-
cal current.®”'3 In large arrays the effects are most pro-
nounced at fractional values with a small denominator,
like f = -;—, % , etc.; however, in smaller systems this need
not be true. Both experiment and simulation show that
in ladder arrays the major effects occur at other values if
one replaces the usual geometry by a staircase geometry
pictured in Fig. 1.8

The studies of the Shapiro steps mentioned above all
consider an array in the form of a rectangular lattice.
Given the critical importance of geometric features for
the magnetoresistance, an interesting question remains
with respect to the influence on the steps of the ar-
ray geometry. Recently, Sohn et al. also studied the
Shapiro steps in staircase arrays, and Halsey introduced
a theoretical approach of the phenomenon in such arrays.
The experiments and simulations'4 show that there are
only ¢ = 1 steps, a result at variance with the proposed
theory,!® which predicts subharmonic steps. The results
in Ref. 14 were plausibly explained from the simulations,
which reveal that the voltage differences over all the junc-
tions in the array are equal at all times. Therefore, the

6937 ©1991 The American Physical Society



6938

2Iext 2Iext 2Iext ZIext

T,

ZIext

FIG. 1. Array with a staircase geometry. Each column
has a current source of its own. With this convention the array
carries its critical current when I.x is equal to the junctions
critical current I. (i.e., when iexy = 1). Crosses represent
junctions; squares represent islands.
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discrepancy between theory and (computer) experiment
becomes even more puzzling.

It is the purpose of this work to gain more complete
insight in this behavior. We find that the key to full un-
derstanding lies in a stability analysis of the full single-
junction-type solution. Instead of deducing the correct
equation for the coherent-phase part of the solution from
the results of the simulation, we rewrite the full set of
equations in a form that enables us to find not only the
solution itself, but also the exact preconditions for ex-
istence. Next we explain the step width on the basis
of stability of the coherent phase solution, and find that
the mechanism through which this solution loses stability
gives rise to an intrinsic rounding of the curve near the
steps. Moreover, we demonstrate how an ad hoc assump-
tion, made to ensure stability, actually leads the theory to
give the spurious subharmonic steps. By showing explic-
itly how the stability analysis can actually be performed
with respect to the continuous phase variables, one sees
that this assumption is in fact an unnecessary artifact,
leading to steps that are indeed not seen. Our simulation
results for several values of f, in both finite and periodic
arrays, show a large degree of insensitivity of the behav-
ior of the arrays to changes in the magnetic field, which
is only partly understood. Finally the scheme presented
here for the practical analysis of the stability of solutions
of the dynamic equations, may prove useful in other sit-
uations.

II. THE SINGLE-JUNCTION SOLUTION

We consider arrays of N junctions with a geometry
as pictured in Fig. 1. The external current is of the
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form given by Eq. (1.1), but measured in units of I it
is denoted by iext(t). In the present context it is natural
to give the voltage difference in units of hvy/(2e) and
the resulting dimensionless quantity, averaged over all
junctions in the array and over time is < v >. The
unit of time is given by h/(2el.R,), where R, is the
normal state resistance of the individual junctions. The
resistively shunted junction model is employed to solve
the single-junction dynamics. For the junction occupying
bond < r,r ' > and carrying a total current ¢(r,r ’,¢) this
leads to

@(r,t) — p(r’,t) = i(r,x',t) —sin [p(r,t) — (r ',2)

—2rA(r,r )], (2.1)

where

r ’
A(r,r ) = 2 / A(r,x’)-dl. (2.2)
¢0 r

Here, the ¢(r,t) represents the phase of the supercon-
ducting island at position r. The vector potential is de-
noted by A, and the previously introduced f equals the
sum of the A(r,r /) over the bonds surrounding a unit
cell of the lattice.

