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The inertial mass per unit length of vortex in a discrete type-II superconductor is found. Using a
Josephson-coupled-layer model, the expression for the inertial mass per unit length for a continuous
type-1II superconductor is continued from high temperatures (near the transition temperature T, ) to zero
absolute temperature for the case that the vortex is oriented parallel to the layers. The possible applica-
tion of the vortex inertial mass in studies of microwave and infrared response is discussed.

INTRODUCTION

The inertial mass of a vortex threading a type-II super-
conductor is of interest because of its importance in the
description of either single or collective vortex dynamics
(e.g., Refs. 1 and 2). For instance, using a Hamiltonian
formalism, collective vortex oscillations can be studied
and dispersion relations derived.! The relevance of re-
taining a vortex inertial mass in the equation of motion in
the study of microwave response was observed some time
ago® and the added importance for high-temperature su-
perconductors has been pointed out.3

In this paper we are concerned with calculating the
inertial mass of a vortex penetrating a type-II supercon-
ductor, taking into account atomic-level discreteness in
the material. We expect the resulting expression for the
inertial mass to be applicable to various layered super-
conductors, including the high-temperature copper ox-
ides. The known high-T, superconductors are generally
accepted to have a perovskite crystal structure* and an
associated layered structure and small coherence length
(§.) in the c direction. The anisotropic Ginzburg-Landau
(GL) theory employing an effective mass tensor (e.g.,
Refs. 5 and 6) provides a useful tool for the phenomenol-
ogy of these materials. However, the theory is strictly
valid only over a very limited temperature range (near the
transition temperature T,). Further, the GL theory is
inadequate for those situations where atomic-level
discreteness of the superconductor comes into play.
When calculating the inertial mass of a vortex for a
discrete type-II superconductor, both of these considera-
tions apply.

It is possible for the vortex inertial mass to arise from
several mechanisms, including variation of the magnitude
of the order parameter,’ elastic deformation with an ac-
companying strain field,® and generation of an electric
field from vortex motion. For a discrete superconductor
with Josephson vortices present, as we consider, a major
contribution is expected to be the latter electromagnetic
one.

Using a Josephson-coupled-layer model,’ the expres-
sion for the inertial mass per unit length for a continuous
type-II superconductor found from anisotropic GL
theory!® is continued from high temperatures to zero ab-
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solute temperature for the case that the vortex is oriented
parallel to the layers. We expect our result to be valid
below a crossover temperature T*, where £.(T) becomes
of the order of the lattice constant c.!'™' To our
knowledge, this provides the first estimate of the vortex
inertial mass for discrete three-dimensional (3D) super-
conductors. In particular, our result may a6pp1y to the
classes of layered organic superconductors,'®~!° organi-
cally intercalated metals,'> and high-7, materials.>~ !4
Our form of the inertial mass u is compared to that of
Lebwohl and Stephen®® who treated the case of a vortex
in a single Josephson junction. (In a well-known mechan-
ical analogy, the mass of a fluxon in a single Josephson
junction is related to the junction capacitance.?!)

We point out the great enhancement in u for high-7,
materials, which arises from the small Josephson core
size. This also leads us to discuss the possible application
of the vortex inertial mass in studies of superconductor
microwave and infrared response. An appropriate func-
tion for characterizing vortex dynamic response in these
applications is the complex-valued dynamic mobility.?
In this paper it is shown how the dynamic vortex mobili-
ty previously obtained to include both pinning and flux-
creep effects can be extended to include a nonzero inertial
mass. The mobility is written in terms of a general iner-
tial mass per length so that other forms of the mass could
be employed.

Using a model square lattice of superconducting grains
weakly coupled by Josephson junctions, Eckern and
Schmid have studied quantum vortex dynamics in granu-
lar superconducting films.2> These authors have
developed an effective action for a fluxon which uses an
effective mass. A similar 2D model for granular super-
conducting systems has been used by Larkin et al.?* to
study quantum tunneling of vortices. Larkin et al. found
an effective Lagrangian and action, incorporating an
effective mass for vortices, and used it to examine collec-
tive low-frequency 2D vibrations in a network of Joseph-
son junctions. A recent work?® employed an effective
mass for a vortex in a 2D superconducting ring to study
voltage quantization.

