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A method for studying the static and dynamical properties in the superconducting state is proposed,
based on computer simulations of the solution of the time-dependent Ginzburg-Landau equation. We
examine the dynamics of Aux (vortex) lines in type-II superconducting films. It is shown that the nu-

cleation of the superconducting state involves the formation of vortices and antivortices and their an-

nihilation processes, even without an external magnetic field. We also show numerically how a Aux line

is trapped by a pinning potential.

I. INTRQDUCTIQN

Since the discovery of high-T, superconductors, ' there
has been a growing interest in the dynamics of Aux (vor-
tex) lines in type-II superconductors. This is partly be-
cause the dynamics is pronounced in superconductors
with a high transition temperature ( T, ) and an experi-
mental study of the dynamics is relatively easy. We also
note that the dynamics of vortices is important for the
technological applications of superconductors. Recently,
various interesting properties of vortices have been exper-
imentally studied in the high-T, superconductors,
whereas theoretical study is still in the early stage.

It is known that the time-dependent Ginzberg-Landau
(TDGL) equation is one of the most useful tools for
studying the dynamics of superconductors. In this paper
we propose a method of computer simulations for solving
the TDGL equation in various physical situations. By in-
troducing a gauge transformation of the vector and scalar
potentials, the equation can be integrated numerically
and the static and dynamical properties are simulated.

In Sec. II, we present a method for computer simula-
tions for the solutions of the TDGL equation. In Sec. III,
the method is applied to the nucleation problem of the
superconducting states with and without an external
magnetic field in a thin film, starting with the normal

state, which is a nonequilibrium state below T, . We ex-
amine the time development of the nucleation process,
and observe that the process involves the formation of
vortices and antivortices and their annihilation. The re-
sult shows that the phase fluctuation of the supercon-
ducting order parameter occurs more easily than that of
the amplitude. In a magnetic field perpendicular to the
film, a vortex lattice is stabilized. We extend our simula-
tions to systems with a pinning center and study how a
vortex is trapped by the center. In Sec. IV, we summa-
rize our simulations and discuss a further extension of
our method. Recently, several simulations of vortex
states have been presented. We present here simula-
tions of the dynamics of the order parameter.

II. TIME-DEPENDENT
GINZBURG-LANDAU EQUATION

The time-dependent Ginzburg-Landau equation pro-
vides a physical picture of the dynamics of superconduc-
tors in a magnetic field. It is a partial differential equa-
tion for the space and time dependence of the complex
order parameter h. The TDGL equation is conveniently
written in the normalized form adapted by Hu and
Thompson as

D ' +i 6+/ (~Al —1)b,+ —— A 6=0
i Pie

j=cr Vf — +R—e b, *——— A b,
1 BA V 2e
c t)t, i A'c
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where A and g are the vector and scalar potentials in the
normal state, respectively, and j is the current density. D
and o. are the normal-state diffusion constant and con-
ductivity, respectively, and have the relation,

c 2/2
0' =

48~a' D

Here, g is the coherence length and A, is the magnetic
penetration depth. The other notations are the conven-
tional ones. In the above TDGL equation, the effects of
the thermal Auctuation are neglected. The effect of tem-
perature is introduced only through phenomenological
parameters such as g, A, , and so on. The TDGL equation
is solved together with the Maxwell equations

where H, is the thermodynamic critical magnetic field.
Here, a is a positive constant, which is afterward defined
so as to make the numerical calculation efficient, tGL and
~ are, respectively, defined by

frytaL-:
8k~(T, —T)

(7)

In the normalized units, the TDGL equation is rewritten
as

j= VX(VX A),
4~

1 BA —V1lj,
c Bt

(3)

2
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~

—A —~ a VXVX A .
Bt 2i

(8)

Q=QX A,
with E and 8 being the electric field and the magnetic
Aux density, respectively.

Gor'kov and Eliashberg derived the TDGL equation
from the microscopic theory. They found that the equa-
tion is valid only for a gapless superconductor because of
the singularity in the density of states at the gap edge.
Moreover, the equation necessarily assumes that heating
effects due to the dissipation of energy by the time-
varying field and currents can be neglected. As Gor'kov
and Eliashberg remarked, this restricts the applicability
of the theory to very near T, unless there is a very high
density of paramagnetic impurities. However, for simpli-
city, throughout the present paper we regard the TDGL
equations as the fundamental one to discuss the magnetic
Aux structures.