For an analytical approach it is essential that we con-
sider an array which is either infinite or periodic, in both
z and y directions. In fact, as we shall see later on,
the single-junction solution (SJS) itself is not stable, and
therefore irrelevant, for the finite array, where the junc-
tions near the edges will behave differently from those
in the bulk. These boundary effects do not have an im-
portant effect on measurements in a large system, but
they seriously complicate a stability analysis. We there-
fore impose periodic boundaries, together with a current
bias. This is nontrivial in itself, but can be achieved us-
ing the analysis presented in previous work.®2 We apply
the results of Ref. 8 to the staircase geometry, and re-
model these time evolution equations to obtain a form
which very much suits the present purpose. First we
distinguish between bonds in the X + § and —% + § di-
rections (see Fig. 1). We then write each bond variable
appearing in Eq. (2.1) as a sum of three terms: a spatially
homogeneous term, which is equal to the average over all
bonds in the direction of the bond under consideration,
a rotation-free and a divergence-free term. It is easy to
see that, if we set both the sum of the homogeneous and
the sum of the rotation-free terms in Eq. (2.1) equal to
zero, then the sum of divergence-free terms vanishes au-
tomatically. We present the averages in the X + ¥ and
—X%X + ¥ directions as ® + ¥ and ® — ¥, respectively, and
alltogether this gives us

B(t) = iexe(t) — % E E (a; - §)sin[é(r,r + a;)] ,

r i=1,2
(2.3a)
¥(t) = _% 33 (ai-®)sinfpr,r+a)],  (2.3b)
r i=1,2
(2.3¢)

G(r,t)==> Gr—r')D(x’,1),
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with

4
D(r,t) =" sin[¢(r,r +a;)]. (2.4)
i=1
Here ¢(r,r + a;) is a shorthand notation for the total
phase difference between r and r + a;:

$(r,r +a;) = Aa,p(r,t) + po(r,r + a;)

+ (ai - 3)P(t) + (a; - X)¥(t).  (25)

The nearest neighbors a; are numbered a; = X + ¥,
ag=—-X+§,a3=—-X—-§, a4 =%—¥, and A, f(r) =
f(r) = f(r + a;). The magnetic field is incorporated
through the ground-state configuration of gauge invari-
ant phase differences, {¢o(r,r ’)}, which we assume to be
known. The function G is the lattice Green’s function in
two dimensions, which can always be found by employing
Fourier transform to invert the discrete Poisson equation
4
S IGE +ai) — G(x)] = —ébr,0,

i=1

(2.6)

where 6 represents the Kronecker function, as usual.
Note that the current-biased periodic array can be seen
as an array with periodic boundaries on the ¢(r,t), but
then together with time-dependent twists, ®(¢) and ¥(t),
calculated per junction. These twists are determined in
a self-consistent way, at every instant. The voltage dif-
ference, averaged over all junctions, is directly given by
®(t) in the y direction, and by ¥(¢) in the z direction.

Starting from Egs. (2.3a)-(2.3c), we now derive the
SJS and study its consequences in general. The phase
differences in the ground state without an external cur-
rent, @o(r,r + a;), surely have to conserve supercurrents
at every node r. In fact, imposing conservation of super-
currents is equivalent to minimizing the total energy of
the array. We can rephrase this conservation in terms of
our quantities by saying that the D(r,t) are identically
zero in the ground state, that is, they vanish if all ¢(r,?)
vanish together with ®(¢) and ¥(¢). If we increase iex:(t)
from zero, at T = 0, a simple reasoning shows that there
is still a solution with all D(r,¢) equal to zero if and only
if, for all r,

4
Z(ai - ¥) cos[po(r,r + a;)] = 0. (2.7)

i=1

This condition is satisfied, in particular, if the go(r,r )
form a state which belongs to the class of staircase states
introduced by Halsey,'3 with the current injected in the
direction of the staircases. These ground states appear,
e.g., for f =0, %, %,and % The solution found here,
with all D(r,t) =0, is indeed a SJS because the voltage
differences over all junctions in the array are identical.

Limiting ourselves to the staircase states, we have
¥(t) = 0 and the evolution equation for ®(¢) which fol-
lows from the SJS is

®(t) = iexs(t) — Cy sin[®(2)], (2.8)
with )
Cr =+ > cosfpo(r,r )], (2.9)
<rr'>
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where the sum is over all junctions. We know that C; is
positive for all staircase states.!® Therefore we can trans-
form Eq. (2.8) into a formal single-junction equation by
rescaling the external current and the frequency. Still,
we cannot simply use the single-junction results to de-
termine the location and width of the steps. This is be-
cause the SJS is only relevant in practice when it is stable
against small deviations. In the next section we therefore
perform a stability analysis.