The subject of dimensional crossover in a layered an-
isotropic superconductor was studied by Klemm, Luther,
and Beasley.!' At a crossover temperature, defined by
£.(T*)=V'2s, where s is the stacking periodicity, the
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upper critical field parallel to the layers H ,, can show
a strong upward curvature.!! Possible experimental
verification of this theory for H,,, in intercalated layer
compounds may be found in Ref. 15. The existence of a
crossover temperature for high-T, materials may be indi-
cated by data from torque-magnetometry experiments on
untwinned single crystals of YBa,Cu;0;_s (Y-1:2:3).12
Current theory based on a 3D London treatment appears
inadequate to explain these results at lower temperatures
when the magnetic field lies close to the CuO planes.!>26

When a vortex is present in a layered, discrete super-
conductor, as the temperature is lowered, several related
effects occur. For the sake of simplicity, unless stated
otherwise in this paper, the vortex will be assumed to be
oriented parallel to the superconducting layers of the
specimen. As the temperature passes through T*, the
vortex core structure changes from an Abrikosov type to
a Josephson type.” (The order parameter is no longer
depressed to essentially zero on the vortex axis.) The di-
mensions of the vortex core change, which affects derived
quantities such as the line energy, lower critical field, and
viscous drag coefficient.>?” Specifically, if £, is the small-
est length entering in a GL expression, it is replaced with
some other length, usually the repeat distance s between
superconducting layers. One example of this is the lower
critical field H,; where the Ginzburg-Landau parameter
k is replaced by the ratio of penetration depth to the
stacking periodicity.”’ As the vortex inertial mass at
high temperatures is proportional to the upper critical
field H_,, we expect the product of coherence lengths,
which is a measure of the vortex core area, to be replaced
by an altered vortex core size.

BACKGROUND ON MODEL OF
DISCRETE, LAYERED SUPERCONDUCTORS

Here we recall and slightly extend some of the results
of Ref. 9 that we require in computing the vortex inertial
mass in the next section. For description and application
of the layer model with more detail than is provided here,
the reader may consult Refs. 9 and 27. The model used is
based on an infinite periodic stack of Josephson-coupled,
parallel superconducting layers. The superconducting
layers of thickness d; alternate with insulating layers of
thickness d;, giving a periodicity length of s=d;+d;.
The layers in the model are taken to be parallel to the xy
(adb) plane, with the center of the insulating layers at
z=z,=ns, n=0,%x1,+2,.... The major results that we
require include expressions for the gauge-invariant phase
difference, Ay, (y), of the superconducting wave function
across the junction between successive superconducting
layers when a single vortex is present in the central (or
n =0) insulating layer and is aligned parallel to the x axis
(a direction). In giving the expressions for Ay, it is con-
venient to make use of the abbreviations

y’—y/}"c >
zZ=z /Ay,

(1)
ﬁoEs/z}\,b N
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where the penetration depths A, and A, govern the ex-
ponential decay of the components of the supercurrent
density along the b and c directions, respectively. In the
Josephson weak-coupling limit, we have A2=c¢,/872sJ,
to good approximation (¢, is the flux quantum and J, is
the maximum Josephson current density). For the cen-
tral junction (at z=0), an expression for the gauge-
invariant phase difference well suited to our purposes is

A‘yo(y)=1r—2tan‘1()7/z70) , Ipl<<1, 2)

valid for small values of y. Similarly, for junctions with
n+0, a useful approximation for the gauge-invariant
phase difference is