Let us introduce a gauge transformation of scalar and
vector potentials

A~ A —Vy, P—&g+ ——1 By
c Bt

accompanied by a phase redefinition of the order parame-
ter

. 2eA~h exp —i-
A'c

The gauge transformation leaves Eqs. (1) and (3) un-
changed. It means that the physical results are indepen-
dent of the choice of y. Thus, in order to make the scalar
potential zero, we set By/c}t = cf. Then, the e—quations
can be rescaled as follows:

Note that Eq. (8) includes only two parameters a and a
since the variables r, t, A, and 6 are rescaled by the
temperature-dependent quantities.

In the following, we consider a thin film of a type-II su-
perconductor (~) 1/&2) in the x -y plane with a magnet-
ic field in the z direction. We are interested in the field
configuration invariant along the z axis. Thus, the field
depends only on the coordinates x and y, and the third
component of the field is neglected. This situation may
be physically realized if the thickness of the film, d, is
much greater than the coherence length g and less than
the penetration depth A, ; that is, d & A, .

The outline of the procedure of the present simulation
is as follows. First we discretize the TDGL equation and
define it on a square lattice with N lattice points. In our
simulations, we use the simple Euler method with time
step Et=0.05, the space step Ax =hy =1, and a =2.
The grid size is 60X60 (N =60), and so the space size is
30$X30$ in physical units. We divide the complex
oreder parameter 6 into real and imaginary parts. We
also set ~=2. In the normalized units the upper critical
magnetic field is given by H, 2= 1 and the numerical value
for the lower critical magnetic field 0, &

is equal to 0.083
in our computer simulations, while this value may be
compared with the expression H, &=lux/21' =0.087 in
the limit of large ~.

Periodic and free boundary conditions are introduced
in the x and y directions, respectively. Therefore, at the
film edge in the y direction, we have

a A =0
i a

n

for the order parameter where the suKx n denotes the
normal direction at the boundary, and

tGL
t in units of

12
VXA=H, , (10)

A in units of &2H, ~l,

g in units of
2et~L

for the vector potential where H, is the external magnet-
ic field, which is applied along the z direction, z, is given
by H, =h, (x,y)z. These boundary conditions are con-
cretely written as
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b, (O,y) =6(N, y),
A„(O,y) = A„(N,y),
A (O,y)= A~(N, y),

b(x 0)=b(x, 2)+i z A~(x,x 1)b(x, 1),
a

A„(x,O) = A„(x,2)+2h, ,

A (x, O) = A (x,2) .
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III. COMPUTER SIMULATIONS
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where p, =VH —
( A/a ). The last term in the right-hand

side in the first equation has negative sign so that the
growth of the amplitude f is depressed by the phase fiuc-
tuation. From the last term in the right-hand side of the
second equation, we find that once the amplitude grows,
the phase gradient is depressed. Then, the system ap-
proaches the uniform state at h, =0.

Let us next apply the external magnetic field h, =0.25,
which is higher than H, &

but much smaller than H, 2.
Thus, the equilibrium state will be the vortex state. Start-
ing with the normal state (~5~ =0), we integrate the
TDGL equation. The time dependence of ~b,

~
is shown in

Fig. 4. In this case, the vortex state grows. However, the
vortex lattice is not triangular. This is probably because
of the effect of the film edge in such a small system used
in the calculation. The structure of the vortex lattice also
depends on the magnitude of the magnetic field in the
small system. The detailed dependence of the structure
on the field and the system size will be left to a separate
publication. We concentrate on the dynamics in this pa-
per.

Effects of an impurity on a vortex are examined. Here,
an impurity exists at a certain point in the film, where the
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FIG. 4. Time development of the spatial pattern of the order
parameter ~h~ at h, =0.25. The contour lines with the interval
0.2 are shown at various times. The maximum value is normal-
ized to be one.