The simple SJS of Eq. (2.8) does not exist for arbitrary
f, and in general the description is more complicated. In
the cases considered by Sohn et al. and ourselves, the
tgc— < v > characteristic still does not show any ¢ > 1
steps. So far, there is no understanding for these cases
at the level of the individual junctions.

III. STABILITY ANALYSIS AND SIMULATIONS

In this section we study the stability of the SJS in
arrays, using standard theory.!®

We consider a staircase array, again current biased
and with periodic boundaries, and we assume that f is
such that the ground state of the system is a staircase
state. We inject the external current, with 7,. = 1.0 and
vo = 0.1, in the direction of the ground-state staircases
in order to have an SJS. With Eq. (2.8) we can associate
a single-junction situation, and we choose 4. such that
Eq. (2.8) has a stable mg-periodic solution ®¢(¢). The im-
portant question now is whether the SJS is stable for the
array. We write ®(t) = ®¢(t) + €(¢t) and linearize Egs.
(2.32)—(2.3c) and (2.8), taking e(t) and all the ¢(r,t)
to be initially small. The equation for €(¢) decouples
from the rest of the set. We know beforehand that if
we integrate this equation starting from £(0) = 1 we get
[Ae] = |e(70)] < 1. This is because we arranged the
To-periodic solution @ to be a stable solution of (2.8).
For deviations in the array from single-junction behav-
ior we therefore only consider the ¢(r,t). The evolution
equations for these deviations can be integrated numer-
ically, starting with N initial conditions where only one
@(r,t = 0) = 1 and all others are zero. The state vectors
at time 7 are linearly combined to give eigenvectors, each
with components e;(r), and we calculate the correspond-
ing eigenvalues A;. According to the standard theory, the
SJS is linearly stable, if |A\;| < 1,foralli=1,...,N.

The results for |);| are given in Fig. 2 for f =3 ona
4 x 4 lattice and for f = -:-13- on a 3 x 3 lattice. For clar-
ity we have discarded some eigenvalues for f = % with
magnitude much smaller than unity. We always have one
state with eigenvalue unity, which corresponds to a global
rotation of all phases. Because such a deviation does not
have any physical consequences, we can safely ignore this
eigenvalue in the stability analysis, and consequently we
omitted this in Fig. 2. In the regions where the eigen-
values are drawn |A;| < 1, and there the value of ®¢(t)
is on a Shapiro step. In the remaining regions (2.8) does
not have a stable 7p-periodic solution. Figure 2 clearly
shows that the SJS becomes unstable in the array before
|Ae] > 1, ie., before it becomes unstable for the single
junction. Therefore the actual step width for the array is
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FIG. 2. Magnitude of the eigenvalues for f = % and f = %
are plotted as solid lines. There is a Shapiro step for the single
junction in the regions where eigenvalues are plotted, but for
the array only in regions where all magnitudes of the eigenval-
ues are smaller than unity. We discard the eigenvalue unity,
but we plot the dotted lines to locate the horizontal levels
1 and 2. The solid lines with the “e” are simulation results
at very low temperatures. The small plateaus at noninteger
values are an artifact of the boundary conditions.

smaller than found from a single-junction analysis based
only upon Eq. (2.8). The step width also decreases much
more rapidly with n [appearing below Eq. (1.1)] in the
array, than for the SJS itself.

Suppose the array follows a SJS corresponding with
< v >= 1, and that |A;| > 1. If we disturb the situa-
tion by an amount ¢(r,t = 0) = e;(r), for all r, then
this will increase in amplitude with a constant factor,
each period 79, until the nonlinear effects take over. We
usually observe that after several periods, each of which
moves the vortex lattice over an integer multiple of the
vector 2%, there will be one period in which it moves over
an additional vector X + §. After this, each new period
7o starts with this shifted vortex pattern. For this new
situation the initial deviation e; always appears to be
an eigenvector again, but now with |A] < 1, so that it
disappears. The resulting behavior of the array in the
presence of a small noise source, is that there are periods
where the vortex lattice shifts over an integer times 2%,
which randomly alternates with periods where it moves
over an additional vector X + ¥.