24,y
Ay, (y)= 72

, R«1, (3)

valid for small R. Equations (2) and (3) result from the
asymptotic forms of modified Bessel functions K ,,.°
In this paper we also make use of the results of fluxoid
quantization obtained in Ref. 9. An extension made here
is deriving a modified 2D time-dependent sine-Gordon
equation for the phase difference Ay ,(y,?). Subject to the
assumption A2 >>A2, there results from fluxoid quantiza-
tion the equation
$ 3 4mhy

b(y,2)=——2;a—yAy,,(y,t)+

3
), @

where b is the magnetic field of the vortex and J, is the y
component of the supercurrent in the layers. By combin-
ing the Josephson tunneling current relation with
Ampere’s law, including the displacement current, we ob-
tain

J,(y,z,t)=JgsinAy, (y,t)

C ab € aEz(y’Z,t)
=— LDy -

47 a_y 47 at

when there is an applied electric field in the z direction, €
being the electrical permittivity of the insulating layers.
The assumption is made here that the electric field is
small enough so that, to first order, it induces a magnetic
field negligible to b.

Now we use the relation between the electric field and
the time variation of the phase difference,?!2%2°

(5)

# OAy,(yt)
‘E ’ ’t =T L b
L PP R ¥ ©
and Egs. (4) and (5) to obtain a modified 2D sine-Gordon
equation

Ay, (y,t) 1 Al 3 1 3*Ay,(y,t)
B A I T et e
dy Jo A2 dydz g ot

1

—sinAy,(y,2),  (7)
(4

where the term with J, is a modification of the usual

(1+1)-dimensional (Lorentz invariant) sine-Gordon equa-

tion. From Eq. (7) we have thus found the speed of light

¢ in the insulating layers of the stack model. We have
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4 2=c2d,- /es, with the geometrical factor d; /s, which is
usually of order unity. This geometrical factor is analo-
gous to, but distinct from, that for a single Josephson
junction (e.g., Refs. 20, 21, and 28) where the geometrical
factor is the ratio of insulator thickness to magnetic
thickness and is usually very small. We further have
the plasma frequency in the stack, o, =T /A,
=cV/d;/es /A.. Alternatively, the plasma frequency
0,=1/ V'L,C, where the junction inductance
L,=%#/2eAJ, and capacitance C =€ A4 /4mwd; with area
A. It is then possible to define a McCumber-Stewart pa-
rameter® for the stack Bc =w,RC, where R is the normal
resistance, which characterizes the effect of the junction
capacitance. As seen below, the identification of the
speed of light in the insulating layers of the stack model
is useful in rewriting the expression for the vortex inertial
mass.

As we have assumed A2 /A2 <<1, for those cases where
[0%(J, /J4)/3ydz| <AZ, the J, term in Eq. (7) may be
neglected. (This is probably a valid approximation out-
side of the vortex core region.) However, in the core re-
gion, specifically in the central layer, the behavior of the
phase difference is truly 2D.° Equation (7) is a nonlinear
wave equation for the gauge-invariant phase difference
which does not contain any dissipative terms. For the
calculation of the vortex inertial mass below, we assume
that such terms can be ignored to leading order. In this
regard, we mention that perturbed versions of the
(14 1)-dimensional sine-Gordon equation have been stud-
ied.3® These treatments have usually focused on soliton
dynamics in the presence of weak perturbations.

CALCULATION OF VORTEX INERTIAL MASS

We consider the vortex to move at constant velocity v
in the y direction (see Fig. 1). This is similar to the situa-
tion where the vortex (moving parallel to the layers) is
acted upon by a Lorentz force due to an applied current
density in the z direction. It will be seen that the calcula-
tion of the inertial mass is similar to that for the energy
dissipation (e.g., Refs. 9 and 29). The vortex inertial mass
is obtained by equating the vortex kinetic energy to the
electric field energy produced by the vortex motion. This
yields the expression for the inertial mass per unit length

d

/ z(c)
P y S

v ’/t y(b)

/ x(a)

FIG. 1. Geometry for the calculation of the vortex inertial
mass in a Josephson-coupled-layer model. The vortex (bold ar-
row), in the central insulating layer, is aligned parallel to the a
axis and moves with constant velocity v in the b direction.