~ ~

~ r ~

~ ~ e r

~ 4 ~

~ 4 s
~ ~

~ ~

~ g ~ f
~ ~ ~ f
~ 0 Q ~

\
~ ~

s 4 4 4 4 4 '0 '0 % ~

prrrww'I
W P~mV

i p

pp~~Q'&LAN

e ~444~
+st M+ ir st 4 J
hhatavv

a 1 4 0 I ~ V
~ ~ ~ s ~ ~ ~ ~ e' ~

V Sr Sr 4 Is % ~ 4 r
V Var ~ h h h q a ~+sr' 1 e, it,

Cstsr~qq q s ~

~&tt~t ~

4b~Ppg g t,+4~++ P P r r
IVAN/ p r

'I VWAAA &
rs A+++&

r PPPAV 1%%
t p p~~WSW 4 a

t ggy p WLiii
typist. aC/C4i

gg~4 4
hhO I +eVV
h a ~ ~ S ~ V r r

~ I + S ~ ~ ~ ~

'1 '~ 0 ~ ~

~ ~

~ ~ ~

s a

~ ~

'~

s ~ ~

~ ~

t = 14000 t = 15000

FIG. 3. The upper and lower figures show the current distri-
bution j without an external magnetic Geld at t = 120. The max-
imum value of ~j~ is 0.04. The arrows in the lower figure indi-
cate the direction and magnitude of the current density.

FIG. 5. The spatial pattern of 8, at h, =0 in the presence of
a pinning center denoted by the symbol X. The contour lines of
B, with the interval 0.05 are shown at various times.
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FIG. 6. Trajectories of a vortex when it starts moving to the
—y direction at three different points, respectively. The posi-
tion of a pinning center denoted by the symbol X is taken to be
the origin. The symbols A and ~ denote the position of the
vortex with the time interval t = 1000 and the symbols 0 denote
that with the time interval t =250. The vortex is quickly
trapped by the pinning center once the distance between the
vortex and the center becomes less than 2A..

order parameter is zero. We create a vortex in a magnet-
ic field above H„and then turn off the field. Since the
vortex is not stable at h, =0, it will be removed from the
film edge or it will be trapped by the pinning center. Let
a vortex sit on a certain point which is far from the pin-
ning center at t =0 and move to the —y direction with an
initial velocity. In Fig. 5, the time dependence of the spa-
tial pattern of B, at h, =0 in the presence of a pinning
center, denoted by the symbol X, is shown, where the
contour lines of B, with the interval 0.05 are given at
several choices of time. We find that the vortex distorts
near the pinning center and is trapped by it. In Fig. 6,
the trajectories of a vortex in three cases are shown where
the vortex sits on three different points at t =0, respec-
tively. The vortex moves to the —y direction with a cer-
tain initial velocity in each case. When the distance be-

tween the vortex and the pinning center is less than 2A, ,
the vortex becomes drawn by the center. In the figure,
the symbols A and denote the position of the vortex
with the time interval t =1000 and the symbols 0 denote
that with the time interval t =250. We find in the figure
that the vortex accelerates near the center.

IV. DISCUSSION AND CONCLUSION

We have proposed a method for studying the supercon-
ducting properties based on the numerical integration of
the TDGL equation. This method is applied to obtain
the static as well as dynamical properties of the supercon-
ductors. We demonstrated the simulations of the time
development of the superconducting state in the thin film
with and without an external magnetic field. We also
presented the interaction between a vortex and a pinning
center.

Let us consider a superconductor with T, =10 K. At
T/T, =0.9, for example, tGL is equal to -10-12 sec.
Thus, a vortex at the distance 2A, from the pinning center
is trapped in —10 sec as seen in Fig. 4. The average
velocity of vortex is —10 cm/sec. The nucleation and
annihilation processes of vortices shown in Figs. 1 and 2
also occur in the time range —10 sec.

In the present paper, we have simulated a few cases.
Further simulations by changing the parameters are thus
needed. For example, in the case with large sr, we expect
an acceleration of the regularization of the vortex lattice
because of the large effective interaction compared with
the low-~ case.

We have presented computer simulations of the dy-
namics of the order parameter. This method is applied to
simulations of the static and dynamical behaviors of sys-
tems with various conditions, such as those with disloca-
tions, inhomogeneous fields, and thermal fluctuation.
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