On the basis of our present analysis we cannot be sure
whether there are stable periodic solutions in case the
SJS is an unstable solution. So far the simulations do
not indicate this, but the behavior of arrays under these
conditions is still under investigation.

To see the consequence of the instable modes for the
ige— < v > curve, we simulated the periodic arrays, of
the same sizes as in the stability analysis, using the al-
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gorithm introduced previously.® We update the phases
using a second-order Runge-Kutta procedure with time
steps of 0.05 h/(2el.R,). For each value of f we started
our simulations from a ground-state configuration or
from the final configuration of the previous ig.. Each
data point represents an average over several runs; in
each run we average over 4000 configurations. At least
4000 configurations are discarded for large, initial re-
laxations and 1200 after small i3. adjustments. For a
substantial number of points we averaged over at least
40000 configurations after long relaxation times, and
found no significant deviations from the results of the
shorter runs. We take the temperature to be very small
[10=%hI./(2ekp)] but nonzero, in order to prevent the
array from staying in unstable solutions. Our experience
1s that rounding errors by themselves are not always suf-
ficient for this purpose. As usual, the effect of finite tem-
perature is simulated by adding a white noise term to
Eq. (2.1).

In Fig. 2 we added the results of simulations for 7,. =
1.0 and vy = 0.1, in several magnetic fields. We clearly
see that < v > leaves a step when the largest eigenvalue
becomes greater than unity. In a magnetic field the dif-
ferent eigenmodes become unstable at different values of
14c, and as a consequence there is an intrinsic rounding of
the curve, which is not caused by spatial inhomogeneities.
Regions where < v > is a noninteger are characterized by
an unstable SJS, and consequently the junctions voltages
are nonsynchronous. Apart from minor deviations, the
phase coupling to the rf source is retrieved when the SJS
becomes stable again. We have verified that the solu-
tion is indeed of the SJS form on the steps. The largest
magnitude of the eigenvalues appears to be exactly size
independent in the periodic arrays, and consequently this
also holds for the regions of phase locking, which corre-
spond to this magnitude being smaller than unity. The
reason for the lack of size dependence is that the corre-
sponding eigenmode configuration has the same unit cell
as the ground-state vortex pattern, and the periodic lat-
tices always contain an integer number of these cells. In
realistic arrays this size independence is expected as long
as the system contains a large number of unit cells of the
vortex lattice, which is usually the case. The small devia-
tions between simulations and stability analysis generally
arise when the largest |A;| is just below unity. Here, our
relatively short relaxation times do not allow the system
to fall in the SJS. For f = % there is an additional differ-
ence, due to the appearance of a (nearly) stable solution
at < v >= % In this solution the staircases are oriented
perpendicular to the current, and each period 79 they
move over 2X. If we decrease ig. in small steps we do
not see this because the SJS is also stable in that region.
(Figure 2 represents an average over runs with increas-
ing and decreasing i4c, and therefore the small step lies
in between -:-2; and 1.) Simulations in a 6 x 6 periodic lat-
tice and in the 8 x 8 finite lattice (discussed below) do
not show the < v >= % step, and the other small steps
at noninteger values for f = %, indicating that they are
an artifact of the periodic boundary conditions.

In order to show that we can understand the behav-
ior of realistic arrays with our analysis we also per-
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formed simulations in a finite array of 8 x 8 unit cells
(i.e., containing 256 junctions), again with temperature
1075k, /(2¢kp). In Fig. 3 we give a set of ige— < v >
curves both for finite and for periodic arrays. We con-
firm that there are only ¢ = 1 steps present in these
curves.!® The similarity between the two graphs in Fig.
3 indicates that the description of the periodic arrays also
holds for the finite arrays. Nevertheless, the SJS itself is
in general not a stable solution in the finite array, and
the stable solution departs from full coherence near the
edges. However, as a remainder of the SJS, there is still
a solution with a homogeneous distribution of voltages
near the center. Apparently, this counterpart of the SJS
for the finite arrays is stable in about the same i4q. in-
tervals where the SJS is stable in the periodic arrays. If
we increase the size of the system, this solution will more
and more resemble the homogeneous SJS. Note that in
the finite arrays, apart from the intrinsic effect, the edges
also add to the rounding of the curve near the steps, but
this effect will be much smaller for the large arrays used
in experiments.