6905

€ _
p= 41rv2fE2(x)d2x (v <<7) . 8)

If we were to include relativistic effects, we would need to
use the expression®! K =(y —1)uc? for the kinetic energy
where the factor y=1/‘/1 —v2/¢2. By using Eq. (6) to
express the electric field in terms of the gauge-invariant
phase difference, integrating over the y direction, and
summing over all junctions in the model (in the z direc-
tion), we have

o

2mce

2
1 ©

2.2

€S

“=E dy , 9)

- o0

where we took Ay, (y,t)=Ay,(y —vt), which should be
valid for v << [cf. Eq. (7)]. Using Eq. (2), it is found that
the central junction provides the dominant contribution
to the inertial mass. Using Eq. (3), all the other layers in
the model simply provide a small correction to p. For
this correction from all layers j50, we introduce the
infinite sum

-]

5= ——557=0.11308 . 10
= 2 T Fanh 1o

Then the vortex inertial mass per unit length is

p=- % 1 (1+3)) (11)
872 c2d} Hgh, v

Equation (11) can be rewritten in several forms. One par-
ticularly illuminating form is to recognize that
oA, =(5/2)A. /Ay =Y 1ax is the dimension of the Joseph-
son core along the y axis.” [This is the distance from the
vortex axis along the y direction at which the gauge-
invariant phase difference Ay y(y) across the central junc-
tion becomes equal to 7/2 and the Josephson current
density reaches its maximum value of J,.°] By also em-
ploying the expression for the speed of light in the insu-
lating layers, ¢, we have for the inertial mass per unit
length

#A1+3))

# 877-26 2diymax (12)
for a vortex aligned and moving parallel to the layers.
Now the appearance of the Josephson vortex core area
can be seen, for the core dimension in the z direction is of
order s /2 which, in turn, is roughly of the size of d;. We
next compare the result (12) with that from anisotropic
GL theory and the single Josephson junction case of
Lebwohl and Stephen, respectively.

In Ref. 10 the dipolar electric field induced by the
motion of a single vortex moving at constant velocity in a
continuous anisotropic superconductor was investigated.
We showed that the standard dipolar field case can be ex-
tended by the inclusion of a mass anisotropy parameter .
Furthermore, by computing the electric field energy per
unit length of vortex, we found a vortex inertial mass ten-
sor per unit length. For comparison purposes in this pa-
per, we recall that component of the (diagonal) inertial
mass tensor corresponding to a vortex along the x axis
moving in the y direction:!°
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By = 6me? B

where f=m,/m,, H . =¢,/27,E,, and m, and m, are
the GL effective masses.>® The result (13) should be very
analogous to (12) because, although the (Abrikosov) vor-
tex was assumed to have a normal core, (13) was derived
by neglecting any variation in the order parameter as a
result of the vortex motion. The result (13) for a continu-
ous superconductor should be valid at low fields
(B << B,,), high temperatures (|T—T,| << T,), and when
the GL parameter is large, k >>1. We recall that, in the
anisotropic model,®1° the vortex core is taken to be ellip-
tical in shape with semimajor axis §, and semiminor axis
&, (the GL coherence lengths). For a typical anisotropic
high-T, superconductor [e.g., Y-1:2:3 (Ref. 13)], the term
1/B can be ignored in Eq. (13). Then the vortex inertial
mass for a continuous superconductor is of the order of

363
B 3211'2c2§y§2 ’

=M ‘34__1_] , (13)

Ky (14)

The forms (12) and (14) exhibit the vortex inertial mass at
low and high temperatures, respectively. As anticipated,
as the temperature falls below the crossover temperature
T*, the vortex core area is replaced in the GL expression.
Specifically, aside from numerical factors of order unity,
&, is replaced by d;, £, by y,x, and ¢ by the speed of
light in the insulating barriers €.