The curves with f # 0 are almost mutually identical,
with steps that are significantly smaller than for f = 0.
Now, Cy/y = 1/v/2 and Ciys= % do not differ very much,
which means that the step widths on the basis of the SJS
result are almost identical. From the stability analysis we

2.5
2.0
1.5¢
1.0
0.5¢

<v>

2.0

<v>

FIG. 3. The time-averaged voltage as a function of z4c in
periodic and finite (i.e., free-boundary) arrays. The magnetic
fields are f =0 (o), 7 (A), 1 (Q), 1 (O), and for the finite
arrays we also have f = 1—g (%), where g = (\/5— 1)/2 is the
golden mean. Only some of the data points are indicated by
a marker. Again the dotted lines are plotted merely to define
the exact locations of the integer levels.
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see that, although the SJS is stable in a smaller region
for f = %, the number of unstable eigenmodes is initially
small. For this reason, the deviation from < v >= n is
initially also small, which preserves the resemblance. As
mentioned earlier, there is no clear comprehension of the
data at the other values of f in Fig. 3.

IV. SUMMARY AND DISCUSSION

After rewriting the coupled set of evolution equations,
describing the dynamics of the arrays, in a suitable form
we construct a single-junction solution. We find the
most general form of this coherent-phase solution to-
gether with the precise conditions which must be obeyed
for it to appear. Subsequently the evolution equation
is derived for the voltage difference over the array, in
the case of a staircase ground state. A stability analysis
shows that the array is phase locked to the rf source, i.e.,
that < v > is integer, in regions where the SJS is sta-
ble. Experiments on these arrays in a magnetic field will
always show rounded steps. The reason for this intrin-
sic, field-dependent, rounding of the curve near the steps
is that different modes become unstable at different i4c.
The results of this stability analysis can be particularly
important for practical applications of the phenomenon.

We confirm that these arrays do not show the fractional
Shapiro effect, i.e., the ¢ > 1 steps. In simulations of peri-
odic arrays we find that the system indeed follows the SJS
in regions where the SJS is stable. These simulations also
demonstrate the significance of the method, presented
earlier,® to simulate an array with periodic boundaries,
in both z and y directions, together with a current bias.

As mentioned before, an earlier theoretical study of the
staircase geometry led to subharmonics.!® The results of
Ref. 14, as well as those presented here, do not confirm
this. (Of course, the theoretical approach in question is
based on a voltage bias, instead of a current bias, which
obscures a direct comparison somewhat.) These subhar-
monics completely result from discontinuities in the twist
a(t), in this work denoted by ®(t), which are imposed
through Eq. (12a) of Ref. 15 to describe the dynamics of
the system when it enters a region in phase space where
the SJS is unstable. Instead of imposing stability by forc-
ing the system by hand to avoid these regions in phase
space, we suggest simply letting the system, including
the twist, evolve according to the coupled set of differen-
tial equations. Then, also with a voltage bias, one finds
a SJS, and an analysis analogous to the one above should
be employed to examine the stability of this solution.

When the ground state is not a staircase state, the
SJS is no longer a solution. The igc— < v > character-
istics are surprisingly similar to those of arrays with a
staircase ground state, and we cannot fully understand
this remarkable feature yet. Our conjecture is that the
system will strive for a minimum spread of the voltages
when it is phase locked. This is supported by prelimi-
nary simulations, which show that this spread decreases
strongly on a step, although remaining nonzero.

Except for the consequences of unstable modes, we
hardly tried to explain the results for this geometry us-
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ing the vortex picture, which was successfully employed
in case of the usual, straight, geometry. If we consider,
e.g., the < v >= 1 step, then the vortex lattice moves
over its own unit cell in a time 7g, so that the starting and
final configurations of each period are simple. However,
the problem is that the intermediate configurations are
generally quite complicated, and this prevents the vortex
picture from giving additional insight.
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