Using a relativistic formulation, Lebwohl and
Stephen® (LS) found an effective mass per unit length of
vortex line. They considered a vortex in a single Joseph-
son junction, assuming isotropic superconductors with
thicknesses much larger than the London penetration
depth A. Using the speed of light in the single insulating
barrier, c=cV/d; /ed , their result® can be written as

1 %

Hs™ o 22da,

» (15)

where d=2A-+d; is the magnetic thickness and
A J=\/ c¢o/8m*dJ, is the Josephson penetration depth.
In terms of the lower critical field of a Josephson junc-
tion, H,..;=2d,/m*A,;d (Ref. 21, p. 109), (Ref. 32), the
Lebwohl and Stephen effective vortex mass per length be-
comes pus=¢oH, ; /4m¢ 2. Because the product d,y,, is
much smaller than the product dA;, or alternatively, be-
cause H, ; << H_,, the LS result is much smaller than the
inertial mass for a vortex in a Josephson-coupled stack.
It is also smaller than the inertial mass obtained by Suhl
by means of time-dependent GL theory’ for an isotropic
superconductor. (In Ref. 10 the result for an anisotropic
superconductor was compared with Suhl’s result.) This
situation for the inertial masses is parallel to that for the
viscous drag coefficients. As pointed out by Lebwohl and
Stephen, the drag coefficient for a single Josephson junc-
tion is proportional to H,.,;. However, for a continuous
superconductor, the drag coefficient is proportional to
the upper critical field.®

To estimate the size of the inertial mass for high-T,
materials, we replace Eq. (12) by the approximation
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2
A
p= o2 11 (16)
41T2 A’L‘ c2 diS

Considering Y-1:2:3 as an example,’* we take
Ay /A.=1/5.5 and s=12 A. Assuming that d;=s/2 and
¢ 2=~c?/100, we have u~3X10° m,/cm for temperatures
below T*. In making this estimate we ignored a possible
frequency dependence in the dielectric constant € for the
insulating layers.>®> The corresponding vortex relaxation
time is 7=pu /7, where 7 is the viscous drag coefficient.’
We have that 7=c? /¢ %4nd;0,, where o, is the
normal-state conductivity, which compares with 1/7o,,
for the case of an Abrikosov vortex in a continuous super-
conductor.?

VORTEX MOBILITY

The above estimate suggests that inertial effects may be
significant in the vortex dynamics of high-temperature
superconductors. An appropriate function for character-
izing vortex dynamic response is the complex-valued dy-
namic mobility.?? The dynamic mobility is useful in
describing many applications, including high-frequency
phenomena such as microwave>>?%34 or infrared® %’
absorption or reflection. The mobility has the added at-
traction that mechanisms in the vortex dynamics, e.g.,
thermal activation, can be included in a systematic
manner. In particular, we show here how the dynamic
vortex mobility obtained in Ref. 22 to include both pin-
ning and flux-creep effects can be extended to include a
nonzero inertial mass.

As an illustration, an often used vortex equation of
motion is

pii(x,1)+nu(x,t)+r,u(x,t)=f,(x,t), a7

where u is the vortex displacement from its equilibrium
pinning potential well, 7 is the viscous drag coefficient
(e.g., Ref. 27), k, is the restoring force constant of the
pinning potential, and f,; is the driving force, often the
Lorentz force from a local current density. The corre-
sponding mobility in linear response at angular frequency
 is given by

Bo)=p~(—io+n/p+ic, /pw)™" .

To go further, the dynamic mobility can be computed
from its definition as a velocity correlation function
which is a Fourier transform.3®3° In a manner analogous
to our treatment of the rf surface impedance,22 we em-
ploy the result of Ref. 38 for a particle undergoing
Brownian motion in a periodic potential. The effect of
thermal agitation of the particle is described by the addi-
tion of a Langevin force on the right-hand side of Eq.
(17), which is assumed to be Gaussian white noise with
zero mean.’** The form of the dynamic mobility that
we use is based on Schneider’s continued-fraction expan-
sion of the Laplace transform of the velocity time corre-
lation function.*! A truncated continued-fraction expan-
sion of the dynamic mobility has proven successful pro-
vided that independent information is built in for the dc
mobility 7#(0, T).4>*
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The truncated continued fraction form of fi that we use
is
-1

/,
R , (18)

=y~ 1| —i —_—
Ma, T)=p ot (D)

where a(v) is the ratio I,(v)/Iy(v), I, is a modified
Bessel function of the first kind of order p, the
temperature-dependent argument v=U(T)/2k, T, and U
is the barrier height of the periodic potential. In Eq. (18),
at nonzero temperatures, due to anharmonicity of the po-
tential well, the squared frequency «, /u is replaced by an
effective squared frequency ax, /u.%® Our requirement
on the dc limit of the mobility gives the condition
go(T)=ax, /{[@#(0,T)]"'—n}. This condition specifies
the dynamic mobility (18), which includes inertial,
viscous damping, pinning, and thermal activation effects.
Of course, the mobility is written in terms of a general
inertial mass per length so that forms of the mass other
than Eq. (12) can be used. With Eq. (18), the effective dy-
namic resistivity due to vortex motion is given by??
Po(@, T)=Boyi(w,T), where B is the magnetic induc-
tion.

Analytic results for fi(0,T) exist in certain limiting
cases. The limit of extreme damping was considered in
Ref. 22. Here we consider the opposite case of no damp-
ing, n—0, suitable only when inertial effects dominate
the dynamics. In this limit, the function g, which
specifies the dynamic mobility is given by3®
I, (W[Iy(v)+I,(v)]

I3(v)

aVik
gO(T)=——2—”(2kaT)““2

(19)

where q, the period of the pinning potential, is related to
the height by a =712U /lk, and [ is the length of vor-
tex.

SUMMARY

By employing a Josephson-coupled-layer model, we
calculated the inertial mass per unit length of vortex in a
discrete type-II superconductor. The resulting expres-
sion, Eq. (12), includes the effect of superconductor
discreteness and may be applicable to layered organics,
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intercalated metals, and high-temperature superconduc-
tors. The result (12) is expected to hold at low magnetic
fields and at temperatures below a crossover temperature
T*, where the coherence length £, becomes of the order
of the lattice constant. Combining this result with Eq.
(13) from anisotropic GL theory,!? the expression for the
vortex inertial mass has been continued from high tem-
peratures (near the transition temperature 7T,) to zero ab-
solute temperature for the case that the vortex is oriented
parallel to the layers. As anticipated, once the tempera-
ture falls below T*, the vortex core area is replaced in the
GL expression. In addition, the speed of light in Eq. (13)
is replaced with the speed of light in the insulating layers,
a further reflection of the change in vortex structure as
the temperature decreases.

A rough estimate suggests that inertial effects may be
significant in the vortex dynamics of high-temperature
superconductors. Accordingly, there may be a need to
include the vortex inertial mass in descriptions of mi-
crowave and infrared response. A convenient function
for characterizing vortex dynamic response in such appli-
cations is the complex-valued dynamic mobility.?? We
showed how the dynamic vortex mobility obtained in
Ref. 22 to include pinning, flux flow, and flux-creep
effects can be extended to include a nonzero inertial mass.

In this paper we considered a 3D vortex with Joseph-
son core aligned and moving parallel to the supercon-
ducting layers. One may wonder about obtaining an ex-
pression for the inertial mass for a discrete superconduc-
tor when the vortex is at an angle to these layers. An ap-
propriate starting point for such a study may be provided
by Ref. 42, which describes 2D pancake vortices in an
infinite stack of Josephson-decoupled superconducting
thin films. If Josephson coupling can be included in this
model, a generalization of our result to a vortex inertial
mass tensor may be possible.
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